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Abstract
The integration of machine-learning technologies into radiology practice has the potential to significantly enhance diagnostic
workflows and patient care. However, the successful deployment and maintenance of medical machine-learning (MedML)
systems in radiology requires robust operational frameworks. Medical machine-learning operations (MedMLOps) offer a
structured approach ensuring persistent MedML reliability, safety, and clinical relevance. MedML systems are increasingly
employed to analyse sensitive clinical and radiological data, which continuously changes due to advancements in data
acquisition andmodel development. These systems can alleviate the workload of radiologists by streamlining diagnostic tasks,
such as image interpretation and triage. MedMLOps ensures that such systems stay accurate and dependable by facilitating
continuous performancemonitoring, systematic validation, and simplifiedmodelmaintenance—all critical tomaintaining trust
in machine-learning-driven diagnostics. Furthermore, MedMLOps aligns with established principles of patient data protection
and regulatory compliance, including recent developments in the European Union, emphasising transparency,
documentation, and safe model retraining. This enables radiologists to implement modern machine-learning tools with
control and oversight at the forefront, ensuring reliable model performance within the dynamic context of clinical practice.
MedMLOps empowers radiologists to deliver consistent, high-quality care with confidence, ensuring that MedML systems stay
aligned with evolving medical standards and patient needs. MedMLOps can assist multiple stakeholders in radiology by
ensuring models are available, continuously monitored and easy to use and maintain while preserving patient privacy.
MedMLOps can better serve patients by facilitating the clinical implementation of cutting-edge MedML and clinicians by
ensuring that MedML models are only utilised when they are performing as expected.

Key Points
Question MedML applications are becoming increasingly adopted in clinics, but the necessary infrastructure to sustain
these applications is currently not well-defined.
Findings Adapting machine learning operations concepts enhances MedML ecosystems by improving interoperability,
automating monitoring/validation, and reducing deployment burdens on clinicians and medical informaticians.
Clinical relevance Implementing these solutions eases the faster and safer adoption of advanced MedML models, ensuring
consistent performance while reducing workload for clinicians, benefiting patient care through streamlined diagnostic
workflows.
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Introduction
Machine-learning (ML) models have been at the forefront of
recent advances in computationally-assisted diagnosis systems
in medicine and, particularly, in radiology [1, 2]. These
medicalmachine learning (MedML)models aremathematical
and computational constructs capable of generating a diag-
nosis or computing a risk score from patient data. These
models have demonstrated significant potential in various
radiology applications, including disease management aspects
such as screening [3], diagnosis, prognosis and treatment
monitoring [4]. They show potential applications for early
detection [5] and incidental findings [6, 7]. A recent preprint
suggested MedML models could also be used to triage
patients, recommending manual diagnosis only when the
MedML system is uncertain [8]. Other MedML systems can
improve the workflow of radiologists. Deep-learning-assisted
image reconstruction of CT [9] and MRI images [10, 11]
can reduce acquisition times. Additionally, automatic

segmentation [12–14] can accelerate diagnosis by facilitating
anatomical volumes quantification, or be applied for radio-
therapy treatment planning [15, 16]. With medical profes-
sionals, MedML has the potential to improve routine medical
exam accuracy [3, 17] while lowering costs and reducing
workload [15, 18–20].
A typical MedML workflow in radiology (Fig. 1)

involves:
i. Data collection after patient consultation and

examination.
ii. Prediction (or inference) after de-identification (if

the prediction happens outside of the medical
centre) using a trained and validated model.

iii. Confirmation of the results of the model output by
a trained medical expert after re-identification (if
necessary).

iv. Discussion of results with the patient or
application of the results for patient management.

Fig. 1 Medical machine learning workflow with MedML. The patient sees their clinician as usual and undergoes a given number of exams. The medical
doctor uses these exams to run a MedML workflow, which produces a prediction. The clinician then confirms and discusses the prediction from
the model
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We refer to the orchestration of this workflow as a
MedML system, integrating one or more MedML models
to deliver clinical predictions.

