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Prostate cancer (PCa) has the second highest incidence among 
cancers in men worldwide and ranks fifth in terms of mor-

tality (1,2), posing a substantial burden on health care systems 
worldwide. An essential imaging modality in the clinical man-
agement of prostate cancer is biparametric MRI (bpMRI). It is 
recommended as a primary diagnostic approach for individuals 
with a suspected clinical diagnosis of PCa (3,4). The current stan-
dard of care recommends using the Prostate Imaging Reporting 
and Data System (PI-RADS) score to analyze prostate bpMRI 
(5), but this has a relatively high rate of false positives (6), which 
can lead to unnecessary biopsy procedures, overtreatment, and 
increased risks and discomfort for patients.

Ongoing advancements in the fields of artificial intelligence 
and radiomics (7–10)—a computational method used for ex-
tracting and conducting statistical analysis of imaging features 
that are not readily visible to the human eye—are continuously 
shaping the field of clinical predictive models. Using complex 
mathematical algorithms, radiomic features (such as shape and 
texture-related information) can be extracted from MR im-
ages (11). This field shifts the focus from the visual assessment 

of medical images to a more objective quantitative evaluation, 
which can complement the present standard of care.

The use of radiomics across the spectrum of PCa is frequently 
reported in the literature (12), especially in relation to the de-
tection of clinically significant PCa (csPCa). Traditionally, PCa 
diagnosis is based on the histologic analysis of a systematic bi-
opsy specimen, where a Gleason score (GS) is assigned by a 
pathologist. More recently, the International Society of Uro-
logical Pathology (ISUP) pointed out the significant differences 
in patient outcome in GS of 3+4 and 4+3 (13), deciding to re-
structure the GS into the ISUP grades: ISUP = 1 corresponding 
to GS of 3+3 or lower; ISUP = 2 corresponding to GS of 3+4; 
ISUP = 3 corresponding to GS of 4+3; ISUP = 4 corresponding 
to GS of 8; ISUP = 5 corresponding to GS of 9 or higher. Over-
all, progression and relapse-free survival has been reported as 
significantly associated with ISUP grades (14–16). Some stud-
ies have reported that ISUP grade 2 can be considered low risk 
(17), but others have shown that significant differences in pro-
gression-free survival exist between ISUP grades 1 and 2 (14). 
This threshold—ISUP = 1 versus ISUP = 2, 3, 4, or 5—can 

Purpose:  To develop and prospectively validate a clinical and radiologic model to predict clinically significant prostate cancer (csPCa) using biparametric 
MRI (bpMRI).

Materials and Methods:  Retrospective data (acquired before March 31, 2022) from 12 medical centers were collected. Radiomic features were extracted 
from the whole prostate gland using segmentations generated by an automatic deep learning algorithm. A model incorporating bpMRI radiomics, age, 
prostate-specific antigens, the Prostate Imaging Reporting and Data System (PI-RADS), and the prostate zone lesion location was trained. A retrospective 
validation set and prospective data (acquired after March 31, 2022) were used to compare PI-RADS scoring (area under the receiver operating charac-
teristic curve [AUC] and specificity at PI-RADS >3). Sensitivity analyses for sequence (T2-weighted, apparent diffusion coefficient, diffusion-weighted 
imaging) and scanner vendor (GE, Philips, Siemens) were performed, in addition to fairness analyses for relevant categories.

Results:  The retrospective dataset for model development included 7157 male patients (mean age, 64.78 years; 3342 [46.7%] with csPCa), and the 
prospective dataset for model validation included 1629 patients (mean age, 66.19 years; 592 [36.3%] with csPCa). The multimodal model outperformed 
PI-RADS in the retrospective (AUC, 0.88 vs 0.80, P = .005; specificity of 71% vs 58%, P = .002) and prospective validation sets (AUC, 0.91 vs 0.85, P 
< .001; specificity of 77% vs 66%, P < .001), leading to 22.7% fewer biopsies compared with PI-RADS. Sensitivity analyses showed the importance of 
multiple sequences and vendors in achieving model generalization, as using specific sequences or vendors alone led to worse performance. Fairness analysis 
showed generalizability across different categories but highlighted increased sensitivity with higher PI-RADS and reduced performance in one medical 
center.

Conclusion:  A multimodal model provided a temporally generalizable predictor of csPCa that outperformed PI-RADS.
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be considered a better determinant of clinical significance as it 
has the least amount of undetected clinically significant disease 
(18) and is motivated by other works in csPCa detection using 
MRI (19,20).

In this work, we developed a multimodal machine learning 
model incorporating clinical, demographic, radiologic semantic, 
and agnostic radiomic features using multicentric data to predict 
csPCa. We evaluated the impact of MRI scanner vendor, presence 
or absence of endorectal coil (ERC), and inclusion of clinical vari-
ables on model performance. To demonstrate temporal generaliz-
ability, our multimodal model was validated with contemporary 
data (from both internal and external centers) against PI-RADS 
scoring. Fairness analyses were performed to understand the cause 
and potential cases of failure in our model.

