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A B S T R A C T   

Prostate cancer is a leading cause of male cancer worldwide. With more than 70 % of prostate cancers arising in 
the peripheral zone of the prostate, accurate segmentation of this region is of paramount importance for the 
effective diagnosis and treatment of the disease. Although peripheral zone is well recognized as one of the most 
challenging regions to delineate within the prostate, no algorithms specifically tailored for this segmentation task 
are currently available. The present study introduces a new deep learning (DL) algorithm, named as ResQu-Net, 
which is designed to accurately segment the peripheral zone (PZ) of the prostate on T2-weighted magnetic 
resonance imaging (MRI). Using three publicly available datasets, the ResQu-Net outperformed the six DL seg
mentation models used for comparison, namely the Attention U-Net, the Dense2U-Net, the Proper-Net, the 
TransU-net, the U-Net, and the USE-Net, demonstrating superior performance for different anatomical regions, 
such as the apex, the midgland and the base. The assessment of the suggested approach was conducted not only 
quantitatively (Sensitivity, Balanced Accuracy, Dice Score, 95 % Hausdorff Distance, and Average Surface Dis
tance) but also qualitatively. For the qualitative evaluation the feature maps obtained from the last layers of each 
model were compared with the Density Map of the Ground Truth annotations using root mean squared error. 
Overall, the ResQu-Net model exhibits improved performance compared to other models, of more than 5 % and 
1.87 mm in terms of Dice Score and 95 % Hausdorff Distance, respectively. These advancements may contribute 
significantly in addressing the challenges associated with PZ segmentation, and ultimately enabling improved 
clinical decision-making and patient outcomes.   

1. Introduction 

Prostate cancer is the second most prevalent form of cancer and a 
leading cause of cancer-related death among men [1]. In 2020, more 
than 1.4 million new prostate cancer cases were diagnosed worldwide, 
with a crude incidence rate of 36 per 100,000 males [2]. Early detection 
of prostate cancer and effective treatments are of paramount importance 
for ensuring a successful outcome. If the disease is diagnosed at early 
stages, where the cancer remains local or regional and does not spread to 
distant body parts, the 5-year survival rate is nearly 100 % [3]. 

Prostate cancer develops in the prostate gland, which can be divided 

into different zones according to their function, namely the central zone 
(CZ), the peripheral zone (PZ), and the transitional zone (TZ) [4]. The 
PZ, in particular, which extends posterolaterally around the gland from 
the apex to the base, represents the most common site in the prostate for 
developing prostate carcinomas due to the fact that this region contains 
most of the prostatic glandular tissue [5,6]. Cancers originating from the 
PZ account for more than 70 % of prostate cancers and are related to 
worse clinical outcomes than TZ cancers [7]. Therefore, accurate zonal 
segmentation of prostate boundaries on MRI, especially of the PZ, has a 
crucial role in the diagnosis and treatment of prostate cancer [8]. 

As part of the diagnostic pathway for prostate cancer, Magnetic 
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Resonance Imaging (MRI) has been widely adopted as the primary im
aging modality for non-invasive prostate cancer detection and locali
zation, owing to its superior soft tissue contrast. It has also been 
documented that prostate MRI is as effective as a routine biopsy at 
detecting high-grade cancers, highlighting the areas of the prostate that 
are most suspicious for cancer, and reducing the number of biopsies 
needed [9]. The Prostate Imaging, Reporting, and Diagnosis System 
(PIRADS) scoring system, which is being used to detect clinically sig
nificant prostate cancer based on MRI findings, recognizes that the 
prostate zones have different imaging properties, and this is well re
flected in the scoring system [10]. Consequently, prostate cancer iden
tification and staging on MRI rely on accurate zonal segmentation [11]. 

The PZ of the prostate is characterized by distinct histological 
characteristics. Research has emphasized the notable diversity within 
the PZ, which is evident not only in the range of clinical results but also 
in the unique genetic and cellular characteristics that contribute to 
tumor advancement and aggressiveness in this region [12,13]. The 
spatial and morphological heterogeneity of PZ, the subtle boundaries 
between neighboring tissues, and the large intra- and inter-individual 
variations render manual delineation of the PZ an extremely chal
lenging and laborious and tedious task [8]. Several multi-reader studies 
have highlighted the impact and magnitude of inter-observer variability 
in the manually delineated prostatic regions, particularly in the extreme 
parts of the gland [12,13,14], such as the apex and the base, empha
sizing the unmet need to develop automatic methods to streamline the 
segmentation process and offer robust and accurate delineation of the 
prostatic zones. Automated segmentation algorithms offer the potential 
to minimize inter-observer variability, enhance efficiency, reduce the 
processing time, and enable quantitative analysis for clinical decision- 
making. 

Over the years, various algorithms and techniques have emerged to 
address prostate and zonal segmentation tasks. Traditionally, conven
tional image analysis methods, mainly based on deformable models, 
atlas-based approaches, and feature-based ML methods have been used 
for segmenting the prostatic zones [15,16,17]. While these approaches 
have achieved moderate success, they often struggle with accurately 
capturing the complex variations within the prostate. More recently, 
Deep Learning (DL)-based segmentation methods have seen remarkable 
success in medical image segmentation tasks, and prostate zonal seg
mentation is no exception [8]. 