Hurdles in medical machine-learning (MedML)
deployment
While promising, the potential of MedML is hard to
realise. A 2024 report surveying 34 medical centres
showed that while 73% wanted to deploy clinical artificial
intelligence (AI) systems, only 16% had governance poli-
cies on AI and data usage [21]. A study on federated
learning—where a model is concurrently optimised across
medical centres without centralising data—highlighted
the necessity for coordinated computational infra-
structure if hospitals are unable to externalise data during
prediction [22]. Additionally, updating digital medical
practices can be time-consuming [23]. Implementing AI
tools in clinical practice was complicated as it requires
routine performance assessments and clear articulation of
requirements among various stakeholders, including
medical, technical, and financial teams [24]. A survey of
health professionals highlighted the need for alternative
and innovative approaches facilitating continuous model
assessment [25]. Studies also show that a significant
portion of healthcare workers and students lack adequate
education on MedML systems [26–31]. A qualitative
assessment on the adoption of a MedML system reflected
similar findings [32].
Furthermore, ML model deployment is highly experi-

mental, as noted in a survey of ML engineers [33]. When
translating models from data science to usable models in
the real world, ML engineers actively experiment to
understand how the model behaves and how continuous
validation/tuning impacts performance. One respondent
provided an illustrative quote—“We don’t have a good
idea of how the model is going to behave in production
until production.” Finally, ML scholarship tends to

exaggerate claims and focus on irrelevant validations,
making research and public adoption more complicated
by reducing reproducibility and creating unrealistic
expectations [34, 35].
The issues above are not unique to radiology MedML

but are compounded by working with clinical images and
data or aggravated by the medical context. Medical data,
which is formatted and stored differently depending on
hospital-specific medical database systems, has added
legal/ethical constraints concerning strict patient con-
fidentiality and anonymity. This forestalls the develop-
ment of consistent cross-institutional pipelines which are
performant and capable of ensuring patient privacy,
complicating automated continuous validation. Conse-
quently, continuous data collection and annotation are
hindered, making continuous monitoring, validation and
(re)training more complicated. This is crucial as changes
to protocol and scanner manufacturer [14, 36–39] can
affect performance. While speculative, model retraining
can become necessary in MedML systems as ML model
performance degrades with time [40], an effect also
observable in MedML [41, 42].
Here, we do not attempt to claim that clinical institu-

tions are incapable of implementing MedML systems.
Instead, we offer a framework—outlined below—which
not only facilitates the deployment of MedML systems in
radiology practice but also benefits medical, technical,
legal, and financial stakeholders. Indeed, no commercial
MedML solutions implement continuous validation
strategies.

The growing field of machine-learning operations
(MLOps)
To address issues affecting the development and deploy-
ment of ML models, the field of MLOps has become
increasingly popular. MLOps applies software develop-
ment operation practices (DevOps; Table 1) to ML

Table 1 Definition of software development operations (DevOps)

Definition Who does it Key aspects

DevOps can be loosely defined as the practice of

facilitating the collaboration between software

development teams and information

technology/deployment teams [129].

Software development and deployment are

typically performed by different teams which

prioritise different aspects (this extends to ML

[45]), but a sizable fraction of individuals

accumulate both roles [34, 41].

For instance, ML model development teams may

focus on data preparation and model training/

optimisation, whereas ML model deployment

teams are concerned with distributing this

model to end users and ensuring that data and

inference operations are coordinated.

A key aspect of DevOps is continuous integration

and continuous deployment (CI/CD), which

consists of a software development paradigm

focusing on quickly and seamlessly integrating

frequent changes to software programmes.

This requires additional safety barriers preventing

incorrect changes from being exposed to end

users, making unit testing and collaborative code

reviews essential to the correct functioning of CI/

CD frameworks.
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development. MLOps comes with additional require-
ments: the development of data models (ways of auto-
matically checking and cleaning data), continuous
monitoring/validation (to ensure model performance does
not drop as time progresses), and, sometimes, automated
model retraining (if performance drops below a given
threshold). Many companies utilise MLOps frameworks
to automate data collection and model serving, training
and validation in fields such as banking (for card fraud
detection, loan approval or credit scoring), retail (for
product recommendation or automatic visual recognition
of cosmetic products) and deliveries (forecasting the
necessary delivery employees at specific times and
dynamic pricing) [43]. Importantly, a survey of over 300
data scientists highlighted how MLOps is crucial for
applications where organisations are interested in train-
ing, validating, monitoring or deploying multiple models
[44], as is the case with MedML, particularly in radiology.
However, implementing these platforms is not

straightforward. An exposition of two real-world cases
focusing on data integration and AI/ML system scaling
highlights hurdles present in the deployment and scaling
of MLOps platforms. The first case describes how a
software product providing data-driven patient-level risks
related to hip and knee joint replacement surgery mana-
ged to overcome challenges associated with data inte-
gration and harmonisation. The second case focuses on
how a government-initiated programme scaled a software
responsible for matching citizens with the best possible
public services [45]. The issues they run into are common
to large-scale data-driven approaches, and can be related
to modern problems in radiology MedML:

● Data integration (or harmonisation) was laborious
during deployment as this required integrating data
from multiple sources/formats in a data lake (a
centralised data repository with a uniform format),
only then making ML model training/monitoring
possible. In radiology, different vendors/models have
specific tags referring to specific parameters
necessary for data pre-processing. Additionally,
data harmonisation between medical centres is
challenging due to scanner-specific artefacts or
shifts in the population being assessed.

● Scaling challenges: the example highlighted
difficulties in scaling an application designed for
individual users in Finland. Since it relied on users
providing their own data, encouraging people to
share data and verify sample authenticity were major
hurdles. For instance, in medical ML, collecting
informed consent can be tricky, but telemedicine
methods may help solve this [46]. In radiology,
informed consent collection is crucial for
prospective model validation, but few centres have

simple, electronic methods enabling large-scale
collection.

● Model deployment: during model deployment,
combining data sources for model training
becomes necessary, requiring either harmonising
data from multiple sources or integrating different
models. The former additionally requires protocols
for data sharing, while the latter may increase the
number of faults in ML models [47]. In radiology,
there are already multiple platforms for model
deployment/orchestration, but few offer holistic
integration between different models.

● Monitoring issues: monitoring also became complicated
—the burden of monitoring and validating predictions
was on end users, leading to missing validation or
inaccurate data. To address this in medical centres,
automating data de-identification, collection, and
organisation is crucial. In radiology, prospective data
collection is essential for model validation, but collecting
data is mostly performed “manually”: radiologists
dedicate time and energy to gather data across
institution-specific databases.

These issues are not particular to MLOps but are
illustrative of issues which arise when scaling applications.
Nonetheless, and similarly to DevOps [48], other issues
such as data quality, compute and model complexity can
arise during MLOps deployment [49].

Medical machine-learning operations (MedMLOps)
Considering the technical challenges in MedML devel-
opment, we suggest MLOps as a grounded perspective to
address some problems associated with deploying
MedML. We refer to the integration of MedML with
MLOps as MedMLOps (Medical Machine Learning
Operations) and suggest four distinct pillars: i) availability,
ii) continuous monitoring, validation and (re)training, iii)
patieent privacy and data protection, and iv) ease of use1

(Fig. 2). Through this article, we show how these four
pillars (Fig. 3) are crucial for MedML systems, starting
with short, focused descriptions of each to better illustrate
their importance from a clinical radiology perspective:
– Availability. MedMLOPs systems ensure that

radiologists can always use the same models,
guaranteeing that patients can always benefit from
consistent clinical services.

[1] Readers familiar with literature on reliable computer systems are likely to
find some parallels with the concept of reliability, availability and serviceability
(RAS) [50]; we note that our own selection of MedMLOps desiderata tried to
make evident these three principles—availability ensures availability,
continuous monitoring, validation and (re)training ensures reliability, and ease
of use (for both the end-user and the developer) ensures serviceability.
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– Continuous monitoring and validation ensure that
models do not unexpectedly fail after radiologists
become accustomed to them. Importantly, having
automatic frameworks to detect when MedML
systems fail reduces the risk of an underperforming
MedML system becoming a liability to medical
centres and patients alike.

– To ensure patient privacy and data protection,
automated informed consent collection and data de-
identification, curation and storage mechanisms are
necessary. A MedMLOps framework reduces the risk of
exposing untrusted parties to patient data: this may
result from mistakes during data retrieval/de-
identification from picture archiving and
communication system (PACS). MedMLOps also
guarantees easily retrievable and de-identifiable data if
researchers and clinicians hope to further develop
MedML models.

– Finally, ease of use concerns both how radiologists
interact with these systems and ease of implementation:
with standardised MedMLops systems and protocols,
the burden of changing between MedML vendors/
products is reduced.