Materials and Methods
Ethics committee approval, as well as informed consent waiv-
ers (for retrospective data) and patient consent (for prospective 
data), were obtained independently at each clinical site.

Study Sample
Our training dataset consisted of retrospective bpMRI ex-
aminations comprising T2-weighted, apparent diffusion co-
efficient (ADC), and diffusion-weighted imaging (DWI) se-
quences from the ProstateNet image archive (21) created under 
the scope of the ProCAncer-I project, as illustrated in Figure 1. 
The data came from 12 different clinical centers, nine countries, 

and three MRI scanner manufacturers (Table S1). The inclu-
sion criteria were (a) bpMRI including high-spatial resolution 
T2-weighted imaging and a high b value (b > 1000 sec/mm2) 
DWI (acquisition parameters in Table S2); (b) histology results 
(either biopsy or prostatectomy) or a minimum 1-year clinical 
follow-up for individuals with no disease evidence at baseline 
bpMRI; (c) 18 years or older at the time of diagnosis; and (d) 
collection date before March 31, 2022. Prospectively collected 
data used during validation followed identical histology inclu-
sion criteria, with the exception of those who had a collection 
date after March 31, 2022. Cases were considered positive if 
they had a biopsy with ISUP higher than 1, and negative if they 
had a biopsy with no lesion or ISUP = 1 or no biopsy and a 
minimum 1-year follow-up with no evidence of disease (either 
normal prostate-specific antigen [PSA] or negative MRI).

Whole-Gland Segmentation
Automatic segmentation of the whole prostate gland was 
performed on T2-weighted sequences, based on an artificial 
intelligence model developed in prior work (22) trained on 
ProstateNet data (21) with a custom protocol (Appendix S1). 
Given that Rodrigues et al (22) used 638 studies from Pros-
tateNet to develop prostate segmentation models and that 
we used ProstateNet in this study, the training data from Ro-
drigues et al (22) (542 studies) were used exclusively during 
training, ensuring there was no data leakage. T2-weighted 
sequences were coregistered to DWI, and the calculated 
transformation matrix was applied to the segmentation mask 
generated on T2-weighted images using nearest-neighbor in-
terpolation (Fig S1). For wide field-of-view (FOV) examina-
tions where the coregistration algorithm failed to converge, a 
center crop was applied on the x- and y-axis to 240 mm. The 
transformed mask was then used for the radiomics extraction 
of DWI and ADC. The full parameters can be found in Ap-
pendix S1. A radiologist (R.M., with 8.5 years of experience) 
rated the segmentation quality of 125 randomly selected stud-
ies considering both T2-weighted and DWI (Appendix S1).

Feature Extraction
Bias field correction was performed on T2-weighted sequences 
using the N4ITK algorithm (23,24). Since the studies are aniso-
tropic, only in-plane features were considered. Additionally, x 
and y spacings were resampled to the 95th quantile value for 
both T2-weighted images and high b value DWI and ADC 
(0.6875 and 2.0, respectively). The bin width was selected for 
each image transform to produce an average of 80 bins, as rec-
ommended in the literature (25). Radiomic features were ex-
tracted using the PyRadiomics package (version 3.0) (26); the 
PyRadiomics configuration is available in Table S3. A total of 
1223 features pertaining to whole prostate gland shape, texture, 
and first-order features were calculated per sequence. The clini-
cal variables included were age (continuous), PI-RADS (1–5 for 
increasing lesion severity in multiparametric MRI [mpMRI] as 
evaluated by clinical radiologists at each institution), PSA (con-
tinuous), and index lesion anatomic location (a set of four indi-
cator variables for central zone, peripheral zone, transition zone, 
and anterior stroma). Missing PSA values were imputed using 
k-nearest neighbors imputation.

Abbreviations
AUC = area under the receiver operating characteristic curve, ADC 
= apparent diffusion coefficient, bpMRI = biparametric MRI, csPCa 
= clinically significant prostate cancer, DWI = diffusion-weighted 
imaging, ERC = endorectal coil, FOV = field of view, GS = Gleason 
score, ISUP = International Society of Urologic Pathology, mpMRI 
= multiparametric MRI, PI-RADS = Prostate Imaging Reporting 
and Data System, PSA = prostate-specific antigen, SHAP = Shapley 
additive explanation

Summary
A multimodal machine learning model combining radiomic, radiolog-
ic, and clinical variables reduced unnecessary prostate biopsies while 
maintaining high sensitivity for clinically significant cancer detection.

Key Points
	■ In this study of 8786 men, a multimodal machine learning model 

outperformed standard Prostate Imaging Reporting and Data 
System scoring in predicting clinically significant prostate cancer 
and reduced unnecessary biopsies by 20.2% (806 of 1031 vs 670 of 
1031; P < .001) in prospective validation.

