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Despite being one of the most prevalent cancers, prostate cancer (PCa) shows a significantly high 
survival rate, provided there is timely detection and treatment. Currently, several screening and 
diagnostic tests are required to be carried out in order to detect PCa. These tests are often invasive, 
requiring either a biopsy (Gleason score and ISUP) or blood tests (PSA). Computational methods have 
been shown to help this process, using multiparametric MRI (mpMRI) data to detect PCa, effectively 
providing value during the diagnosis and monitoring stages. While delineating lesions requires a high 
degree of experience and expertise from the radiologists, being subject to a high degree of inter-
observer variability, often leading to inconsistent readings, these computational models can leverage 
the information from mpMRI to locate the lesions with a high degree of certainty. By considering 
as positive samples only those that have an ISUP≥2 we can train aggressive index lesion detection 
models. The main advantage of this approach is that, by focusing only on aggressive disease, the 
output of such a model can also be seen as an indication for biopsy, effectively reducing unnecessary 
biopsy screenings. In this work, we utilize both the highly heterogeneous ProstateNet dataset, and the 
PI-CAI dataset, to develop accurate aggressive disease detection models.

Prostate cancer (PCa) is the most prevalent cancer in men and the second most prevalent across genders1. 
However, PCa is also characterized by a low mortality rate provided there is early detection, a key factor in 
ensuring positive treatment outcomes. While biopsies constitute an essential step in diagnosing and stratifying 
prostate cancer, false positives or incorrect risk assessments can lead to over-treatment. Together with treatment 
side effects, this may result in a loss of quality of life for the patients, making it imperative to carefully consider 
treatment choices2. The development of computer-aided diagnosis (CAD) models capable of providing “virtual 
biopsies” assisted by biparametric MRI (bpMRI) has the potential to reduce unnecessary biopsies and improve 
the risk assessment process. Indeed, the typical process for the recommendation of a biopsy consists of the 
analysis by an expert radiologist who will recommend a biopsy based on a positive (>2) or negative (<3) Prostate 
Imaging-Reporting and Data System (PI-RADS) score3, a process with a high rate of false positives4.
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While the performance of automated systems is seldom as good as that of expert radiologists5, the latter 
commonly suffer from inter- and intra-expert variability6,7, which can be a limiting factor in deciding between 
performing or not performing a biopsy or even in choosing an appropriate treatment. Computational models 
have the benefit of producing consistent results provided the input data is identical, with the caveat that 
performance degradation is common when transferring models between scanner manufacturers8 or, in the case 
of prostate bpMRI, scanner manufacturers and the use of endorectal coil. However, some works have explored 
the benefits of using large multi-centric heterogeneous datasets to improve the robustness and performance of 
the models, effectively reducing the effects of domain-shift9–11.

Recent CAD models have shown potential in several clinical applications for PCa, from disease aggressiveness 
classification12–14 to lesion segmentation and detection9,15–25. However, these works seldom focus on unnecessary 
biopsy reduction, a clinical endpoint which has direct implications for patient care. Additionally, they tend to 
make use of single-centric datasets and rarely include a prospective validation of the developed models. Here, we 
make use of the publicly available PI-CAI25,26, as well as ProstateNet (https://prostatenet.eu), a large-scale ​m​u​l​t​
i​-​c​e​n​t​r​i​c dataset of multiparametric prostate MRI to train aggressive lesion segmentation models. We show that 
using heterogeneous datasets leads to improved segmentation and lesion detection performance, and validate 
it using a hold-out test set. Through a simulated clinical feasibility analysis, we show how the combination of 
medical recommendations with our fully automatic models can lead to an effective reduction in the number of 
unnecessary biopsies with no significant reduction in Recall, effectively reducing the number of false positives. 
Finally, we validate all aspects of this approach using prospective data.