By harnessing the capabilities of convolutional neural networks 
(CNNs), these algorithms can effectively learn discriminative features 
directly from the raw image data, thus mitigating the limitations asso
ciated with manual feature engineering. Given the continual growth in 
the size and complexity of prostate MRI data, the capacity of CNNs to 
learn hierarchical representations from such datasets has proven to be 
invaluable [18]. The CNNs’ aptitude for capturing high-level represen
tations, including semantic and spatial relationships, has significantly 
improved the accuracy and reliability of the segmentation results. 
However, existing studies that have employed DL approaches for seg
menting the PZ either rely on algorithms originally developed for 
different segmentation tasks or for simultaneously segmenting the 
whole prostate and the prostatic zones [19,20,21,22,23,24,25]. As a 
result, algorithms designed for segmenting other organs and regions 
may not be optimized to reliably segment the PZ alone. This is also re
flected in the limited segmentation performance reported in the litera
ture when segmenting the PZ. 

In this paper, we propose a novel DL algorithm, specifically tailored 
for segmenting the PZ of the prostate on T2-weighted MRI. We refer to 
this model as the Residual Spatial Attention and Squeeze and Excitation 
Network (ResQu-Net). To the best of our knowledge, this is the first time 
a DL algorithm specifically tailored for peripheral zone segmentation is 
being developed. The proposed DL model deploys the rich representa
tional power of a spatial attention module, as well as squeeze and 
excitation blocks interconnected in a parallel manner for efficiency 
purposes, ultimately incorporated in a segmentation network. The 

model was developed and validated using diverse population data from 
different clinical sites and MRI vendors, and was compared against 6 
state-of-the-art DL segmentation algorithms. Models’ performance was 
evaluated both quantitatively, using standard evaluation metrics, but 
also qualitatively through the extraction of feature maps and the com
parison with ground truth maps. 

2. Methodology 

2.1. Datasets description 

In this study, three publicly available datasets containing bi- 
parametric MRI were utilized, namely the ProstateX2 [26], the Pros
tate-3 T [27] and the Prostate-158 [28]. The ProstateX2 comprise 204 
patients with 3200 frames, acquired on Siemens vendor and TrioTim, 
Skyra models with magnetic field strength 3 Tesla. The images were 
acquired at the Radboud University Medical Centre while the ground 
truth annotations were provided by the Department of Advanced 
Biomedical Sciences of the University of Naples “Federico II” [29]. The 
Prostate-3 T dataset includes 30 patients with 421 frames acquired with 
Siemens vendor and Skyra model with 3 Tesla magnetic field strength. 
This dataset was made available by Boston University. The Prostate-158 
dataset contains 158 patients with 2376 frames acquired by a Siemens 
VIDA model with 3 Tesla magnetic field strength and it was made 
available by the Charité University Hospital of Berlin, Germany. The 
latter, being the most curated dataset among the three, was also 
employed to explore the inter-patient variability of the PZ in terms of 
shape, texture, and grayscale characteristics. All datasets combined, our 
analysis was conducted using data from 392 patients with approxi
mately 6000 frames. 

2.2. Proposed model architecture 

The proposed model (ResQu-Net) consists of an encoder decoder 
network which assists on the forward passing of information, being 
capable of retaining the spatial information of the PZ by utilizing re
sidual connections. The network’s main components include (i) convo
lution layers to extract features, (ii) max pooling layers to reduce the 
dimensionality and ensure compactness of the network, and (iii) the 
novel RSA.se block which involves the parallel connection of Squeeze & 
Excitation (SE) [30] and Spatial Attention (SA) layers along with the 
input’s residual connection to propagate information smoothly. The 
proposed architecture is depicted in Fig. 1A with theRSA.se block being 
detailed in Fig.1В. 

2.3. Rsa.se module 

To enhance the capabilities of well-known fully connected CNN ar
chitectures, such as U-Net, two visual attention mechanisms, namely the 
Spatial Attention and Squeeze & Excitation, were implemented and 
connected in a parallel manner to work complementary for the feature 
extraction process. Those blocks along with their unique intra- 
connection consist the backbone of the RSA.se block. The merits of 
RSA.se block are 2 fold. First, the information is computed in a parallel 
manner ensuring the efficiency of floating points operations (FLOPS), 
and therefore the fast convergence and inference time. Second, both 
inter-channel and intra-channel attention are deployed to retrieve in
formation regarding the PZ features in a complementary scheme. 

Specifically, for the SE layer, let there XH×W×C be the input tensor of 
the RSA.se block. That tensor is utilized as input for both the SE and SA 
layers. The SE layer could be described as an attention mechanism which 
applies the importance factor f1×1×C to each feature map C of the input 
tensor X with spatial dimensions [H,W] and C feature maps. The steps for 
the calculation of the importance factor are: 

XH×W×Ca) is global average pooled (GAP) to concentrate the relevant 
to the task spatial information into a single value: 
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XGAP
1×1×C =

1
H × W

∑H

h=1

∑W

w=1
XH×W×C, (1)  

XGAP
1×1×Cb) is then passed from 2 densely connected neural networks (nn) 

with 1 hidden layer with a modulation factor r which denotes the 
number of hidden units contained in the hidden layer. The aforemen
tioned nn consists the cornerstone of the SE layer as it discovers the 
feature map C with the most informative for the task attribute. The 
output may be described as a set of scaling factors f1×1×C which modu
late the importance of each feature map C. Ultimately Eq.(2) produces 
the output of nn which is the scaling factor: 

f1×1×C = Sigmoid
[
XGAP

1×1×C

]
(2) 

Where Sigmoid is the sigmoid activation function. 
c) The last step to obtain the output of the SE layer is the element- 

wise multiplication of the input tensor XH×W×C and the importance 

factor obtained from Eq.(2), f1×1×C. In Eq.(3) the output of the SE layer is 
calculated using the Eq.(2) and the input tensor to obtain the feature 
maps modulated by the importance factor: 

Xse
H×W×C = XH×W×C*f1×1×C, (3) 

Eq.(3) was used to selectively enhance features across channels C 
from input tensor XH×W×C based on the importance factor f1×1×C given by 
Eq.(2). 