	■ Sensitivity analyses demonstrated that models trained on sin-
gle-vendor data or that used only MRI sequences showed clinically 
significant and reduced performance (mean AUC decrease of 0.18; 
P < .001) compared with multivendor, multimodal approaches.

	■ While the model showed consistent performance across age groups, 
scanner vendors, and field strengths, performance was reduced in 
settings with wide field of view diffusion sequences (sensitivity de-
creased by 15%; P < .001).

Keywords
Algorithm Development, Machine Learning, Model Validation, Mod-
el Training, Genital/Reproductive, Neoplasms-Primary, Oncology, 
Comparative Studies, Technology Assessment
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Multimodal Model Development
Throughout our work, a single study acquired before any poten-
tial treatment intervention was included for each patient, so there 

were no risks of data leakage. From the totality of the retrospective 
data, two distinct datasets were constructed—one for development 
and another for validation (retrospective validation set). To do so, 

Figure 1:  (A) Flowchart of the inclusion and exclusion criteria of retrospective and prospective biparametric MRI (bpMRI) examinations in 
ProstateNet. Exclusion criteria were missing sequence in the bpMRI (either T2W [T2-weighted images], DWI [diffusion-weighted imaging], or ADC 
[apparent diffusion coefficient maps]), file corruption, coregistration failure, and missing clinical or target information. (B) Schematic representation 
of our modeling and validation protocol. After studies are retrieved from ProstateNet, prostate segmentation masks are automatically generated from 
T2-weighted imaging and coregistered to DWI and ADC. Radiomic features are extracted from all series. These, together with clinical variables 
(age, prostate serum antigen [PSA], Prostate Imaging Reporting and Data System [PI-RADS], lesion location), were used to train a radiomics model 
predicting either clinically significant prostate cancer (csPCa) or no csPCa. Validation was performed against PI-RADS scoring using two datasets—a 
retrospective validation set and a prospective cohort including 194 external studies (also available in ProstateNet).

http://radiology-ic.rsna.org
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a random set of 200 studies, stratified according to ISUP grade 
distribution, was selected for the retrospective validation set, while 
the remaining studies were used for model development.

On the training set, numerical variables were standardized, 
constant features were excluded, and highly correlated features 
(Spearman coefficient > 0.8) were removed (if two features had 
Spearman coefficient > 0.8, we removed the feature with the 
highest average correlation across all features). For radiomics-only 
models (described later for sensitivity analysis), a light gradient 
boosting machine (27) was trained; whereas for models incor-
porating both radiomics and clinical features, a CatBoost (28) 
algorithm was used. Hyperparameter tuning was performed for 
each algorithm with a random search using nested cross-valida-
tion (Appendix S1).

Sensitivity Analysis
While the primary model developed in our work comprises ra-
diomics, semantic, and clinical features, other models were de-
veloped to understand (a) the impact of clinical variables on our 
model, (b) the impact of having large amounts of diverse data 
in terms of ERC use and scanner vendor, and (c) the impact of 
using only specific sequences during training and inference. To do 
this, different data subsets were tested for their predictive perfor-
mance by stratifying the data into six different subsets, consider-
ing scanner manufacturer and ERC usage (GE, Philips, Siemens, 
GE with no ERC, all vendors, and all vendors with no ERC). 
This resulted in 24 training combinations (six scanner/ERC × 
four volumes). The analysis of these results was performed using a 
linear model where the area under the receiver operating charac-
teristic curve (AUC) is the dependent variable, and the sequence, 
feature set, and manufacturer are the independent variables. The 
discriminated training set sizes are shown in Table S4. Given that 
the clinical centers providing data for prospective validation used 
different PI-RADS versions (Table S5), we compared model per-
formance stratified according to PI-RADS version use (centers 
not using PI-RADS version 2 vs all centers) and dynamic contrast 
enhancement use (all centers vs only centers using dynamic con-
trast enhancement to derive PI-RADS) for both our model and 
the baseline performance (PI-RADS).

Statistical Analysis
We compared age and PSA among training, retrospective test-
ing, and prospective testing using Wilcoxon tests, and ISUP, 
lesion location, PI-RADS, normal follow-up PSA, country, 
and biopsy type using a χ2 test. To ground our assessment in 
the current best radiologic practice, we used PI-RADS >3 as 
the classification threshold for a possible indication of csPCa 
(which can be confirmed through a biopsy), which represents 
the standard of care. We selected three distinct assessments: the 
AUC, the specificity at PI-RADS >3 sensitivity (proxy for un-
necessary biopsy sparing), and the sensitivity at PI-RADS >3 
specificity (proxy for false-negative reduction). AUC, specific-
ity, and sensitivity comparisons were performed using the De-
Long test and bootstrapping (29), respectively, with the pROC 
package for the R programming language (R Foundation for 
Statistical Computing). These give a general performance met-
ric for our model and quantify the unnecessary biopsy-sparing 
potential of our method, respectively. A Shapley additive expla-