While MLOps is not the sole paradigm offering these
four pillars. It is especially positioned as a competent,
varied and growingly popular field capable of addressing
problems associated with MedML model development
and deployment while preserving clinician, physician and
patient experience.
Before continuing, we note the difference between

diagnostic and forecasting approaches. Diagnostic models
produce predictions which can be quickly verified by
experts. Forecasting models are risk models, producing a
quantity which correlates with the probability of a patient
developing a condition in the future.

Fig. 2 Medical machine learning workflow with MedMLOps. The workflow for the patient and clinician is identical to that of a typical MedML workflow.
However, the MedML pipeline, through the MedMLOps infrastructure, orchestrates anonymisation, model selection, validation, inference, and optional
data storage, which will be used to continuously validate and retrain the model. The key differences between the traditional MedML workflow and the
MedMLOps workflow are highlighted in pink and purple colours
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Availability
To ensure MedML model utilisation, availability is
essential. Two aspects of many MLOps frameworks
ensure this—fault tolerance and scalability. These depend
on two prediction paradigms: “model-to-data” (MTD) or
“data-to-model” (DTM) [51]. In MTD, the model is
accessed (or served) locally when prediction becomes
necessary. DTM, on the other hand, involves moving data
to a remote server where predictions are performed and
then returned. While the former has the advantage of
preserving privacy, it requires dedicated computational
resources in medical institutions. The latter, on the other
hand, requires only that hospitals have an internet con-
nection but exposes patient data to man-in-the-middle
attacks (where malicious actors access data during data
transfer) [52] or other data leaks. These can facilitate data
theft or data tampering, causing erroneous predictions
[53, 54].

Fault tolerance consists of mechanisms that restart
system components when they crash or become unre-
sponsive, ensuring service availability. Frameworks such
as Kubernetes2 are capable of providing this through the
cloud and in edge computing scenarios (i.e. when com-
putational resources are scarce) [55]. Scalability is the
automatic capability of allocating resources as computa-
tional demand increases. In practical terms, while MTD is
based mostly on transferring models to medical centres
and requires little scalability, DTM requires a persistent
network connection, as well as the capacity to scale the
number of predictions it can offer as demand increases.
Allocating excessive resources becomes costly, while
allocating too few can lead to models with unpredictable
availability.

Fig. 3 How the four pillars suggested in this work can solve some issues in MedML applications. Each of the four pillars focuses on a specific aspect of
medical machine learning model deployment: (i) ensuring availability leads to fault-tolerance and robustness to malicious actors, (ii) ensuring continuous
monitoring, validation and (re)training leads to performance which is consistently good and facilitates model retraining, (iii) ensuring patient privacy and
data protection leads to automated protocols for data de-identification, transfer and curation/organisation, and (iv) ease of use ensures that models are
more interchangeable and interoperable

[2] https://kubernetes.io/

de Almeida et al. European Radiology Page 6 of 14

https://kubernetes.io/


Ultimately, availability is considered important in digital
medical applications [56, 57], and its importance should
only increase as medical systems become more dependent
on digital technologies.

Continuous monitoring, validation and (re)training
Model performance slowly degrades with time [40],
obviating the need for continuous monitoring and vali-
dation. However, a concrete problem arises—when dele-
gating decisions to MedML, how is validation possible?
Assessing the veracity of model outputs requires ground
truth annotations. Similarly, training MedML models
requires human-annotated data. However, if ground
truths are generated by a MedML model, this can lead to
model collapse, which happens when models are trained
on data or annotations generated by other models (i.e.
synthetic data) and leads to underperforming models.
While creative methodologies can prevent this [58], it
affects different models to different extents [59].
Addressing this at the local level requires considering

diagnostic models separately from forecasting models.
Diagnostic model validation can be done by considering
MedML models as second readers, a well-known approach
in radiological screening and particularly useful for less
experienced clinicians [17, 20, 60, 61]. If the model performs
well, this process could require the manual annotation of a
small random subset of cases to estimate performance
drops (i.e. model performance falling below a performance
threshold defined internally or by vendors). For forecasting
models, however, continuous validation becomes para-
doxical if these models replace proper follow-ups and
diagnoses. Consequently, forecasting models should be
considered risk models—a high-risk prediction should lead
to a confirmatory or more frequent follow-up. This creates
the data necessary to continuously evaluate these approa-
ches, with the caveat that this validation protocol only
assesses the true positive rate (or sensitivity) of a model.
Effective continuous validation should span multiple