SA layer is also employed in a complementary manner with the SE 
layer. More specifically, the effect of the SA layers is that it produces a 
spatial attention modulation factor to identify significant for the task 
spatial features (intra-channel). The steps for producing the spatial 
features are presented sequentially below: 

a) The Input tensor XH×W×C passes from 2 pooling operations with 
respect to channels C. Those operations are Max pooling and Average 
Pooling. Eq.(4) and Eq.(5) produce the tensors after the two pooling 

Fig. 1. Overview of: A) The proposed ResQu-Net model architecture and B) the novel RSA.se block.  
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operations, respectively. 

XMAX
H×W×1 =

[
∑C

c=1
XH×W×C

]

, (4) 

where max is the maximum intensity value within the spatial feature 
map XH×W for each channel C. 

XAVE
H×W×1 =

1
C
∑C

c=1
XH×W×c (5)  

b) Tensors XMAX
H×W×1 and XAVE

H×W×1 obtained by Eq.(4) and Eq.(5), respec
tively, are concatenated forming the tensor: 

Xconc
H×W×2 =

[
XMAX

H×W×1,X
AVE
H×W×1

]
(6)  

c) The convolution operation with a kernel size of 1, ConvSigmoid
1×1×C and the 

sigmoid activation function is then applied at Xconc
H×W×2 obtained by Eq.(6) 

to produce the spatial attention modulation factor. This factor is then 
multiplied in an element-wise manner by the input tensor XH×W×C 
resulting in the output tensor of the SA layer, which is presented in Eq. 
(7). 

XSA
H×W×C = XH×W×C*

[
ConvSigmoid

1×1×C *Xconc
H×W×2

]
(7)  

Putting it all together, element wise multiplication is performed based 
on the Eq.(3) and Eq.(7) to distinguish features from the SE layer (inter- 
channel features) and SA (intra-channel features). In this way, the model 
achieves spatial feature awareness, as well as channel wise awareness by 
searching for semantic information throughout the whole feature space. 
Eq.(8) produces the dot production between SE and SA layers: 

XSA.se
H×W×C = XSA

H×W×C*Xse
H×W×C, (8)  

Sequentially, the Batch Normalization and the ReLU activation function 
are applied to homogenize the output tensor and propagate the relevant 
features of Eq.(8). Ultimately, residual connection is performed between 
input tensor XH×W×C and XSE.se

H×W×C obtained by Eq.(9) to produce the 
output of RSA.se block so as to improve the representation of the output. 

XRSA.se
H×W×C = XH×W×C +XSA.se

H×W×C, (9)  

2.4. Deep learning segmentation models used for comparison 

The Six deep learning segmentation models were implemented and 
compared against the proposed ResQu-Net. Convolutional Neural Net
works (CNNs) are the backbone of the majority of the models used apart 
from TransU-Net. First, the baseline U-Net [31] structure was imple
mented, consisting of convolutional layers that are employed in the 
encoder route of the model to progressively reduce the spatial di
mensions of the input image while extracting semantic information. 
These layers are in charge of gathering significant contextual informa
tion and extracting high-level characteristics. On the contrary, the 
decoder path is responsible for reconstructing the feature maps and 
along with skip connections from the encoder path to produce the final 
PZ segmentation. To solve the challenges of PZ segmentation, Proper- 
Net incorporated an interconnection of CNN layers and residual con
nections. This model was also adopted in this work as a comparison 
model [32]. Furthermore, we considered the Dense2U-Net model [25], 
which instead of convolutional layers it is composed of densely con
nected CNNs with exhaustive residual mechanisms. The Attention U-Net 
model [33] was also implemented. Attention mechanisms have been 
orchestrated in segmentation models to complement the CNN layers, 
allowing to concentrate on informative areas and enhancing the model’s 
capacity to recognize subtle patterns while tackling challenging seg
mentation tasks. The attention gating mechanisms at the end of each 
decoding layer make up the majority of the Attention U-Net network. 
Another model used for comparison was the USE-Net [34], which 

leverages the attention mechanisms of Squeeze & Excitation block at the 
end of each encoding and decoding layer, which is a channel-wise 
attention mechanism capable of adaptively recalibrating feature maps, 
emphasizing important channels and suppressing less informative ones. 
Finally, the investigation of the efficiency of attention mechanisms in DL 
segmentation tasks brought forward the concept of Vision Transformers 
(ViT) encapsulation in the typical U-Net structure. Therefore, in this 
study, we considered the recently proposed TransU-Net [35], a novel 
approach that incorporates ViT into the bottleneck of U-Net. By 
analyzing patches within the feature maps, TransU-Net generates 
feature embeddings and enables adaptive feature weighting. 