nation (SHAP) analysis (Python package SHAP, version 0.42.1) 
(30) was used to identify the extent to which features or groups 
of features are important for prediction. We made use of the 
additivity of SHAP values to calculate feature group SHAP val-
ues for each instance. We also performed a calibration curve 
analysis to understand whether our model is well-calibrated us-
ing the CalibrationCurves package for R (31) and a decision 
curve analysis using the dcurves package for R (32,33) to better 
understand the added benefit at detecting csPCa and avoiding 
biopsies. We assessed both the added net benefit and biopsies 
avoided at a threshold corresponding to PI-RADS >3 sensitivity. 
This allowed us to quantify how our model could improve on 
PI-RADS without excluding patients from potentially life-sav-
ing treatment. We used a statistical significance threshold of .05.

For validation, two distinct datasets were used—the aforemen-
tioned retrospective validation set randomly constructed from the 
retrospective data distribution obtained before March 31, 2022, 
and a prospective validation set collected from consecutive patients 
from March 31, 2022, to August 2024. The extraction of radiomic 
features was performed following the same method and parameters 
described for the retrospective data. Prospective cases with missing 
PI-RADS scoring were assigned PI-RADS = 1 if no lesions were 
detectable in the MRI examination (MRI negative) and excluded 
otherwise. We additionally used the prospective validation set to 
establish a learning curve—how performance evolves as the size of 
the training dataset increases by sampling percentages between 1% 
and 100% (1%, 2%, 5%, 10%, 25%, 50%, 75%, 100%).

Exploratory fairness analyses—a performance analysis on sub-
groups focusing on different categories that can create dispari-
ties—were performed for the prospective data. We considered 
country, scanner vendor, age, ERC use, diffusion FOV, and PI-
RADS on the model developed during this work; we excluded 
categories with fewer than 50 cases. Given that no Greek centers 
were used during training and were only used in the prospective 
cohort (194 of 1825 [10.6%]), we considered the performance 
on Greek studies to be an external validation proxy.

The METRICS statement is available in Table S6; please note 
that our approach achieves an “excellent” score of 94.6% (34).

Results

Study Sample Characteristics
The total training dataset included 8596 patients, 7778 of whom 
had a complete bpMRI with radiomic features (cases were ex-
cluded due to file corruption or coregistration failure). After ex-
clusion of cases in which clinical features or ground truths (ISUP) 
were unavailable, a total of 7157 training samples remained. Of 
the 200 individuals from the retrospective validation cohort (not 
included in the previously described 8596 patients), 17 were ex-
cluded due to missing PI-RADS. Finally, of 1825 individuals in 
the prospective cohort, 196 were excluded due to missing data 
or missing follow-up information (Fig 1A). We observed a wide 
variety of scanner manufacturers and models, as well as a variety 
of receive coils and magnetic field strength (Table S7). The analy-
sis of predicted segmentations performed by a radiologist showed 
that these were correct in most cases (no low-quality T2-weighted 
segmentations and only 11 of 125 [9%] low-quality DWI seg-
mentations; Appendix S1, Tables S8 and S9).
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The mean ages for the retrospective training and pro-
spective validation cohorts were 64.78 and 66.19 years, re-
spectively (Table 1). Differences in clinical variables were 
observed between the training and retrospective validation 
cohorts for ISUP distribution, lesion location, and country, 

and between the training and prospective validation in terms 
of age, ISUP, lesion location, whether individuals with neg-
ative MRI had normal PSA at follow-up, biopsy type, and 
country (Table 1). There was no evidence of a difference in 
terms of PSA.

Table 1: Description of Clinical Variables across All Cohorts

Variable Training
Retrospective  
Validation

P Value  
(Training vs Retrospective)

Prospective 
Validation

P Value (Training vs 
Prospective)

Age (y) .34 <.001
  Mean (SD) 64.78 (7.78) 64.13 (8.03) 66.19 (7.98)
PSA (ng/mL) .16 .34
  Mean (SD) 11.30 (40.01) 10.94 (15.34) 11.18 (52.03)
ISUP (Gleason grade group) .081 <.001
  0 (not assessed) 3364 (40.0) 58 (29.0) 761 (41.7)
  1 1383 (16.4) 34 (17.0) 385 (21.1)
  2 1982 (23.6) 56 (28.0) 370 (20.3)
  3 858 (10.2) 26 (13.0) 156 (8.5)
  4 368 (4.4) 11 (5.5) 77 (4.2)
  5 458 (5.4) 15 (7.5) 76 (4.2)
Lesion location .50 <.001
  Peripheral zone 4332 (51.5) 116 (58.0) 1048 (57.4)
  Transitional zone 1124 (13.4) 29 (14.5) 259 (14.2)
  Anterior stroma 295 (3.5) 4 (2.0) 86 (4.7)
  Central zone 256 (3.0) 5 (2.5) 61 (3.3)
PI-RADS .052 <.001
  1 3216 (38.2) 58 (29.0) 557 (30.5)
  2 96 (1.1) 1 (0.5) 90 (4.9)
  3 517 (6.1) 11 (5.5) 138 (7.6)
  4 2449 (29.1) 68 (34.0) 599 (32.8)
  5 2135 (25.4) 62 (31.0) 441 (24.2)
Normal follow-up PSA (for 