Methods
Data
In this study, two different datasets were used: PI-CAI26 and ProstateNet (also refered to as PNet). Each dataset 
is composed of a retrospective cohort, with ProstateNet also having a prospective cohort. The following are the 
descriptions of the datasets:

•	 PI-CAI is a collection of Biparametric MRI volumes that include T2W, DWI and ADC sequences. These sam-
ples were acquired by three Dutch clinical centers (Radboud University Medical Center (RUMC), Ziekenhuis 
Groep Twente (ZGT), University Medical Center Groningen (UMCG)), and one Norwegian center (Nor-
wegian University of Science and Technology (NTNU)), plus the additional inclusion of 329 cases from the 
ProstateX dataset27. These clinical centers used only Siemens Healthineers or Philips Medical Systems-based 
1.5Tor 3T MRI scanners with surface coils to acquire the images, following the Biparametric prostate MRI 
protocol28. As stated in the official document of the dataset26, ISUP values of 0 represent confirmed negatives 
or cases without the required 3-year follow-up. In total, 1009 biparametric sequences were used.

•	 ProstateNet (PNet) is a collection of Biparametric MRI volumes that include T2W, DWI and ADC sequences. 
These samples were acquired by 12 clinical partners of the Procancer-I project. These partners used Siemens 
(Aera, Skyra, Sola, Avanto, VIDA, Tim, Prisma, Veri, Symphony, Osirix), Philips (Ingenia, Achieva, Multiva) 
and GE scanners (Optima, Signa, DISCOVERY). Given that each centre has specific acquisition protocols, no 
single one was used across all mpMRI studies done. All labels were acquired manually, and for each sample, 
the label consists of the index lesion (mandatory) and additional lesions that the patient has (optional). ISUP 
values of 0 represent cases confirmed negative after 1 year of follow-up or non-confirmed cases. In total, 1484 
biparametric sequences were used.

To maximize data variability, both datasets were combined into a global one, dubbed PNetCAI.  Table 1 shows 
the composition of the different retrospective datasets regarding scanner manufacturers and ISUP grades, while 
Table 2 does the same for the prospective cohort. The prospective cases were downloaded from the ProstateNet 
platform on February 26th 2024. From these numbers, 15% of the samples were used as a hold-out test set, and 
the remaining were used for training, following a 5-fold cross-validation (CV) strategy.

A connected component analysis was conducted on the training labels of both datasets ( Fig. 1), revealing 
that 16 samples from the PI-CAI datasets that were labelled as aggressive (ISUP ≥ 2) were empty. This was cross-
checked with the files present in their repository. A comparison between the size of the lesions on both datasets 
and their effect on the Dice score is presented in the “Results” section (3).

Biparametric data processing
In order to use all mpMRI sequences as a single volume, both DWI and ADC sequences were resampled to 
the same space and size of the T2W sequences. Both T2W and DWI images were normalized using Z-scoring 
normalization, while ADC images were normalized by clipping the intensity values to the 0.5 and 99.5 percentiles, 
followed by subtracting the mean and dividing by the standard deviation.

Deep learning model specification
All 3D deep-learning (DL) detection models that were trained were full resolution nnUNet models (nnUNet)29 
that use deep supervision30. The networks are implemented in Pytorch31 and were trained for 1000 epochs (250 
mini-batches per epoch). To train the nnUNet models, we used the provided 3D full resolution architecture. 
This framework uses stochastic gradient descent with Nesterov momentum (µ = 0.99), a maximum initial 
learning rate of 0.001, and polynomial32 learning rate policy which reduces the learning rate by a factor of 
(1 − epoch/epochmax)0.9 in each epoch. Initial tests showed that the default learning rate of the nnUNet (0.01) 
was too high, resulting in underfitting on some of the folds, the reason why we decided to use a lower, more 
common, value. The loss function was a simple average of Dice and cross-entropy losses and the batch size was 
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Fig. 1.  Connected component analysis. Connected components analysis for both aggressive (ISUP ≥ 2) label 
masks of the ProstateNet and PI-CAI datasets.