centres. This can be integrated into radiology workflows
with MedMLOps as an additional service, requesting
annotations for randomly selected cases. This enables the
collection of patient consent and facilitates long-term

performance record-keeping. This might increase the
workload for medical doctors as it will require introdu-
cing data into MedML platforms after prediction (espe-
cially considering forecasting models). However, the time-
and cost-savings afforded by MedML models [62] can
compensate for this, and companies should compensate
hospitals and individuals for the added labour. Addition-
ally, automated data de-identification, collection, and
organisation processes (as noted below), can facilitate this.
Patient agency should also be prioritised: informed con-
sent should explicitly state whether their data will be used
to validate commercial models.
After performance drops are detected—typically due to

data drifts, characterised by changes in the distribution of
the underlying patient population data [63] — retraining
can be automatically or manually triggered [64]. This
requires additional considerations. As noted, patient data
must be retrieved, and patient consent should be collected
for randomised subsets of cases. This then requires a
careful balance of older data (annotated under controlled
circumstances) and more recent data (closer to real-world
data) for model retraining [65].
A common approach to update models is fine-tuning

with recent data [66]. However, this can lead to “cata-
strophic forgetting”: subsequent retraining processes with
data too dissimilar to the original training data lead to
performance drops [67]. Some approaches mitigate this
[68, 69], but continuous model assessment is still essen-
tial. Continuous learning approaches have been imple-
mented in radiology MedML [70], but they may be
hampered by catastrophic forgetting due to the nature of
medical practice (Table 2). Different versions of the same
model may be necessary at the same time, all of which
require continuous validation and adaptation as neces-
sary. While currently not possible from a regulatory per-
spective, a “pool of models”, automatically selected to best
fit each centre, may help avoid scenarios of catastrophic
forgetting. The continuous integration of MLOps, com-
bined with model and data versioning tools (used to track
differences in versions of the same data and model) [71],
is especially fitted to dynamically distribute these models.
However, this iterative branching of models may lead to a

Table 2 Speculative example of catastrophic forgetting

Setting Two hospitals—HA and HB—are using the same version of a MedML model provided by the same company.

Problem While both used similar scanners for several years, provided by the same vendor, HA recently changed to a different scanner vendor. As

expected [14, 37], this led to a drop in performance, triggering the automated retraining of the model.

Outcome This automatic retraining led to a model which performs well on HA. However, the performance for HB has now dropped due to

catastrophic forgetting—while being fitted to new data, the model now underperforms on data more similar to its older distribution. A

careful decision is now necessary—should different models be adapted and distributed to HA and HB? Or should HB terminate its use of

the MedML model, and does it have the necessary contingencies to do so?
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plethora of models, which is hard to manage and monitor
—a careful balance must be struck between “models that
produce an output for everyone” and “models that are
clinically useful”.
Finally, performance drops detected during continuous

validation may not necessarily lead to retraining. Indeed,
without the appropriate training data (due to ethical
constraints or low patient volume), it may be the case that
radiology departments have to abandon MedML models
altogether. Hospitals and MedML vendors should keep
this in mind and plan accordingly. In the end, all stake-
holders should prioritise patient safety and care, and
MedML models which underperform are directly at odds
with this.

Patient privacy and data protection
Thanks to the General Data Protection Regulation
(GDPR), patient privacy became a more prominent con-
cern as violations became liabilities for companies and
research centres. Through GDPR, safeguards for patient
data increased or became more evident: data de-
identification and ethical approval/institutional review
board waivers gained visibility, patients became capable of
opting out from databases, and concerns with data gov-
ernance (how data is stored and distributed) increased
[72]. Such regulations are more cumbersome and require
allocating implementation funds across medical centres
[73]. However, they have little impact on biomedical
research [74].
The “Regulation of the European Parliament and the

Council Laying down harmonised rules on artificial
intelligence (Artificial Intelligence Act) and amending
certain union legislative acts”—or, colloquially, the
EU Artificial Intelligence Act (EUAI)—brought addi-
tional regulations concerning patient privacy and
how MedML models should behave and be utilised
[75]. Particularly, the EUAI considers medical applica-
tions to belong to the high-risk category, implying that
MedML systems must follow a set of requirements
[75, 76]:

● Well-defined scope—high-risk applications must have a
specific use and documentation outlining the expected
use cases and outcomes, as well as mitigation strategies
for potential and identifiable misuse.

