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Abstract

Objectives To present an accurate machine-learning (ML) method and knowledge-based heuristics for automatic
sequence-type identification in multi-centric multiparametric MRI (mpMRI) datasets for prostate cancer (PCa) ML.

Methods Retrospective prostate mpMRI studies were classified into 5 series types—T2-weighted (T2W), diffusion-
weighted images (DWI), apparent diffusion coefficients (ADC), dynamic contrast-enhanced (DCE) and other series
types (others). Metadata was processed for all series and two models were trained (XGBoost after custom categorical
tokenization and CatBoost with raw categorical data) using 5-fold cross-validation (CV) with different data fractions for
learning curve analyses. For validation, two test sets—hold-out test set and temporal split—were used. A leave-one-
group-out (LOGO) CV analysis was performed with centres as groups to understand the effect of dataset-specific data.

Results 4045 studies (31,053 series) and 1004 studies (7891 series) from 11 centres were used to train and test series
identification models, respectively. Test F1-scores were consistently above 0.95 (CatBoost) and 0.97 (XGBoost). Learning
curves demonstrate learning saturation, while temporal validation shows model remain capable of correctly
identifying all T2W/DWI/ADC triplets. However, optimal performance requires centre-specific data—controlling for
model and used feature sets when comparing CV with LOGOCV, F1-score dropped for T2W, DCE and others (−0.146,
−0.181 and −0.179, respectively), with larger performance decreases for CatBoost (−0.265). Finally, we delineate
heuristics to assist researchers in series classification for PCa mpMRI datasets.

Conclusions Automatic series-type identification is feasible and can enable automated data curation. However,
dataset-specific data should be included to achieve optimal performance.

Critical relevance statement Organising large collections of data is time-consuming but necessary to train clinical machine-
learning models. To address this, we outline and validate an automatic series identification method that can facilitate this
process. Finally, we outline a set of metadata-based heuristics that can be used to further automate series-type identification.

Key Points
● Multi-centric prostate MRI studies were used for sequence annotation model training.
● Automatic sequence annotation requires few instances and generalises temporally.
● Sequence annotation, necessary for clinical AI model training, can be performed automatically.
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Graphical Abstract

MMachine-learning can be used to predict sequence types with high fidelity in massive prostate
multiparametric MRI datasets. However, centre-specific data is required to achieve this:
performance drops when models are tested on centres which were not used during training.
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Introduction
Clinical machine-learning (ML) with radiological data is
a growing field [1–4] with clear necessities regarding
dataset organisation—there needs to be interoperability
between different data sources to allow for meaningful
annotations, and series types have to be annotated and
identified [5]. At the present moment, plentiful hospitals
and clinical centres have access to internal picture
archiving and communication systems (PACS) with sig-
nificant amounts of data, but there are concrete technical
and human challenges standing in the way of making
such data operational for the training of clinical ML
models [6].
A specific problem standing in the way of this oper-

ationalisation is the organisation of prostate multi-
parametric MRI datasets (composed of T2-weighted,
diffusion-weighted, apparent diffusion coefficient (ADC)
and dynamic contrast-enhanced images [7]) into specific
data types while excluding accessory/nonmandatory
sequences. Some previous works have focused on this task
in the classification of whole-body CT series types [8] or to
identify specific brain imaging contrasts [9, 10]. These

approaches use deep-learning-based approaches, which we
avoid here. Instead, we focus on using the metadata
available in Digital imaging and communications in med-
icine (DICOM) files to classify sequence types as this is
more realistic in terms of the typical computational
resources available in different clinical centres. Indeed, our
approach is similar to that described by Liang et al for brain
MRI [11]. Their investigation showed tremendous poten-
tial for metadata-based sequence identification, but the
relatively small sample size and the absence of testing on
data from an external institution hinder the robustness of
this work.
Here, we present a sequence-type classification frame-

work based on DICOM metadata to automatically curate
large amounts of data. Using a large multi-centric dataset,
we also study how performance drops when these meth-
ods are applied to data from centres absent from the
training data. Finally, we offer a small set of heuristics that
can help in curating large prostate mpMRI datasets. This
workflow was developed in the context of ProCAncer-i1, a

[1] https://www.procancer-i.eu/.
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Europe-based consortium focused on collecting and
developing clinical ML models for prostate mpMRI.