 

Scanners

Total Siemens Philips GE Toshiba No data

73 34 14 25 0 0

ISUPs

Total 0 1 2 3 4 5

73 36 16 7 9 5 0

Table 2.  Stratification of samples by scanner manufacturer and ISUP score for the prospective cohort of 
ProstateNet.

 

Scanners

Total Siemens Philips GE Toshiba No data

ProstateNet 1009 364 403 198 2 42

PI-CAI 1484 1208 276 0 0  0

ISUPs

0 1 2 3 4 5

ProstateNet 519 228 141 69 20 31

PI-CAI 847 228 223 98 39 49

ISUPs 0 1 2 3 4 5

Train

ProstateNet 442
0.52

192
0.22

118
0.14

61
0.07

15
0.02

29
0.03

# samples
proportion

PI-CAI 719
0.57

194
0.15

189
0.15

84
0.07

33
0.03

42
0.03

Test

ProstateNet 77
0.51

36
0.24

23
0.15

9
0.06

5
0.03

2
0.01

PI-CAI 128
0.57

34
0.15

34
0.15

14
0.06

5
0.03

7
0.03

Table 1.  Stratification of samples of the retrospective data cohort. On the left, number of samples by scanner 
manufacturer and by ISUP score for the retrospective cohorts. On the right, number and proportion of 
samples on the training and test sets.

 

Scientific Reports |        (2025) 15:15211 3| https://doi.org/10.1038/s41598-025-99795-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


2 sequences per iteration. The nnUNet applies automatic preprocessing based on the dataset fingerprint, and 
therefore the models for each dataset worked on data with slightly different spatial structures:

•	 ProstateNet: spacing = 0.5 × 0.5 × 3.0mm; crop size = 256 × 256 × 30 voxels
•	 PI-CAI: spacing = 0.4 × 0.4 × 3.0mm; crop size = 384 × 384 × 21 voxels
•	 PNetCAI: spacing = 0.5 × 0.5 × 3.0mm; crop size = 384 × 384 × 23 voxels

Based on recent work11,33, no transformer-based models (ViT) were evaluated, as they were shown to perform 
significantly worse than nnUNet models. This is further justified by the original ViT paper, which states the need 
for very large datasets (over 1 million images) to train a ViT model from scratch34.

Network calibration
Previous work35 and prior experiments conducted by us for whole gland segmentation have shown that 
calibrating segmentation models significantly improves their performance. Given this, we decided to use the 
findings from Murugresan et al.35 and change the nnUNet loss function to include both label-smoothing36 and 
margin loss. We applied an α smoothing factor of 0.2 and a margin of 10 to the loss function.

Technical specifications
To train the models for this project, we used a machine with the following specifications: 2× NVIDIA RTX 
A6000 GPUs, AMD Ryzen Threadripper 3990X 64-Core Processor, and 64GB DDR4 RAM with 2200MHz clock 
speed. Each fold of each model took approximately 13h to finish.

Model evaluation
During the 5-fold CV, each model was evaluated based on its Dice Score (DS) and Recall when comparing the 
predicted output mask to that of the ground truth. When evaluating the performance on both the retrospective 
hold-out test and the prospective cohort, the same metrics were not computed on the vanilla output of the 
model, but on the candidate lesions obtained by following the subsequent methodology: 

	1.	 Taking the probability maps that the model outputs, a threshold of 10% was defined, clipping all voxels with 
a probability lower than 10%, generating a soft blob;

	2.	 Taking those soft blobs, we employed the heuristics proposed by Bosma37 and assigned all lesion candidates 
to their respective ground truth through a linear sum assignment algorithm;