2.5. Study design 

The Models’ performance was evaluated using T2-Weighted (T2w) 
MR sequences in a 5-fold cross-validation pipeline. Prior to model 
training, all images underwent Min-Max intensity normalization, which 
involved scaling the pixel values to the interval [0,1]. Also, training and 
test sets in each fold were stratified so that the proportion of data from 
each dataset would remain invariant across folds. To ensure a rigorous 
and comprehensive study approach, the analysis was performed based 
on: a) the overall performance of the models tested for each metric, 
including the mean and standard deviation, b) the performance of the 
models broken down by dataset, and c) the performance of the models 
broken down by anatomical region, namely the apex, the midgland, and 
the base. The upper part of the prostate is called the base, which rests 
against the lower part of the bladder, while the lower, narrowed part of 
the prostate is called the apex. Since the apex of the prostate is defined as 
the inferior-most 0.5 cm portion of the gland, and the base as the 
superior-most 0.5 cm portion of the gland [25], for the purpose of our 
study, we estimated that this could be approximated by allocating the 
first quartile of frames of the prostate to the apex, the subsequent half to 
the midgland region, and the final quartile to the base. 

2.6. Models’ performance evaluation 

The performance of the ResQu-Net and the six models in comparison, 
was estimated based on five performance metrics, namely the Dice Score 
(DS), the 95 % Hausdorff Distance (HD), the Average Surface Distance 
(ASD), the Sensitivity and the Balanced Accuracy (BA). The need for 
highlighting different aspects of models’ performance led to the inclu
sion of various well-known segmentation measurements as the primary 
objective. For instance, the DS measures the overlap between Ground 
Truth (GT) and Model Prediction (MPr), while the 95 % HD is calculated 
by: a) measuring the Euclidian distance between each point in MPr and 
the nearest point in GT, b) ordering in ascending manner these distances 
and c) take the 95 % maximum distance. The ASD, which calculates the 
mean Euclidian distance for each data point between MPr and GT, was 
employed to measure the accuracy of the surface boundary of the MPr 
compared to GT. In addition, the Sensitivity was computed in order to 
provide further understanding regarding the predictive capacity of 
models with respect to the PZ of the prostate, while the BA was utilized 
to underscore the effectiveness of a given model in predicting both 
foreground pixels (PZ) and background pixels. 

To further investigate the performance of the models, explainable AI 
(XAI) analysis has been performed. The general idea behind this is: a) 
the axial slice-wised aggregation of Saliency Maps (SM) per patient 
extracted by the model just before the classification layer, defined as 
Saliency Maps Density Image (SMDI), b) the slice-wised aggregation of 
GT masks per patient, defined as Ground Truth Density Image (GTDI), 
and c) the computation of Root Mean Squared Error (RMSE) between 
SMDI and GTDI in patient level. The methodology employed considers 
the significant characteristics of a model, rather than solely relying on a 
quantitative assessment [36]. As such, it serves as an indicator of the 
model’s confidence in identifying areas that belong to the PZ, rather 
than simply evaluating the binary outcome (i.e., the predicted mask). 
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Fig. 2 depicts the XAI methodology through the computation of the 
aggregation of SM and GT images at the patient level, and the calcula
tion of the Root Mean Square Error (RMSE) between them. 

2.7. Experiment setup 

For the experiments, different depth of convolutional filters was 
investigated to ensure that the comparison of ResQu-Net would be 
against the best available hyperparameters for each existing model and 
thus the best models. More specifically, batch normalization and L2 
regularization approaches were used with the former having gamma and 
beta regularizers of 10− 4 value. The dropout was set at 50 %. The batch 
size was maintained at 16 frames per batch, the number of epochs was 
set at 120. As a loss function, the sigmoid focal cross-entropy was used, 
and the Adam optimizer was utilized to update the model’s weights. The 
learning rate set to be cyclical with a periodicity of 10 epochs and values 
between 10− 2 and 10− 4. The model training was conducted on NVIDIA 
Quadro P6000 GPU with driver version 441.66 while the Python pack
ages used are Scikit-image = 0.18.3, numpy = 1.21.2, keras-unet- 
collection = 0.1.11, scipy = 1.7.1, tensorflow = 2.7.0, and tensorflow- 
addons = 0.11.2. 

3. Results 

Table 1 presents the average performance and the standard deviation 
for each metric and for each DL model across all folds. As it is shown, the 
ResQu-Net outperforms all the other models regardless of the perfor
mance metric. At least 5 % increase was achieved in terms of DS, 
meaning that the overlap between the MPr and the GT masks was higher 
with the proposed architecture. In terms of HD and ASD, the results 
indicate that ResQu-Net outperformed the other models by a margin of 
at least 1.86 mm and 0.39 mm, respectively. Remarkable were the dif
ferences also for Sensitivity and BA, where ResQu-Net outperformed the 
other models by at least 4 % and 3 %, respectively. 

Table 2 demonstrates the performance of each model in each of the 

three datasets across the different performance metrics. ResQu-Net was 
again the best performing model across all datasets and folds. The most 
noteworthy difference from the second-best model was observed for the 
Prostate-158 dataset where DS, HD and ASD had a difference of at least 
6 %, 2.18 mm and 0.34 mm, respectively. On the contrary, the least 
notable difference arises at the Prostate-3 T dataset where ResQu-Net 
had an improvement of 2 %, 1.84 mm and 1.35 mm for DS, HD and 
ASD, respectively. Similarly, to the results presented in Table 1, the USE- 
Net and the Attention U-Net were the second and third best performing 
models on each dataset. A sub-group analysis was also conducted to 

Fig. 2. Qualitative performance assessment pipeline for a given patient.  

Table 1 
Average scores and Standard Deviation across folds for each model and metric.  