negative cases only)
.38 <.001

  No 1947 (23.1) 36 (18.0) 541 (29.6)
  Yes 1404 (16.7) 21 (10.5) 242 (13.3)
Country <.0001 <.001
  France 294 (3.5) 2 (1.0) 90 (4.9)
  Greece NA NA 194 (10.6)
  Italy 1088 (12.9) 30 (15.0) 260 (14.2)
  Lithuania 619 (7.4) 18 (9.0) 214 (11.7)
  the Netherlands 2196 (26.1) 73 (36.5) 79 (4.3)
  Portugal 928 (11.0) 20 (10.0) 157 (8.6)
  Spain 781 (9.3) 6 (3.0) 356 (19.5)
  Turkey 1929 (22.9) 29 (14.5) 440 (24.1)
  UK 578 (6.9) 22 (11.0) 35 (1.9)
Biopsy type (if available) .17 <.001
  In-bore 194 (2.3) 5 (2.5) 27 (1.5)
  Systematic 1156 (13.7) 29 (14.5) 442 (24.2)
  Fusion 1411 (16.8) 55 (27.5) 101 (5.5)
  Systematic plus fusion 1242 (14.8) 34 (17.0) 179 (9.8)
  Complete 7157 183 1629
Total 8413 200 1825

Note.—Unless otherwise indicated, data are numbers of cases, with percentages in parentheses. Statistical testing (P) was performed using 
Wilcoxon tests for numerical variables (age, prostate-specific antigen [PSA]), and the χ2 test was performed for categorical variables (Inter-
national Society of Urological Pathology [ISUP], lesion location, Prostate Imaging Reporting and Data System [PI-RADS], normal follow-up, 
PSA, country, biopsy type). “Complete” represents the cases that were complete and available for model training testing. Complete = bipara-
metric MRI and clinical variables, NA = not applicable.

http://radiology-ic.rsna.org
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Artificial Intelligence Reduces Unnecessary Biopsies
Our multimodal machine learning model (Fig 1B) shows remark-
able performance, improving on the standard-of-care threshold 
of PI-RADS >3 (Fig 2A–2C). Compared with PI-RADS scoring, 
our model offers improvements—for the retrospective validation 
set, performance improved in both the retrospective validation set 
(AUC, 0.88 [95% CI: 0.82, 0.93] for our model and AUC, 0.80 
[95% CI: 0.73, 0.86] for PI-RADS, P = .005) and the prospective 
validation set (AUC, 0.91 [95% CI: 0.90, 0.93] for our model and 
AUC, 0.85 [95% CI: 0.84, 0.87] for PI-RADS, P < .001).

Assuming a sensitivity identical to that of PI-RADS >3 in 
ProstateNet (89%), we observed improved specificity in the ret-
rospective validation for our model (0.71; specificity of 58% for 
PI-RADS >3, P = .002) and the prospective validation sets for 
our model (77%; specificity of 66% for PI-RADS >3, P < .001). 

Concretely, at identical sensitivity, our model would have re-
duced false positives (unnecessary biopsies) by 22.7% (54 vs 44 
true negatives for our model vs PI-RADS >3, respectively) and 
20.1% (806 vs 670 true negatives for our model vs PI-RADS 
>3, respectively, of 1031 total negatives) in the retrospective and 
prospective testing cohorts, respectively.

On the other hand, at a specificity identical to that of PI-
RADS >3, we observed improved sensitivity both on the retro-
spective validation for our model and for PI-RADS >3 (96% vs 
75%, respectively, P = .003) and in the prospective test set (95% 
vs 87%, respectively, P < .001). In other words, an additional 
5.1% (104 vs 99 true positives) and 2.7% (573 vs 558 true pos-
itives) of csPCa cases would have been detected in the retrospec-
tive and prospective validation cohorts, respectively, by our model 
when compared with using PI-RADS >3 alone.