	3.	 All candidates that had a confidence above 10% (the confidence is the maximum probability within the 
candidate) were kept and turned into hard blobs (binary segmentation masks). All other candidates (i.e. 
candidates with a confidence below 10%) were excluded and not analyzed any further. This threshold was 
selected as it reflects what has been used previously in the literature for prostate lesion candidate selection37;

	4.	 Lastly, all hard blobs that had an intersection with the prostate gland of less than 10% (meaning they should 
be almost entirely outside the prostate, while still accounting for extracapsular extension) were classified as 
negative. The segmentations for the prostate gland were obtained using the whole gland segmentation model 
dubbed ProstateAll from Rodrigues et al.11;

	5.	 In order to perform a more rigorous assessment, only hard blobs with at least 10% intersection with the 
original lesion masks were considered positive, regardless of having located any other lesion present in the 
same sample. This assessment, despite lowering some of the scores as opposed to simply locating any lesion, 
provides a more realistic clinical application scenario.

Each model was tested in all available retrospective hold-out sets and on the prospective cohort. The training/
testing setup is summarized in Figure 2.

Additionally, we also calculated the Hausdorff Distance (HD), Average Symmetric Surface distance (ASSD), 
and Relative Absolute Volume Difference (RAVD) during quality assessment of the model, as these metrics 
provide a quantitative measure of the spatial accuracy by considering the shape and volume of the segmented 
regions38 (both distance metrics were calculated using MedPy39). The evaluations and details of each metric are 
available in the Supplementary Methods (A.1).

Results
Model performance is affected by train-test similarity
As previously mentioned in “Model evaluation”, we follow a two-step process in order to select the most 
appropriate lesion candidates: lesion candidates are selected similarly to what has been described in37, followed 
by a lesion filtering process that keeps only lesions with a 10% overlap with the whole prostate gland. Table 3 
presents the cross-validation results of all developed models. Given that the models were trained as regular 
index lesion segmentation models, the resulting low Dice scores are a likely consequence of the heterogeneous 
nature of lesion annotation for the datasets used during training. We also note that bpMRI models outperform 
T2W models; this is expected, as both DWI and ADC sequences provide information in the form of hyper- and 
hypo-intense areas, which is much more relevant for lesion localization when compared to T2W sequences. 
The Recall also shows that bpMRI models, in particular the PI-CAI and PNetCAI models, can detect almost all 
lesions, achieving a maximum Recall score of 0.9 (90%), while their respective T2W counterparts can only locate 
approximately 65% of the lesions.

The similarity between training and testing data (i.e., training and testing models on training and hold-
out datasets constructed from the same dataset) can also be an important factor affecting performance. While 
T2W models trained on PNet data perform well only on data from PNet (Dice = 0.34 and Dice = 0.13 for 
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T2W PNet models tested on PNet and PI-CAI, respectively), PI-CAI are more consistent (Dice = 0.34 and 
Dice = 0.30 for T2W PI-CAI models tested on PNet and PI-CAI, respectively; Tables 4, 5), an effect which is 
also consistent for Recall. However, using bpMRI leads to considerably worse performance in terms of both Dice 
and Recall for PI-CAI models tested on PNet data (Tables 4, 5); indeed, for bpMRI models, which outperform 
T2W models, performance is only consistently good for PNetCAI models. In other words, models perform 
consistently better only when there is some similarity between training and testing data.

This can be further observed in Table 6, where the bpMRI PNetCAI excels over the bpMRI PNet model on 
its hold-out test set, while differing only in 2 lesions from the bpMRI PI-CAI model on its test set. Furthermore, 
after a manual analysis of these missed cases, we discovered that both where from out-of-distribution samples 
with very large fields of view.