Methods
We illustrate our training and inference workflows in
Fig. 1. Shortly, a large dataset of DICOM metadata-ser-
ies type pairs was used to train XGBoost and CatBoost
models using 5-fold nested cross-validation, during which
hyperparameters were tuned. Validation was performed
using both a holdout and temporal test set. Inference on
new data (DICOM series) follows a two-step process—(i)
DICOM metadata extraction and (ii) classification using
the best-performing model.

Dataset
A total of 4045 retrospective prostate mpMRI studies
acquired prior to March 31st 2022 with 31,053 series from
ProstateNet2 were used to train machine-learning models
(Table 1). Each series was annotated as one of the fol-
lowing: T2W (T2-weighted), DWI (diffusion-weighted
image), ADC (apparent diffusion coefficient), DCE
(dynamic contrast enhancement) and others (compre-
hending any other modality which is typically not used
specifically for diagnosis or machine-learning applica-
tions). These studies were retrieved from 11 distinct

Fig. 1 DICOM series-type classification from metadata. Schematic representation delineating the adopted workflow during this work. Top (Training):
XGBoost and CatBoost models were trained on a large dataset of annotated DICOM metadata-series type pairs and validated on both a hold-out test set
and a temporal test set. Bottom (Inference): the best-performing model is applied to new DICOM data with no series-type annotations after metadata
extraction. Each colour corresponds to a series type (T2W, DWI, ADC, DCE, Others) and shapes correspond to DICOM files (squares) or metadata (slanted
squares)

[2] https://prostatenet.eu.
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centres (Table 2). For testing, 1004 studies with
7891 series were retrieved from the same centres and
annotated (Table 1). Informed consent was waived for
retrospective data collection across the different centres.

Automatic curation
Metadata extraction
Specific metadata fields were extracted from each series
using pydicom, a Python package for DICOM data
handling. Whenever more than one unique value was
present for each field, these were processed into a single
string value containing all unique values separated by
spaces. To harmonise data without removing important
information, we clean each metadata field with the fol-
lowing data sanitisation protocol:
1. Dates were removed from series descriptions using a

regular expression substitution (i.e. [0-9]+[/-:]
[0-9]+[/-:][0-9]+ were replaced with an
empty sequence);

2. Missing values were replaced with -;
3. A set of non-space characters(|,-,;,,,(,),_,:)

were replaced with space characters;

4. Spaces were squeezed (if more than one consecutive
space was present, this was replaced with a single space).

Given that each series has an arbitrary number of
DICOM files (slices), the unique values for each series
were identified and each metadata field in a given series
was characterised as a single value using the space-
separated set of unique values for each series.

Machine-learning-assisted annotation
Two ML models were tested, CatBoost and XGBoost, as
both methods allow missing data and require little
hyperparameter optimisation. CatBoost has the added
benefit of requiring no explicit tokenization of strings
(this is done internally during training if necessary). String
tokenization is a process by which strings of characters
are split into sets of relevant elements (substrings). Both
models were optimised in a machine with a graphics
processing unit card (NVIDIA GeForce RTX 3090),
8 cores and 256GB of RAM to predict one of 5 distinct
classes—T2W, DWI, ADC, DCE and “others”.
XGBoost, unlike CatBoost, requires the explicit toke-