Model Sensitivity 
(%) 

Balanced 
Accuracy 
(%) 

Dice 
Score 
(%) 

Hausdorff 
Distance 
(mm) 

Average 
Surface 
Distance 
(mm) 

Attention 
U-Net 

0.47 ±
0.05 

0.74 ±
0.03 

0.61 
±

0.04 

6.59 ± 0.55 1.42 ±
0.14 

Dense2U- 
Net 

0.41 ±
0.08 

0.7 ± 0.04 0.54 
±

0.06 

7.87 ± 0.92 1.7 ± 0.2 

Proper- 
Net 

0.45 ±
0.08 

0.73 ±
0.04 

0.58 
±

0.06 

7.3 ± 1.55 1.49 ±
0.23 

TransU- 
Net 

0.47 ±
0.06 

0.73 ±
0.03 

0.61 
±

0.06 

6.83 ± 1.08 1.39 ±
0.15 

U-Net 0.48 ±
0.06 

0.74 ±
0.03 

0.62 
±

0.04 

7.03 ± 0.77 1.41 ±
0.17 

USE-Net 0.56 ±
0.12 

0.78 ±
0.06 

0.64 
±

0.08 

6.8 ± 1.33 1.43 ± 0.3 

ResQu- 
Net-NET 

0.62 ± 
0.05 

0.81 ± 
0.02 

0.69  
± 
0.03 

4.73 ± 0.35 1.12 ± 
0.08  
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assess the performance of the ResQu-Net model with respect to the 
performance reported in the original paper of the Prostate 158 dataset 
using the same data splits. As it is presented in the Supplementary 
Table 1, our model outperforms the UResNet model by 4.84 % and 4.32 
% for the GT masks provided for the first and second raters, respectively. 
Moreover, in Supplementary Table 2 and Supplementary Fig. 1, we 
examine how RSA.se block behaves in comparison to the base ResQu- 
Net model and how it also compares to the Squeeze & Excitation(SE) 
[30], Bottleneck Attention Mechanism (BAM)[37] and Convolution 
Block Attention Module (CBAM) [38], both quantitatively and 
qualitatively. 

In Table 3 the average scores are presented with respect to each 
metric and each DL model for the three anatomical regions: the apex, the 
base and the midgland. The inclusion criteria related to the distribution 
of frames in the appropriate anatomical region were selected with 
respect to N. Aldoj et. al., 2020 study [25]. It is again evident that ResQu- 
Net achieves a significant improvement in segmentation performace, 
especially for the midgland and the basal regions. More specifically, the 
proposed architecture achieved an increase of 5 % DS from the second 

best, the USE-Net, for both the midgland and the base, and 4 % for the 
apex. 

Fig. 3 illustrates the normalized DS values for each DL model related 
to the anatomical region (Fig. 3A) and the dataset (Fig. 3B), averaging 
between 5 folds. In terms of the most effective models, the scores were 
standardized so that the best had a value 1 and the poorest had a value 0. 
Additionally, this representation offers a direct comparison between the 
models and presents the performance interval between them. For the 
different anatomical regions, notably, the ResQu-Net exhibits higher 
predictive capabilities in the base of PZ, with the second-best model, 
Use-Net, achieving only 64 % of ResQu-Net’s performance. At the PZ’s 
apex region, the performance of USE-Net is observed to be 75 % as 
effective as the proposed model. The ResQu-Net model was more reli
able in generating PZ segmentations compared to other models tested on 
multi-centric datasets, including Prostate-158, Prostate-3 T, and 
Prostate-X2. At the Prostate-158 dataset, a significant variation is 
observed wherein the models of USE-Net and TransU-Net secure the 
second-best positions, exhibiting a performance level that is akin to 54 % 
of the ResQu-Net’s performance. In contrast, the USE-Net model 

Table 2 
Average scores and Standard Deviation across folds for each model, metric and Dataset.  

Dataset Model Sensitivity 
(%) 

Balanced Accuracy 
(%) 

Dice Score 
(%) 

Hausdorff Distance 
(mm) 

Average surface distance 
(mm) 

Prostate-158 Attention U-Net 0.51 ± 0.08 0.75 ± 0.04 0.63 ± 0.06 7.95 ± 1.06 1.73 ± 0.21 
Dense2U-Net 0.46 ± 0.09 0.73 ± 0.04 0.58 ± 0.08 9.05 ± 1.44 2.0 ± 0.28 
Proper-Net 0.5 ± 0.07 0.75 ± 0.04 0.61 ± 0.06 8.51 ± 1.54 1.78 ± 0.23 
TransU-Net 0.51 ± 0.09 0.76 ± 0.05 0.64 ± 0.08 7.84 ± 1.71 1.62 ± 0.3 
U-Net 0.51 ± 0.08 0.76 ± 0.04 0.64 ± 0.06 8.06 ± 0.89 1.65 ± 0.23 
USE-Net 0.57 ± 0.12 0.78 ± 0.06 0.65 ± 0.08 8.94 ± 2.91 1.87 ± 0.58 
ReSqu-Net 0.66 ± 0.07 0.83 ± 0.03 0.71 ± 0.05 5.88 ± 1.13 1.39 ± 0.17 