Fig. 2.  Visualization of the training and validation/inference protocol for the models described in this 
work. Training was performed using either T2-weighted or biparametric MRI studies belonging to either 
ProstateNet (PNet), PI-CAI or ProstateNet + PI-CAI (PNetCAI) to detect lesions annotated by radiologists. 
The validation/inference protocol consists in detecting lesions, extracting the most relevant lesion candidates37 
and considering only lesions with an overlap of at least 10% with the whole prostate gland as inferred by a 
deep-learning model for prostate segmentation11. The patient aggressive lesion probability is then used in a 
recommendation system, while the binary/probabilistic prediction is used for visualization.
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Trade-off between avoiding biopsies and dangerous underestimates
To understand whether the best performing model—trained on bpMRI PNetCAI data—could be used as a CAD 
system for the effective reduction of biopsies (i.e. correctly predicting when an individual has no aggressive 
lesions), we first determined how many lesions were present in each case and calculated the number of detected 
lesions for all models. We then performed a simple experiment assigning lesions to one of six categories:

•	 Correct + avoided biopsy: if no lesions were present and the model correctly estimated this (i.e. recommend-
ed avoiding an unnecessary biopsy);

•	 Correct: if one or more lesions were present and the model correctly estimated the number of lesions
•	 Overestimate: if one or more lesions were present and the model overestimated the number of lesions

Table 5.  T-test p-values for the pairwise comparison of the Dice scores presented in Table 4. Significant 
differences (p-value < 0.01 ) marked as green.

 

Trained on PNet PI-CAI PNetCAI

0.34 ± 0.05 0.13 ± 0.03 0.21 ± 0.03 Dice

0.62 0.34 0.45 Recall

PNet 0.47 0.33 0.4 Precision

0.34 ± 0.05 0.3 ± 0.03 0.32 ± 0.03
0.59 0.66 0.63

PI-CAI 0.24 0.24 0.24

0.43 ± 0.05 0.29 ± 0.04 0.35 ± 0.03
0.74 0.64 0.68

T2W PNetCAI 0.25 0.24 0.24

0.38 ± 0.05 0.12 ± 0.02 0.22 ± 0.03
0.72 0.34 0.49

PNet 0.5 0.23 0.33

0.1 ± 0.03 0.6 ± 0.04 0.41 ± 0.04
0.33 0.85 0.64

PI-CAI 0.28 0.28 0.28

0.41 ± 0.04 0.53 ± 0.04 0.49 ± 0.03
0.79 0.83 0.82

bpMRI PNetCAI 0.28 0.28 0.28

Table 4.  Hold-out test set results. For each pairwise evaluation, the average Dice, Recall and Precision 
performances are presented. The best Recall result for each dataset per sequence combination is highlighted in 
bold for easier comparison.

 

Table 3.  CV results. For each dataset, the average Dice, Hausdorf, RAVD, ASSD and Recall performance, along 
with their respective standard deviations, are presented. The highest recall value per sequence combination 
is highlighted in bold for easier comparison. p-values for the T-test significance comparing the Dice score 
between bpMRI PNetCAI results and each other model are also shown, with significant differences (p-value 
< 0.01 ) marked as green or red if the bpMRI PNetCAI results are better or worse, respectively.
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•	 Overestimate + unnecessary biopsy: if no lesions were present and the model overestimated the number of 
lesions (i.e. recommended an unnecessary biopsy)

•	 Underestimate: if two or more lesions were present and the model estimated a number of lesions between one 
and excluding the correct number of lesions

•	 Dangerous underestimate: if two or more lesions were present and the model detected no lesions (i.e. recom-
mended avoiding a necessary biopsy)

This categorization system leads to a consistent trade-off between overestimating the number of lesions while 
recommending an unnecessary biopsy and avoiding unnecessary biopsies (Fig. 3); in other words, these systems 
could have the potential of reducing the number of biopsies but this set up has to be carefully considered as it 
could also result in avoiding biopsies for patients who would require them. A concerning aspect of this analysis is 
that only in one instance—PNetCAI models tested on PNet data—does it fulfill the task of reducing the number 
of biopsies without missing any relevant predictions (Table 7).