nization of strings. To do this, we considered string col-
umns as belonging to one of two types—categorical
columns (columns containing a mixture of alphanumeric
characters) and space-separated numerical columns (col-
umns containing a mixture of numeric characters sepa-
rated by spaces). To handle the former, we tokenize
strings using a minimum per-series frequency of 0.01
(each substring should be in at least 1% of the data) and a
minimum and maximum n-gram size of 1 and 5 (each
string can be split into a maximum of 5 substrings),
respectively. Each value in space-separated columns was
summarised with 5 distinct features—number of char-
acters and their sum, mean, minimum and maximum
values. These operations ensure that string columns are
converted into sets of numerical values, directly usable by
XGBoost.
Nearly all the retrieved metadata tags were used in

training (Supplementary Table 1), and some models were
trained using alternative feature sets. In particular, we
trained models using 4 feature sets: (i) all features; (ii)
without (w/o) series description; (iii) w/o field of view
(FOV) and specific absorption rate (SAR); and iv) w/o
series description, FOV and SAR. Each model was trained
using 5-fold nested cross-validation; during the inner
loop, a random set of hyperparameters was picked using
random grid search (Supplementary Table 2) for a total
of 50 iterations and 5-fold stratified cross-validation
was used to estimate performance using the F1-score
average across classes; models were retrained using the
best-performing parameters and the expected perfor-
mance was estimated with the outer loop.

Table 1 Dataset size for training and testing stratified by
series type

Series type Train series count Test series count

ADC 5031 1276

DCE 2954 865

DWI 7478 1860

T2 5714 1441

Others 9875 2448

Total 31,053 7891

Table 2 Number of studies from each centre

Centre Country Train studies

count

Test studies

count

Radboud UMC Netherlands 1811 458

FPO Italy 624 162

Champalimaud

Foundation

Portugal 566 116

National Cancer

Institute

Lithuania 377 97

QUIRONSALUD Spain 348 79

IDIBGI Spain 186 58

UNIPI Italy 89 19

JCC Portugal 20 7

HULAFE Spain 13 6

RMH UK 8 2

HACETTEPE Turkey 3 0

de Almeida et al. Insights into Imaging           (2025) 16:75 Page 4 of 13



To determine the importance of having data from each
centre for classification performance, a leave-one-group-
out cross-validation analysis (LOGOCV) was performed.
For this analysis, each validation fold is composed of all
the data for a given centre and the training data is data
belonging to any other centre.

Learning curve analysis
Learning curves were established to determine the rela-
tionship between sample size and performance. Models
were trained using 1%, 2%, 5%, 10%, 25%, 50%, 70% and
100% of the data and tested on the same hold-out test set.
We use a two-step approach to detect whether more data
can lead to performance improvements. This approach
first detects whether the rate of performance improve-
ment changes. Then, we confirm that performance is
stationary after this point (i.e. performance remains stable
as the number of training samples increases). We provide
more details in the Supplementary Methods.

Temporal validation
We used a random set of 102 temporal studies (collected
between March 31st 2022 and March 1st 2024) from
4 centres (Quirónsalud, Spain; National Cancer Institute,
Lithuania; Royal Marsden Hospital, UK; Hospital La Fe,
Valencia, Spain) to validate our model. For this task,
radiologists were asked to identify three series typically
utilised in clinical ML model development (axial T2W,
DWI, ADC; other series types were not identified). This
validation was performed to assess whether an expected
performance drop was observable with time as this pro-
vides a better understanding of whether these models
should be updated after their implementation.

Statistical analysis
To evaluate machine-learning model performance we
focused on three metrics—F1-score, recall and precision—as
well as on confusion matrices. To determine whether sta-
tistically significant differences are present in our data, we
use the CV performance and apply linear regression testing
using the hold-out test set in order to control for the effect
of different modelling decisions on the performance. We
used a significance threshold of 0.05.
Model training was performed using CatBoost (version

1.2.2) [12], XGBoost (version 2.0.3) [13] and scikit-learn
(version 1.4.1.post1) [14] in Python (version 3.11.8). All
post-hoc analysis were performed using R (version 4.1.2);
breakpoint analysis was performed using the segmented
package (version 2.0-3) [15].