● Representative and documented training data—models
must be trained with representative and well-
documented training data, which is accessible to
monitoring agencies.

● Human oversight—AI systems must be designed to
permit not only human oversight but also overriding
decisions made by them.

● Expected lifetime of the model.
● Computational requirements.

The EUAI also alludes to continuous model monitoring,
validation and (re)training. Indeed, it is possible to modify
high-risk AI applications if the accompanying doc-
umentation concerning their scope and training data is
adequately updated [75]. Finally, these requirements,
together with GDPR, can block careless implementations
of commercial large language models (LLMs) in the
clinic. LLMs have ill-defined scopes (i.e. predicting the next
word or set of characters or producing text vaguely
described as “helpful” or “harmless” [77]) and are trained
using undocumented data (making their potential harm
hard to quantify without adequate benchmarking [78]).
Additionally, these LLMs serve as application program-
ming interfaces (APIs)—which externalise sensitive patient
information—making their use hard to justify considering
recent EU regulation. Despite these concerns, plentiful
scholarship has been produced using commercial LLMs in
radiology, from interpretation and diagnosis [79, 80] to
error detection in radiology reports [81].
Ethical and legal considerations mandate that patient

privacy be central to MedML, especially with large, multi-
centric datasets [82]. Consequently, privacy-preserving
ML models are gaining importance [83], integrating
privacy into training and prediction. This often involves
reversible cryptographic methods [84, 85], but scalability
remains a challenge [86].
Training with data from multiple centres raises privacy

concerns due to increased data breach potential. Large,
safe, de-identified centralised repositories [87] and
privacy-preserving approaches [88] offer a solution, but
ethical issues may impede this. Decentralised learning is
gaining traction in medicine, with promising outcomes in
radiology [89–91] via federated [92] and swarm learning
[89].
MLOps does not ensure patient privacy per se. How-

ever, a MedMLOps standard can equip MedML platforms
with tools for automated patient anonymisation/de-
identification and efficient, anonymised data storage.
Furthermore, it can support robust model handling and
serving, incorporating predictions into interpretable
reports for clinician validation. Image de-identification
tools (for modalities which write patient identifiers into
the image itself) can also be incorporated into the MedML
toolbox.
A MedMLOps standard will enable decentralised

interactions with medical databases and facilitate opt-out
processes. Indeed, keeping opt-out as the norm and
informing patients, facilitates retrospective and con-
sensual data reuse [93, 94]. By extending data ownership
schemes, this can better serve end-users. Electronic health
records (EHR) are a complex ecosystem, even for clin-
icians, and their centralised storage can lead to data theft
or low availability [95, 96]. Different models of data
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ownership exist, some placing a heavier focus on patient
rights. Others focus on quickly using medical data. While
patient data ownership is infrequently discussed in the big
data literature [97], some recent medical data storage/
sharing paradigms regard patients as legitimate owners of
their EHR [96].

Ease of use
MedML usability affects how clinicians interact with it.
MedMLOps enhances these interactions by improving
MedML system development and deployment. In Table 3 we
highlight this from the perspective of radiology departments
hoping to develop, validate or retrainMedMLmodels. In this
table, we cover how data collection, data curation and
cleaning, model training, validation and model retraining are
simplified by MedMLOps. For developers, however, usability
relies on how data interacts with APIs [98].
APIs simplify software interaction through standardised

interfaces. Commands or sets of commands can be defined
as scripts or algorithms, creating reproducible workflows.
However, there can be multiple APIs, creating problems
when one is updated or becomes obsolete and requires
replacement. This leads to wasted time and resources for
hospital IT staff. Furthermore, rapidly evolving development
ecosystems can result in technical debt, with suboptimal
implementations preventing maintenance and updates [99].
The development and/or use of consistent standards and
their integration into MedMLOps systems solves this. Cur-
rently, some solutions for standardised EHR communication
and interoperability are available [98] or for medical images
[100–102]. Similarly, some MLOps platforms offer model
serving standards with “model signature”, specifying expec-
ted inputs and outputs [103]. However, some aspects are still
missing. Particularly, prediction from radiological images
may depend on different sequences and clinical variables,
requiring distinct levels of pre-processing. Importantly,
models and medical data should operate under the same
general systematic input and output specifications.
To remediate this, data models can be helpful. A data

model relates different data objects [104] (medical images,
clinical information, predictions). Data models could be built
on top of PACS systems through existing standards such as
Digital Imaging and Communications in Medicine
(DICOM). These standards could then be used to create a
systematic way of preparing data for prediction and for
prediction storage and retrieval. Model inference would then
require only the specification and retrieval of specific data
formats. Data models are not new in medical data manage-
ment [105]. Indeed, over 25,315 medical data models are
available in the MDM Portal as of August 6th 20243.