Additionally, there is a consistently large number of recommended unnecessary biopsies—indeed, for 
bpMRI PNetCAI models tested on PNet data, 54.05% of cases (n = 120) would have an unnecessary biopsy 
recommended, while only 17.76% of cases (n = 27) would avoid an unnecessary biopsy. This can have a negative 
impact on the well-being of individuals who have to undergo these unnecessary biopsies.

Prospective validation of a simulated clinical decision system
As noted above, an automated system based solely on our models would either lead to dangerous underestimates 
(i.e. no lesion detected when a lesion was present) or an excess of unnecessary biopsies. To curtail these negative 
aspects, we devised a clinical decision protocol requiring the interaction of two different decisions, one made 
by a radiologist (i.e. determine that an individual should have a follow-up biopsy) and the other made by our 
CAD system: (i) if a radiologist does not recommend a follow-up biopsy, none is performed; (ii) if a radiologist 
recommends a follow-up biopsy and our model recommends no follow-up biopsy, this is not performed; and 
(iii) if a radiologist and our model recommend a follow-up biopsy, a biopsy is performed. In effect, this is the 
ideal case scenario for a model which is highly sensitive but whose specificity is relatively low (i.e. the model 
produces an excess of false positives).

To avoid the self-fulfilling prophecy of developing models and testing them on the same data, we used a 
ProstateNet prospective cohort of 73 cases (21 aggressive PCa) to determine whether such a strategy could be 
beneficial. In terms of prospective segmentation and detection performance, these models perform similarly to 
those trained and tested with retrospective data (Table 8). Lastly, and most importantly, our results show that 
using a combined CAD system as described above would indeed lead to a reduction of unnecessary biopsies 
(21.9% of cases [n=16]; Fig. 4) without increasing the dangerous underestimates.

Finally, we assess whether these models are capable of performing reasonably well across different confidence 
thresholds and whether they can be reliably used at the lesion level. As highlighted in Fig. A.3, these models 
perform better when confidence thresholds are lower (AUROC is consistently higher when such is the case). 
Additionally, there is limited applicability for these models as lesion segmentation tools due to their relatively 
high number of false positives.

Determinants of performance
To better understand performance (Dice scores), we analysed distinct factors—lesion size and whether 
annotations were derived by an AI or by a radiologist. ProstateNet and PI-CAI have different distributions of 
lesion size (Fig. 5B), with ProstateNet presenting lesions larger than those in PI-CAI. Indeed, at a significance 
threshold of 0.05, there is a significant Dice difference between below and above median lesions for both datasets 
(Fig. 5A). While more evident in the ProstateNet dataset, both sets of data exhibit a size bias where larger lesions 
are easier to segment. Given that some lesions in PI-CAI are generated by an AI model26, we compared the Dice 
scores between lesions annotated by AI and by radiologists, showing that the former lead to higher Dice scores 
than the latter (p = 7.6e − 5; Fig. 5C). In Fig. 5D, we highlight a more comprehensive vision of these results.