Figure 2:  (A) Receiver operating characteristics curve of our model compared with Prostate Imaging Reporting and Data System 
(PI-RADS) on both the retrospective validation set (blue) and prospective validation set (red). The dashed line corresponds to the sensitivity 
of PI-RADS >3. (B) Confusion matrices for the retrospective and prospective cohorts. (C) Comparison of PI-RADS and the clinical plus ra-
diomics models in terms of area under the receiver operating characteristic curve (AUC), sensitivity of PI-RADS >3 specificity, and specificity 
of PI-RADS >3 sensitivity stratified according to retrospective or prospective cohorts. (D) Shapley additive explanation (SHAP) values for 
contribution of features for model predictions on the prospective cohort. Each dot in the graph represents the SHAP value of a feature (clinical 
features) or of a group of features (radiomic features) for one observation. Positive and negative SHAP values correspond to contributions to 
classification as clinically significant prostate cancer (csPCa) or non-csPCa, respectively. (E) Learning curve for cross-validation (CV), retro-
spective, and prospective model performance. The shaded green area represents the SD of the CV performance estimate. *P < .05. **P < 
.01. ***P < .001. AS = anterior stroma, CZ = central zone, PZ = peripheral zone, TZ = transition zone.
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While this is sufficient motivation for the use of multimodal 
features, we undertook a SHAP analysis of feature importance 
considering clinical and semantic features separately and by ag-
gregating radiomic features by feature type (Fig 2D). This analy-
sis shows that, while PI-RADS and lesion in the peripheral zone 
offered larger contributions, both first-order and texture fea-
tures contribute to prediction (given their large absolute SHAP 
values). Conversely, shape and lesion location features (with the 
exception of peripheral zone lesion location) contribute little. In 
addition, according to the SHAP analysis, the model made rea-
sonable assumptions by increasing the probability of clinically 
significant disease when the PI-RADS score increases (Fig 2D). 

Our learning curve analysis (Fig 2E) shows performance satu-
rating at approximately 50% of training data (3578 cases), with 
the error associated with the cross-validation estimate decreasing 
as training data size increases. Using calibration analysis, we also 
observed that our model overestimates the risk with a Brier score 
of 0.13 (Fig S2A). A decision curve analysis showed that, when 
compared with the threshold corresponding to PI-RADS >3 sen-
sitivity, there was an added net benefit of 0.15 (Fig S2B) and an 
added net biopsies avoided of 0.16 (Fig S2C).

Multiple Vendors and Sequences Are Crucial for 
Generalizability
Multicentric, diverse datasets such as ProstateNet facilitate the 
retraining of models with specific scanner vendors and ERC use. 
As shown in Figure 3, more significant performance drops be-
tween cross-validation and testing were observed when models 
were trained on specific scanner vendors, indicating that gen-

eralization to testing data with multiple vendors requires the 
training data to have a similar composition in terms of scanner 
vendors. Interestingly, when training with data from all ven-
dors, including or excluding ERC has little impact on the per-
formance of the retrospective validation set (Table 2).

Additionally, we tested how sequence-specific radiomics 
contribute to prediction. On their own, there was a general 
trend for radiomic features in terms of used sequence—perfor-
mance was best when all sequences (bpMRI) or DWI alone is 
used (Table 2). We also note that radiomic models do not per-
form particularly well on their own, with multimodal models 
performing higher (on average >0.177 AUC). Finally, we ob-
served no difference between assessing performance of all cen-
ters versus centers using exclusively PI-RADS version 2.1: AUC 
of 0.85 versus AUC of 0.86 (P = .79) for the PI-RADS model, 
and AUC of 0.91 versus AUC of 0.92 (P = .98) for our model. 
Furthermore, comparing models using all centers systematically 
using dynamic contrast enhancement does not lead to perfor-
mance differences either: AUC of 0.85 versus AUC of 0.85 (P 
= .68); and AUC of 0.91 versus AUC of 0.91 (P = .71) for PI-
RADS and our model, respectively.

Fairness Analysis Shows Consistent Performance
Performance consistency across different centers, scanner vendors, 
ages, ERC use, and PI-RADS is important, as this can help us 
understand when to apply the model to different subcohorts. We 
observed stable performance across various age ranges, ERC use, 
and scanner vendor categories, highlighting broad generalizability 
to these categories (Fig 4). However, variations in diffusion FOV 

Figure 3:  Cross-validation (CV) and retrospective validation set area under the receiver operating characteristic curve 
(AUC) sensitivity, specificity, and the AUC for models trained to predict clinical significance (ISUP 2–5), stratified according 
to sequence type radiomics used during training, vendor, and whether clinical features were used to train the model. ADC 
= apparent diffusion coefficient, bpMRI = biparametric MRI (combined T2W, ADC and DWI), DWI = diffusion-weighted 
imaging, ERC = endorectal coil, ISUP = International Society of Urological Pathology, T2W = T2-weighted. 