Prostate-3 T Attention U-Net 0.49 ± 0.1 0.74 ± 0.05 0.62 ± 0.11 7.07 ± 2.08 1.6 ± 0.29 
Dense2U-Net 0.42 ± 0.12 0.71 ± 0.06 0.55 ± 0.14 8.59 ± 2.3 1.91 ± 0.44 
Proper-Net 0.46 ± 0.14 0.73 ± 0.07 0.6 ± 0.13 7.91 ± 2.5 1.67 ± 0.38 
TransU-Net 0.46 ± 0.11 0.73 ± 0.06 0.61 ± 0.11 6.82 ± 1.99 1.53 ± 0.3 
U-Net 0.5 ± 0.09 0.75 ± 0.04 0.63 ± 0.1 7.23 ± 2.46 1.57 ± 0.4 
USE-Net 0.57 ± 0.13 0.78 ± 0.07 0.67 ± 0.14 7.67 ± 3.48 1.61 ± 0.78 
ReSqu-NET 0.61 ± 0.08 0.8 ± 0.04 0.69 ± 0.1 5.23 ± 1.58 1.25 ± 0.34 

ProstateX2 Attention U-Net 0.44 ± 0.07 0.72 ± 0.03 0.58 ± 0.06 6.09 ± 0.97 1.25 ± 0.18 
Dense2U-Net 0.37 ± 0.1 0.68 ± 0.05 0.51 ± 0.09 7.31 ± 1.32 1.51 ± 0.27 
Proper-Net 0.42 ± 0.11 0.71 ± 0.05 0.55 ± 0.08 6.88 ± 1.99 1.35 ± 0.34 
TransU-Net 0.42 ± 0.07 0.71 ± 0.04 0.57 ± 0.07 6.51 ± 1.27 1.26 ± 0.2 
U-Net 0.45 ± 0.09 0.72 ± 0.04 0.58 ± 0.08 6.52 ± 1.14 1.25 ± 0.18 
USE-Net 0.56 ± 0.12 0.78 ± 0.06 0.63 ± 0.09 5.91 ± 1.12 1.22 ± 0.26 
ReSqu-Net 0.58 ± 0.05 0.79 ± 0.03 0.67 ± 0.03 4.14 ± 0.52 0.98 ± 0.1  

Table 3 
Average scores and Standard Deviation across folds for each model, metric and Anatomical Region.  

Anatomical Region Model Sensitivity 
(%) 

Balanced Accuracy 
(%) 

Dice Score 
(%) 

Hausdorff Distance (mm) Average surface distance (mm) 

Apex Region Attention U-Net 0.45 ± 0.05 0.73 ± 0.03 0.59 ± 0.05 6.84 ± 0.63 1.52 ± 0.06 
Dense2U-Net 0.38 ± 0.1 0.69 ± 0.05 0.52 ± 0.09 8.25 ± 1.16 1.81 ± 0.25 
Proper-Net 0.42 ± 0.07 0.71 ± 0.04 0.57 ± 0.06 7.67 ± 1.49 1.63 ± 0.25 
TransU-Net 0.44 ± 0.07 0.72 ± 0.03 0.58 ± 0.07 7.43 ± 1.09 1.52 ± 0.23 
U-Net 0.45 ± 0.05 0.73 ± 0.03 0.59 ± 0.05 7.46 ± 0.87 1.54 ± 0.14 
USE-Net 0.55 ± 0.13 0.77 ± 0.06 0.63 ± 0.08 6.9 ± 1.33 1.45 ± 0.26 
ReSqu-Net 0.58 ± 0.04 0.79 ± 0.02 0.67 ± 0.03 4.95 ± 0.44 1.19 ± 0.08 

Midgland Region Attention U-Net 0.48 ± 0.04 0.74 ± 0.02 0.61 ± 0.04 6.32 ± 0.68 1.35 ± 0.16 
Dense2U-Net 0.41 ± 0.09 0.71 ± 0.04 0.55 ± 0.07 7.8 ± 1.23 1.66 ± 0.24 
Proper-Net 0.46 ± 0.09 0.73 ± 0.04 0.59 ± 0.06 7.03 ± 1.49 1.41 ± 0.22 
TransU-Net 0.48 ± 0.06 0.74 ± 0.03 0.62 ± 0.06 6.59 ± 1.09 1.34 ± 0.15 
U-Net 0.48 ± 0.08 0.74 ± 0.04 0.62 ± 0.06 6.83 ± 1.06 1.37 ± 0.2 
USE-Net 0.57 ± 0.11 0.78 ± 0.06 0.65 ± 0.08 6.52 ± 1.09 1.41 ± 0.3 
ReSqu-Net 0.62 ± 0.05 0.81 ± 0.03 0.7 ± 0.03 4.52 ± 0.42 1.07 ± 0.07 

Basal Region Attention U-Net 0.49 ± 0.08 0.74 ± 0.04 0.62 ± 0.07 6.86 ± 1.22 1.43 ± 0.21 
Dense2U-Net 0.43 ± 0.08 0.71 ± 0.04 0.56 ± 0.06 7.83 ± 1.14 1.66 ± 0.15 
Proper-Net 0.48 ± 0.11 0.74 ± 0.05 0.6 ± 0.08 7.51 ± 2.07 1.47 ± 0.32 
TransU-Net 0.5 ± 0.05 0.75 ± 0.03 0.64 ± 0.04 6.62 ± 1.31 1.34 ± 0.13 
U-Net 0.52 ± 0.05 0.76 ± 0.03 0.64 ± 0.03 6.85 ± 0.49 1.37 ± 0.15 
USE-Net 0.57 ± 0.12 0.79 ± 0.06 0.65 ± 0.07 7.2 ± 2.0 1.47 ± 0.38 
ReSqu-Net 0.64 ± 0.04 0.82 ± 0.02 0.7 ± 0.03 4.77 ± 0.49 1.12 ± 0.11  
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Fig. 3. Normalized Dice Score values for each Model in respect to A) Anatomical Region and B) Dataset.  