Trained on Tested on

PNet PI-CAI

T2W PNet 14 5 3 2 12 3 1 4

PI-CAI 11 6 5 2 21 7 5 6

PNetCAI 15 7 5 2 22 3 3 6

bpMRI PNet 13 8 5 2 11 4 2 3

PI-CAI 7 5 1 0 27 13 5 6

PNetCAI 15 9 5 2 27 11 5 6

# lesions 23 9 5 2 33 14 6 7

ISUP 2 3 4 5

Table 6.  Hold-out test set results stratified by the ISUP grade of the lesions. For each pairwise evaluation, the 
number of predicted lesions is compared to the total number of lesions. The best-performing model (most 
successful detections) for each dataset per sequence combination is highlighted in bold.
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Fig. 3.  Distribution of CAD recommendations, stratified by training and testing dataset. (A) Distribution 
of annotated (no. of lesions in x-axes) and detected (no. of detected lesions in y-axes) lesions. (B) Relative 
frequencies of different predictions from the CAD system. For both (A,B) the colors correspond to a 
classification relating to whether or not this recommendation would lead to a change in the diagnostic 
algorithm proposed to the patient.
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Finally, to acquire a qualitative understanding of prediction quality, we analyzed a subset of true positive and 
false negative detections at the lesion level for our best-performing model—trained on bpMRI PNetCAI data. 
Figure 6 offers a concise overview of our analysis, while Figs. A.1 and A.2 present a comprehensive depiction. As 
highlighted in Fig. A.1, true positives typically encompass all or nearly all of the lesions as annotated by expert 
radiologists. This is what is expected of such CAD systems, providing information regarding the general area 
where it thinks the lesion is located to guide the radiologist. When considering negative examples (Fig. A.2), 
there is a trend—while the lesion annotated by expert radiologists may be missed, the models identify another 
likely lesion somewhere else in the prostate. In summary, the conclusions derived from our qualitative analysis 
are as follows:

•	 In each case, our model detected additional existing lesions and/or cysts. Although these were marked as 
missed cases due to insufficient overlap with the ground truth mask, they nonetheless correctly identified 
other lesions as aggressive, demonstrating significant clinical value for a CAD system.

•	 In some instances (Fig. A.2), with the fourth example being the only visible one in this set of slices, our model 
correctly identified the area of interest despite low confidence and probability scores. This demonstrates the 
utility of our model in guiding radiologists to significant areas regardless of the displayed probability.

Discussion
In this work, we posit a hybrid computer-aided diagnosis (CAD) system combining radiologists and an 
automatic lesion detection model, which can reduce the number of unnecessary biopsies in the diagnosis of 
aggressive prostate cancer (ISUP>1) in the general population of patients undergoing biparametric MRI for 
prostate cancer diagnosis. Through a simulated clinical feasibility scenario, a reduction of approximately 20% of 
unnecessary biopsies was achieved, with a prospective validation showing that this does not lead to a reduction 
in the number of detected prostate cancer cases. Ultimately, we highlight how deep-learning methods can assist 
in the reduction of unnecessary biopsies without leading to decreased sensitivity. This has the potential to reduce 
patient discomfort and complications following biopsies.

Largely, most CAD systems of the sort seek to solve a similar, albeit separate problem — that of detecting 
undiagnosed prostate cancer cases with the objective of increasing sensitivity by reducing the amount of false 
negatives; our approach considers a different problem — that of reducing the number of unnecessary biopsies 
(i.e. reducing false positives). Indeed, this is also a considerable problem, as a 2019 meta-review showed that the 
pooled sensitivity for PI-RADS 2.1 was approximately 91% (95% CI=83%-95%)4. Works seeking to automate or 
partially automate prostate cancer diagnosis contemplate strategies focusing either on the detection of lesions 
with a sufficiently high PI-RADS score (i.e. 3 or 4)40 or in the detection of lesions with a confirmed aggressive 

Metric Modality PNet PC PNetCAI

Recall T2W 0.71 0.52 0.90

Precision T2W 0.48 0.25 0.30

# Detected lesions T2W 15 11 19

Recall bpMRI 0.86 0.48 1.00

Precision bpMRI 0.54 0.23 0.34

# Detected lesions bpMRI 18 10 21

# Lesions 21

Table 8.  Prospective cohort results. For each model, per sequence, the average Dice, Recall and Precision 
performances are presented. The best Recall scores are highlighted in bold for easier comparison.