http://radiology-ic.rsna.org


Radiology: Imaging Cancer Volume 7: Number 5—2025  ■  radiology-ic.rsna.org� 8

Improving Prostate Cancer Detection with Multimodal Machine Learning Rodrigues and de Almeida et al

lead to reduced sensitivity. When considering country, we observed 
a drop in performance for Lithuania across both AUC and sensi-
tivity (P < .001 for both) and a drop in AUC for Spain (P = .009). 
While the latter is likely to be associated with the relatively lower 
prevalence of negative cases in data coming from these sites, the 
former was likely attributable to centers from Lithuania (NCI) ac-
quiring diffusion sequences (DWI and ADC) with a considerably 
wider FOV than that of T2-weighted, which leads to poor segmen-
tation results, as illustrated by our analysis of segmentation quality 
(Appendix S1); this highlights the importance of careful inspec-
tion of outputs by radiologists. For PI-RADS, we noted that—as 
expected—there is an inverse relationship between specificity and 
sensitivity as PI-RADS increases, an outcome of using this fea-
ture as part of the classifier. Finally, we had access to lesion size for 
150 cases in the prospective cohort. When comparing individuals 
whose lesion size was greater than 1.5 cm with those whose lesion 
size was 1.5 cm or smaller, we observed no evidence of a difference 
in sensitivity (P = .32), indicating that the effect of small lesions in 
csPCa classification was negligible for our model.

Discussion
In our work, the added value of bpMRI prostate radiomics to 
the standard of care is reported for the prediction of PCa clin-
ical significance. Our study shows physicians could potentially 
reduce over 20% of unnecessary biopsies for csPCa diagnosis 
by using a relatively simple and easily trainable multimodal ma-
chine learning model that combines clinical and demographic 
variables, semantic features defined by visual inspection from a 
human radiologist, and agnostic radiomic features. Addition-
ally, this model does not require any lesion annotation masks.

The study demonstrated consistently high predictive perfor-
mance, which is in line with previous studies for csPCa prediction 

using large multicentric datasets. Saha et al showed 
that a deep learning detection model trained on a large 
dataset (>9000 cases) could simultaneously increase 
the specificity and sensitivity when fixing the sensi-
tivity and specificity at specific PI-RADS operating 
points (19). Through this work, we showed that com-
bining standard radiologic evaluation with radiomic 
features leads to comparable AUC (0.91 for Cai et al 
[20] and 0.88 and 0.91 for our work on retrospective 
and prospective cohorts, respectively). Additionally, we 
presented not only a more holistic prospective valida-
tion but also an external prospective validation, as well 
as sensitivity analyses into the effect of scanner vendor 
and ERC use and fairness analysis to better understand 
where our model can fail. Finally, our calibration curve 
analysis demonstrates that our model, while overesti-
mating risk, does so at a relatively small level, and our 
decision curve analysis showed that both the added net 
benefit and the added biopsies avoided demonstrated 
the improvement of our model over PI-RADS.

Previous studies have also shown that combining 
information from standard radiologic practice (ie, PI-
RADS, radiology reports) outperforms both automatic 
methods and radiologists (20,35). Here, we confirmed 
this added benefit by showing that the combination 
of PI-RADS, lesion location, clinical features, and ra-
diomic features leads to state-of-the-art performance. 

Importantly, our model is designed to support radiologists rather 
than replace them. It builds on PI-RADS scoring and is more 
interpretable, thanks to SHAP analysis of individual feature con-
tributions. In contrast to deep learning models, which often act 
as “black boxes” and may face resistance from radiologists due to 
their opacity, our approach provided explainability and aligned 
with existing clinical workflows, encouraging broader adoption 
by radiologists.

The noninvasive method presented in this study for clinical 
significance classification outperforms PI-RADS, the clinical 
standard for noninvasive clinical significance risk assessment. Ad-
ditionally, there are relatively few biomarkers available for csPCa 
detection. PSA density has been described as a potentially useful 
biomarker (36); at a threshold of 0.185 (37), a sensitivity of 0.55 
and a specificity of 0.70 can be expected; this is a significantly 
lower performance than the values presented here. Nonetheless, 
combining several different biomarkers may lead to improved 
sensitivity, as illustrated in our work.

Our radiomic pipeline considers the whole prostate gland, un-
like other works focusing on individual lesions. This is mainly 
due to the high prevalence of multifocal PCa, which includes 
most PCa cases (38) and is characterized by high clonal hetero-
geneity (39). The literature on whole prostate gland radiomics 
is relatively recent, but results have shown that whole prostate 
gland radiomics has predictive power for csPCa classification 
(40,41). Other works using only MRI studies with no lesion lo-
cation information confirm that these approaches are promising, 
albeit with limited results or no external or prospective validations 
(42,43). Our sensitivity analysis determined that radiomics alone 
is insufficient: previous works are aligned with our results (AUC 
between approximately 0.7 and 0.8 for radiomics-only models) 
(40,41,44). Because of the substantial size of our dataset, we 

Table 2: Features Contributing to AUC in Detection of Clinically Sig-
nificant Prostate Cancer

Feature Estimate SEE t Value P Value

Intercept 0.764 0.014 54.1 <.001*
Sequence (vs bpMRI)
  T2-weighted −0.037 0.013 −2.9 .006*
  ADC −0.035 0.013 −2.7 .009*
  DWI −0.012 0.013 −1.0 .34
Feature set (vs radiomics only)
  Clinical plus radiomics 0.177 0.009 19.8 <.001*
Vendors (vs all vendors)
  Philips −0.027 0.015 −1.7 .093
  Siemens −0.084 0.015 −5.4 <.001*
  GE −0.104 0.015 −6.7 <.001*
  GE (no ERC) −0.09 0.015 −6.0 <.001*
  All vendors (no ERC) 0.011 0.015 0.7 .48