Fig. 4. Boxplots of the Root Mean Squared Error across models (A) and the corresponding SMDIs along with the GTDI for an exemplar patient (B).  
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demonstrates an 85 % efficacy rate in comparison to our proposed model 
when evaluated against the Prostate-3 T dataset. Finally, the Dense2U- 
Net model exhibited the lowest performance in both anatomical re
gions and datasets comparisons. 

Fig. 4 illustrates the distribution of RMSE for each model. Each in
dividual data point corresponds to the average RMSE between SMDI and 
GTDI for a given patient. The boxplot of each model depicts the distri
bution of all the respective data points. The lowest mean and standard 
deviation of RMSE was obtained using the ResQu-Net, suggesting that 
the model is more effective at capturing the salient features of the 
ground truth characteristics. This is also in line with the results pre
sented in Tables 1–3 and Fig. 3. The most noteworthy aspect of Fig. 4 is 
that the USE-Net exhibits a notable deviation of its significant charac
teristics (SMDI) from the GTDI, which contradicts the observations 
provided by Table 1, Table 2, Table 3, and Fig. 3. This indicates that 
while the model appears to be the second-best based on quantitative 
assessment (mPR), the model’s significant characteristics (SMDIs) are 
not in accordance with these obtained from the GTDIs. In the opposite 
direction, the Attention U-net model seems to generate higher-quality 
SMDIs that are similar to the GTDIs, as evidenced by the reduced 
RMSE. Considering all the results presented in Tables 1–3, Fig. 3 and 
Fig. 4, the Attention U-Net may offer higher reliability and stability 
compared to the USE-net. Nevertheless, the variations of observations 
for that model between 50 % and 75 % interquartile ranges (0.8–1.4) are 
much higher than these of ResQu-Net’s (0.75–1.05). Finally, both 
quantitative and qualitative assessments highlighted that the least per
formant model was the Dense2U-net which was unable to identify the 
significant characteristics related to prostate’s PZ. 

4. Discussion 

In this study, we proposed a novel deep learning model, named 
ResQu-Net, specifically designed for segmenting the PZ of the prostate 
on T2w MR images. Our findings demonstrate that ResQu-Net surpasses 
all other models in terms of segmentation performance across all met
rics, datasets, and folds not only for the PZ as a whole but also for the 
different anatomical regions within the PZ. Additionally, the model was 
able to generalize across different datasets and populations, and to 
capture more efficiently the important features in the images, compared 
to other state-of-the-art DL segmentation models. 

Although some previous works have partially addressed the problem 
of prostate zonal segmentation using CNN architectures, these models 
are, either more generic or are designed for simultaneously segmenting 
the whole prostate gland and the different zones. By solely relying on 
algorithms developed for other segmentation tasks, the specific char
acteristics and challenges of the peripheral zone may not be adequately 
addressed, leading to compromised segmentation accuracy and reli
ability. In fact, the PZ tends to have more complex boundaries, and 
irregular shapes than the whole gland and other prostatic zones, having 
a U shape at the apex and base, and a flattened U shape in the midgland 
region. Indicatively, different axial MRI slices are depicted in Fig. 5e, 
highlighting the intra- and inter-patient variability of the structure. Our 
analysis on the Prostate-158 dataset revealed that the distribution of 
elongation values (Fig. 5a) ranges from relatively spherical (elongation 
> 0.8) to largely elliptical (elongation < 0.8). Considering the distri
bution of grayscale pixel values (Fig. 5d), PZ seems to overlap to a sig
nificant degree with the grayscale values of non-relevant areas within a 
slice. This raises concerns regarding the ease of PZ differentiation, even 
by DL algorithms which are capable of capturing advanced relation
ships. Additionally, the distribution of PZ volume (Fig. 5b), character
ized by a prominent peak, indicates a partial similarity in the size of 
structures in the PZ, yet some outliers exceed 40 ml while typical vol
umes range between 10 and 15 ml. Furthermore, the distinct and pro
nounced increase in texture zone entropy, shown in Fig. 5c, indicates a 
significant degree of textural diversity. These variations in shape, 
texture and grayscale values emphasize the challenges related to PZ 

segmentation. 
In previous studies, the reported DS performance of CNN models 

ranges from 0.6 up to 0.91 for PZ [8]. To date, the best performance (DS 
= 0.91) has been reported by the authors of the USE-NET model [34] 
which, in our experiments, was the second best model with DS only 0.64. 
One reason for this, is the implementation of different preprocessing 
steps by the authors, such as setting the intensities of the pixels outside 
of the prostate to 0, thereby forcing the algorithm to focus only in the 
regions within the prostate gland. Potentially the exploitation of 3D 
networks for segmenting the PZ, as it was recently done by Xu et al., can 
further enhance the performance of the models [39]. Although an 
increased performance was reported for the 3D U-net model (up to 0.76 
in DS), the authors applied strict patient selection criteria, in both 
training and validation cohorts, based on the image quality and the 
visibility of prostate margins, which could have a significant effect on 
the performance of the model. 