However, depend on different institutions and follow dif-
ferent data storage and reporting practices. To unify data
models, efforts like Prostate Imaging Reporting and Data
System [106] or Breast Imaging Reporting and Data System
[107]—uniform reporting standards for prostate multi-
parametric MRI and mammography, respectively—are
helpful examples.
Commitment to solutions which are implemented but

suboptimal when compared with modern solutions is com-
mon. Humans value products they already own and are less
likely to switch to better ones if they have heavily invested in
what they own (due to endowment effects and sunk-cost bias,
respectively) [108, 109]. Organisations can be affected by
organisational inertia, reducing their ability to internally
change and innovate in the face of external changes [110, 111].
Reducing switching costs between MedML alternatives will
maximise market benefits for stakeholders. MLOps can
enforce standardised MedML system interactions, ensuring
consistent interfaces for end users. This facilitates switching
betweenMedML providers for developers, offloading complex
system design to pre-specified standards.
Finally, regarding usability, user experience (UX) is important

for clinicians as end users. UX guidelines in medical software
are available [112], but studies focusing on UX for general
clinical systems show that this can be improved [113]. None-
theless, recent works have studied UX in computationally
assisted diagnosis methods. For instance, less experienced users
preferred using fully automated software programmes, while
experts preferred a more step-by-step process [114]. MedML
UX is a young field with ample grounds for growth as the
number of deployed MedML products increases.

Discussion: MedMLOps in context
We introduced MedMLOps as a concept, but note that
others have considered and identified the necessity for
MLOps in healthcare. For instance, Wiesenfeld and others
discuss how MLOps can address issues pertaining to
model transferability in the clinic and between healthcare
centres [115]. Others have introduced MLOps frame-
works. CyclOps contemplates data standardisation and
validation of MedML models [116]. Resilience-aware
MLOps focuses on resistance to adversarial attacks and
domain drifts as key components of healthcare MLOps
applications [117]. FlowEHR focuses on continuous vali-
dation, standardisation and expert supervision [118]. In a
preprint, Khattak and others introduced Machine Learn-
ing for Healthcare Applications (MLHOps) as a technical
framework focusing on standardisation, interoperability,
trust, and bias reduction [119]. Importantly, recent multi-
society position papers highlighted the need for con-
tinuously validating models to understand how perfor-
mance changes, and continuously/locally training models
to better serve different patient populations [119, 120].[3] Accessible in: https://medical-data-models.org/
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MedMLOps facilitates this while reducing the burden of
retraining and validating models from both clinicians and
future MedML developers. The existing literature is not at

odds with MedMLOps and is complementary to this
work. However, we note that each of the pillars described
above can be further expanded.

Table 3 How MedMLOps can change the radiology workflow for MedML development, validation and retraining at individual
institutions. Importantly, these changes are considered for medical centres which have already implemented a MedMLOps system

Process Without MedMLOps With MedMLOps

Preliminaries Medical professionals and researchers identify a relevant research question and what kinds of data will be required.

Data collection Clinicians and/or researchers localise specific types of data in

PACS and EHR systems by hand or using minimal

automations based on series descriptions and image types.

Data is automatically collected and stored in a data lake following

appropriate informed consent and anonymisation or

pseudonymisation by orchestrating communications with PACS

and HER systems. An automated system of telemedicine

informed can be used to guarantee that physicians require little

to no additional consultation time [43]. Some additional

processes—such as manually segmenting the ground truth—

must still be performed by clinicians, but can be streamlined by a

similar process; if a segmentation with series description

“finalSegmentation” arrives in the PACS, the automatic data

collection will detect this and associate it with the relevant series

and study.

Data curation and

cleaning

Data curation and cleaning are performed by experts or

automatic processes, which are triggered manually.

Data curation (i.e. relevant series selection) is performed by

automatic processes which are triggered as soon as the data

arrives in the data lake. This can be performed with high accuracy

based on ML methods using DICOM metadata [130, 131] or pixel

data in images [132].