 

Table 7.  Absolute and relative frequency of bpMRI AI system recommendations, stratified by training and 
testing dataset. Counts are displayed between brackets after percentages.
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histological grade (ISUP>1)25,41,42. The former has the obvious advantage of requiring no biopsy for training, 
but hinders the clinical applicability evidenced by the latter. Some of these strategies also incorporate a human-
in-the-loop setup, which is more similar to the study design we introduce here43. The relevant performance 
metric which we can compare between our work and previous works is the Recall—we observed a Recall of 
82% for models trained/tested on PNetCAI, slightly lower to what has been previously reported (87.2%43, 
89.4%25, 93%42). However, we note that these studies are trained/tested on a relatively small number of clinical 
centers (4 or fewer)25,42,43 (which greatly reduces the variability of the data), do not provide confirmation of 
prospective validation, and do not study the impact of using diverse training datasets on performance. Given 
the previously reported drop in performance when transferring models between different datasets10,11,44 and 
the fact that models (clinical and otherwise) tend to suffer from temporal degradation45–47, such assessments 
are of paramount importance. Finally, and to the best of our knowledge, our work offers a unique analysis of 
performance differences when considering lesion size and annotation types, thus better contextualizing results.

Fig. 4.  Distribution of CAD recommendations, stratified by training for the prospective dataset. (A) 
Distribution of annotated (no. of lesions in x-axes) and detected (no. of detected lesions in y-axes) lesions. 
(B) Relative frequencies of different predictions from the CAD system. For both (A,B) the colors correspond 
to a classification relating to whether or not this recommendation would lead to a change in the diagnostic 
algorithm proposed to the patient.
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This work has some caveats—the simulated clinical scenario does not allow us to estimate the effect of real-
world agents (i.e. medical doctors) interacting with such a CAD system. This may lead to optimistic results as 
automation bias (when users excessively trust the output of automatic CAD systems48) can lead to unforeseen 
outcomes as radiologists may trust excessively in wrong predictions made by CAD systems49. It should also be 
highlighted that, while the best performing model detects all important cases in ProstateNet both retrospectively 
and prospectively (Figs. 3, 4), not all index lesions are detected, which can cause confusion when results are 
interpreted in a clinical setting; this is in part largely associated with how these datasets are annotated — indeed, 
radiologists are tasked with segmenting at least the index lesion, leading to a fair degree of heterogeneity in the 
annotations. Additionally, performance is relatively poor when we consider the specificity of these models; while 
this can be improved through the assistance of a radiologist, it should be noted that additional sources of false 
positive reduction should be taken, such as an auxiliary classification of lesion candidates50 or zone-specific PSA 
density51. Furthermore, our approach does not focus on lesion location — particularly, we perform predictions 
at the patient, rather than at the lesion level — so further studies on this are necessary. Finally, it should be noted 
that there is no guarantee that nnUNet is the best performing model (“No Free Lunch” theorem) — earlier works 
have suggested that other models may be better performing than nnUNet for prostate lesion segmentation50, so 
a more comprehensive assessment with other models could be important.

Fig. 5.  Effect of lesion size and annotation type on performance for the best performing model (bpMRI). 
(A) Performance distribution stratified by dataset and lesion size (below or above median). (B) Distribution 
density for lesion sizes across both datasets. Circles represent the median value while black horizontal lines 
represent the range between the 1st and 3rd quartiles. (C) Performance distribution stratified by dataset and 
annotation type (whether the lesion was annotated by a radiologist or by an AI model). (D) Comparison of 
lesion size with Dice. Each point corresponds to a case, different shapes correspond to different annotation 
types. Across all plots, golden and blue correspond to PI-CAI and ProstateNet, respectively. p-values in (A,C) 
correspond to a two-sided Wilcoxon test.

 

Scientific Reports |        (2025) 15:15211 11| https://doi.org/10.1038/s41598-025-99795-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The datasets generated and/or analysed during the current study are available in the PI-CAI repository, ​h​t​t​p​s​:​/​/​
z​e​n​o​d​o​.​o​r​g​/​r​e​c​o​r​d​s​/​6​6​2​4​7​2​6​​​​​. The datasets generated and/or analysed during the current study are not publicly 
available due to data privacy laws but are available from the corresponding author on reasonable request.
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