ResQu-Net’s notable strength lies in its ability to segment the most 
challenging zone of the prostate, the PZ, demonstrating superior per
formance not only for the midgland region, but also for the apex and the 
base of the prostate, where most segmentation algorithms tend to fall 
short. The success of the proposed algorithm is also evidenced by the 
reduction in false positives and increase in true positives, illustrated in 
Supplementary Fig. 1. This underscores the importance of incorporating 
spatial attention modules and squeeze and excitation blocks in the 
proposed architecture, allowing ResQu-Net to leverage rich represen
tational power and enhance the segmentation accuracy. In fact, the su
periority of attention-based mechanisms in the PZ segmentation task, 
compared to intensive convolutions such as densely connected CNNs, is 
further stressed by the fact that the USE-Net and the Attention U-Net 
models were the second and third best-performing models, respectively, 
significantly surpassing the other models. However, in contrast to USE- 
Net and the Attention U-Net, the novelty of the ResQu-Net model lies in 
the integration of attention-based layers in a parallel manner, working 
complementarily with the convolutional layers, thereby enhancing the 
connectivity within the model. This parallel connectivity facilitates the 
exchange of information and enables the attention mechanism to 
effectively capture and highlight the distinctive characteristics of the PZ, 
leading to improved segmentation accuracy. 

The experiments were conducted in a rigorous and comprehensive 
manner to ensure the validity and reliability of the obtained results. A 5- 
fold cross-validation methodology was employed, encompassing MRI 
data from three datasets and multiple clinical sites. By including diverse 
population data and accounting for variations in MRI vendors and 
clinical settings, enhances the reliability and validity of the findings, 
demonstrating that the superior performance of ResQu-Net is not limited 
to specific data sources or imaging protocols. In addition to evaluate the 
overall segmentation performance considering the PZ as a whole, a 
detailed analysis was conducted by breaking down the PZ into its con
stituent anatomical substructures, namely the base, the apex, and the 
midgland of the prostate. This granular assessment aimed to provide a 
comprehensive understanding of the models’ performance across 
different regions of interest. By specifically examining the segmentation 
accuracy within each substructure, the study provided insights into the 
model’s capability to handle variations in shape, size, and appearance 
within the PZ. The results showcased significant improvements for the 
ResQu-Net in delineating challenging regions such as the basal region, 
where precise segmentation is crucial for clinical decision-making as 
well as treatment planning. 

Importantly, the comparison of ResQu-Net with state-of-the-art 
segmentation models was not based solely on quantitative metrics, 
such as the DS and the HD, but we incorporated qualitative assessments 
through the extraction of feature maps and comparison with the ground 
truth maps. This qualitative analysis enabled us to identify potential 
strengths and weaknesses of the algorithms, which might not be evident 
from quantitative metrics alone and to provide a more comprehensive 
understanding of models’ performance. For instance, the USE-NET, 
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Fig. 5. Density distribution across Prostate 158 dataset for a) Elongation, b) Volume (shape features), c) gray level zone entropy (texture) features, d) grayscale pixel 
value distribution between peripheral zone (cyan) & Non peripheral zone (pink) pixels and e) exemplar PZ regions for different slices within the axial plane of an 
MRI scan. 
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performs relatively well in terms of DS but it tends to overlook important 
imaging features leading to high uncertainty in pixel wise predictions. 
On the other hand, the ResQu-Net processes and interprets images more 
efficiently, leading to a more reliable result both quantitatively and 
qualitatively. 

5. Limitations 

Despite the promising results of this study, there are some limitations 
that should be acknowledged and taken into consideration to guide 
future research and ensure the robustness and clinical utility of the 
proposed model. Firstly, the proposed ResQu-Net architecture was 
trained and evaluated using a 5-fold cross-validation approach. While 
cross-validation provides a reasonable estimate of model performance, it 
may still be susceptible to overfitting or variability in the training/ 
validation splits. Cross-dataset and, ultimately, independent external 
validation on unseen datasets from different sources would provide 
further evidence of the model’s generalizability. Also, direct comparison 
with the results from previous studies using datasets that were included 
in this analysis might not be straightforward as the data splits used 
herein are different. Nevertheless, a separate analysis was performed to 
assess the performance of the ResQu-Net model with respect to the 
performance reported in the original paper of the Prostate 158 datasets 
using the same data splits, and the results are reported in the Supple
mentary material. Another limitation of this study is the lack of a seg
mentation uncertainty assessment. Quantifying and evaluating the 
uncertainty associated with the segmentation results is crucial for un
derstanding the reliability and confidence of the model’s predictions. 
Uncertainty estimation provides valuable information about areas of 
ambiguity or potential errors in the segmentation, enabling clinicians to 
make informed decisions based on the level of confidence in the model’s 
outputs. The incorporation of uncertainty estimation techniques, such as 
Bayesian approaches or Monte Carlo dropout, would enhance the reli
ability and interpretability of the segmentation results. Future studies 
should aim to incorporate uncertainty assessment to provide a more 
comprehensive analysis of the model’s performance and facilitate its 
clinical translation. 

6. Conclusions 

This work proposes an algorithmic pipeline specifically tailored for 
segmenting the PZ of the prostate on MRI medical imaging by capital
izing on the inherent strengths of CNNs and integrating innovative 
architectural designs that allowed enhancing both accuracy and effi
ciency. These advancements may contribute significantly in addressing 
the challenges associated with PZ segmentation, and ultimately enabling 
improved clinical decision-making and patient outcomes. To that end it 
is worth noting that the specific work can be part of a clinical decision 
support system in the domain of prostate cancer (PCa), and in particular 
in the diagnosis or/and characterization of cancer. Since,the perfor
mance of any software integrated in healthcare infrastructure is of 
paramount importance [40], the authors plan as future work to exploit 
various IT architectural solutions to emulate the performance of a 
complete pipeline in real world clinical settings. 
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