Data cleaning processes (i.e. conversion to inference-appropriate

formats, application of pre-processing steps for data

harmonisation) can be triggered following the appropriate data

curation steps. Because D3C is automated, an appropriate

informed consent waiver by the independent review board,

guarantees that retrospective cohorts can be stored in the data

lake, requiring only the identification of patients.

Model training Models are trained on separate computers, which typically

have no access to PACS systems or centralised data

repositories.

Upon the selection of the relevant data for model training and

internal validation, training can be triggered on local

computational infrastructure or in the cloud.

Validation Validation is performed after repeating D3C to gather

additional sources of data, which are adequate for model

validation. If continuous validation is necessary, this is

typically performed at intervals by repeating this process.

Through automated D3C, both prospective and retrospective

validation cohorts can be collected by simply identifying relevant

patients or individuals. Validation can be triggered manually

(which will run on pre-defined cohorts of patients) or

orchestrated to run at specific intervals with data acquired

recently—this is of paramount importance for continuous

validation and monitoring of MedML models.

Model retraining Model retraining requires repeating D3C with novel data. If

retraining is intended with external data, the absence of a

common protocol between hospitals or medical centres can

cause additional complications, as these processes tend to

be different between institutions.

Similarly to training, retraining with internal data requires only the

selection of relevant patients or individuals. If training is to be

done in a different centre with a standardised MedMLOps internal

framework, this can be performed similarly after sharing of the

data preprocessing and training protocol through containers, a

technology which creates a reproducible environment and

guarantees identical implementations between different medical

institutions [133].

PACS picture archiving and communication system, DICOM digital imaging and communications in medicine, D3C data collection, curation and cleaning, MedML
medical machine-learning, MedMLOps medical machine-learning operations
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As noted, implementing MLOps systems is not
straightforward. Considering current MedML products
and systems, problems can arise in terms of data har-
monisation, computational infrastructure and technical
know-how. Concerning harmonisation, MedML systems
lack standardised inputs and outputs, and may not work
systematically across imaging conditions or scanners
[14, 36, 37]. Medical institutions must acquire computa-
tional resources (cloud-based or local) and train/hire staff
skilled in developing and maintaining MedML and
MedMLOps. This expanding professional network will
strengthen the MedMLOps ecosystem, assuring the
ongoing safety of MedML systems.
Retraining may further hinder the implementation of

MedMLOps. This is, in part, still uncertain from a reg-
ulatory perspective within the EU. The EUAI guarantees
this is a possibility in high-risk applications if model and
data documentation are adequately updated [121]. How-
ever, how this works from a regulatory perspective is still
unclear, leading to added financial risk. According to the
Medical Device Regulation, software devices (i.e. MedML
models) can be retrained as long as this (i) does not sig-
nificantly alter the performance, intended use or risk
profile, (ii) follows the quality management protocols and
post-market surveillance specified for the approval of the
model and iii) is well-documented [122–124]. However,
what constitutes significant alterations is not clear.
Lastly, we note that other actions can further improve

MedML application use in the clinic. Education plans—both
for medical doctors [26, 31, 70, 122] and patients [123–125]—
are crucial to empower professionals. They ensure everyone
is knowledgeable about the process and that patients can
provide informed consent. Presently, the public is still dis-
trustful of clinical AI applications. Levels of distrust are higher
in disenfranchised people (lower educational attainment, non-
Western immigrants, women) [126]. While understandable—
there is a history of medical treatments discriminating against
women, racialised individuals and those belonging to a lower
socioeconomic status [127–132]—this can further create dis-
parities and prevent a truly universal access to healthcare.
Democratising MedML access should also consider the global
stage: clinical trials for AI/MedML products are geographically
concentrated in Europe, Asia and North America [133].
MedMLOps may not solve these issues entirely. However,
universal frameworks for MedML deployment reduce entry
barriers in disadvantaged regions and markets. Regions lacking
specialised personnel and resources may benefit the most from
high-quality and widely available MedMLOps systems.

Conclusion
We define MedMLOps and how it can aid radiologists using
MedML products, along with its challenges. These require-
ments expand MLOps to address healthcare-specific issues,

achieved via communication between developers and med-
ical personnel by systematising model implementation in a
structured and automated manner.
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