Note.—Linear model coefficient estimates (Estimate), standard error of the 
estimate (SEE), and associated t value and P value. The linear model was pa-
rameterized as the retrospective validation set area under the receiver operating 
characteristic curve (AUC) as a function of training sequence, feature set, 
vendors, and an intercept term. ADC = apparent diffusion coefficient, bpMRI 
= biparametric MRI (combined T2-weighted, ADC, and DWI), DWI = diffu-
sion weighted imaging, ERC = endorectal coil.
* Indicates statistical significance for a two-sided t test.
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regard this as additional confirmatory evidence for the general 
performance of these models and a solid demonstration that clin-
ical data can further improve clinical machine learning models. 
As shown by our sensitivity analysis, models trained on individual 
vendors fail to generalize when tested on data from other vendors, 
confirming previous findings in the literature pertaining to classi-
fication (44,45) and segmentation (22,46). Our fairness analysis, 
on the other hand, highlights the advantages of training models 
on multicentric data by showing generally consistent generaliza-
tion across age, country, ERC use, and scanner vendor.

Our study had several limitations. First, due to the statisti-
cally significant dataset size, the segmentation masks were au-
tomatically generated for all volumes. Given that only a small 
sample (approximately 5%) was validated by a radiologist, this 
is a potential limitation. While keeping a small percentage of 
subpar segmentations (rare in our data as noted by the segmen-
tation quality analysis) still led to remarkable results that out-
perform the current standard of care, we note that a practical 
clinical deployment of this tool should involve a segmentation 

quality confirmation analysis, as in previous works (47). Sec-
ond, reduced performance in cases where the diffusion FOV 
is larger than that of T2-weighted imaging raises an important 
exception for the application of our model. Third, the inclusion 
of dynamic contrast enhancement, typical of mpMRI, could 
lead to better performing models. However, a large multicentric 
study has recently shown that bpMRI is noninferior to mpMRI 
(48), so the added value to computational models may be lim-
ited. Fourth, the lack of information on radiologist expertise 
makes these results harder to interpret, although PI-RADS 
scores and ground truths were obtained from patients treated 
at each center and represent the variability and quality observed 
in day-to-day practice. Fifth, a caveat common to these anal-
yses is that not all positive cases are detected, as they depend 
on positive PSA and MRI examinations or other clinical deter-
minants. Having a 1-year follow-up tentatively addresses this, 
but neither PSA nor MRI detect all csPCa (6,49), and other 
studies have used cohorts with longer follow-ups to define neg-
ative cases (47). Indeed, it is impractical to determine for such 

Figure 4:  Performance metrics for our model are applied to the prospective cohort, stratified according to relevant subgroups (age, endorectal coil [ERC], country, scan-
ner vendor, Prostate Imaging Reporting and Data System [PI-RADS]). The gold vertical line in the first three columns corresponds to the performance observed for the whole 
prospective dataset. Horizontal black lines in the first three columns correspond to the parametric 95% CIs (DeLong test for area under the receiver operating characteristic 
curve [AUC] and z scores for sensitivity and specificity). Categories with fewer than 50 instances were excluded. csPCa = clinically significant prostate cancer, FOV = field of 
view, PCa = prostate cancer.
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a large cohort whether all centers followed similar criteria for 
biopsy recommendation in the retrospective data, the PI-RADS 
version they used, and whether their PI-RADS estimates made 
use of mpMRI or bpMRI. Here, we used PI-RADS >3 as a 
conservative cutoff point, but it is possible that some centers 
will recommend biopsies for lower PI-RADS cutoffs. However, 
modern PI-RADS leads to similar performance between bpMRI 
and mpMRI, as recently evidenced in an aforementioned large, 
multireader, multicentric study (48). Our sensitivity analyses 
showed no differences in conclusions when considering centers 
using PI-RADS version 2 or version 2.1, or bpMRI or mpMRI 
PI-RADS. Finally, a proper assessment of this system with sim-
ulated paired readings could lead to a better understanding of 
its real-world performance, with an adequate evaluation of po-
tential automation bias (50).

In conclusion, our multicentric study used the ProstateNet 
repository, a large bpMRI archive, to train and prospectively 
validate a multimodal machine learning model to distinguish 
clinically significant cancer from nonsignificant or no cancer. 
The developed model could potentially help clinicians reduce the 
number of unnecessary biopsies, as the model showed extremely 
high generalization power and proved robust for most of the ana-
lyzed subcohorts. Future work should focus on incorporating ad-
ditional sources of clinical information, such as race and ethnicity, 
familial history of PCa or other hereditary cancer syndromes, and 
PCa genetic risk (51).
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