Derivation of heuristics
While predictive methods can perform remarkably well
for sequence-type classification, domain knowledge can

also be put to good use. More concretely, we observed
whether there were recurrent mistakes in prediction
outputs caused by a lack of specificity in the classifications
themselves (i.e. it may be important to identify specifically
the axial T2W, or to discriminate not only DWI but high
b-value DWI) and that could be easily solved by applying
domain knowledge. Through this process, we have iden-
tified a set of heuristics, which we outline below in the
results section and describe how they can be easily
applied.

Results
Near-flawless discrimination of series types
While performance features very small errors across all
sequence types for both models, some relevant differences
are noteworthy:

● XGBoost outperforms CatBoost—XGBoost,
trained using engineered features (i.e. tokenized
string features), outperformed CatBoost, which
uses an automated combination of ordered target
encoding and combinatorial feature construction
(Fig. 2; Table 3; Table 4). While CatBoost performs
this (together with other methods) to reduce
overfitting, its intended effect is not observed (we
initially posited that this may be a consequence of
highly variable metadata fields such as series
description, but our analysis shows that the
performance differences in CatBoost models
between including/excluding series description is
minimal). This is particularly bad when considering
that a large fraction of T2W, typically essential in
clinical ML prostate bpMRI models, is oftentimes
misclassified as other sequence types (Fig. 2C).

● Including all features leads to larger performance
drops for DCE identification in XGBoost—
however, these drops in performance are relatively
small (Fig. 2; Table 3) and are unlikely to lead to mis-
curated datasets for clinical ML as these typically
require only T2W, DWI and ADC and the largest
amounts of misclassified instances are DCE being
misclassified as other sequence types or vice-versa.

Learning saturation indicates near-optimal model
performance
Models may require more data to achieve optimal per-
formance. To understand this relationship between
training dataset size and performance, we trained models
with increasing training data fractions and evaluated them
on the same hold-out test data.
We show that performance stabilises for most models

when 2–10% of the training data is used, corresponding to
approximately 600–3000 cases (Fig. 3). When this is not
the case—precision for XGBoost models w/o SD/%FOV/
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SAR and w/o %FOV/SAR, recall for XGBoost models
without SD/%FOV/SAR and F1-score for XGBoost
models w/o SD/%FOV/SAR, %FOV/SAR and SD—this is

likely due to inconsistent DCE identification performance.
In other words, performance is relatively stable in most
cases after an acceptable amount of data is available for

Fig. 2 Performance of metadata-based series-type classification models. A, B Cross-validation and hold-out test set metrics, respectively, stratified by
model (colour) and series type (marker shape). C Confusion matrix for hold-out test set, stratified by model and series type
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the model, implying that optimal performance requires
amounts of data smaller than those which were initially
annotated.

Series type discrimination requires dataset-specific cases
The generalisation of these models lies not only on their
hold-out test set performance, but also on how they

perform when data from a centre is not collected during
training. LOGOCV performance shows consistent drops
in performance when models are tested on data from
centres which were not present during training (Fig. 4A).
However, CatBoost models suffer a considerably larger

F1-score drop (Table 5) when compared with XGBoost
models. Additionally, different feature sets do not neces-
sarily lead to larger performance drops, while there are
very distinct performance drops for different series types.
Indeed, ADC and DWI appear to remain relatively easy to
identify, while DCE, T2 and other sequences suffer larger
performance drops (Fig. 4B). Importantly, for XGBoost
models, DCE and T2W are frequently classified as other
sequence types. Additionally, ADC is more frequently
classified as DWI, particularly in models excluding series
description; this is likely due to the fact that radiologists
include series-specific information in the series descrip-
tion, and we observed that other tags (i.e. diffusion b-
value) may be wrongly included in ADC series, making
them more similar to DWI.

Temporal validation highlights consistency
The temporal validation of these models showed their
consistency—indeed, the application of the best-
performing method to a set of 102 cases obtained after
March 31st, 2022 shows that the radiologist-identified
triplets of T2W, DWI and ADC are all correctly predicted,
and most nuisance series types are correctly
identified (73%).

Table 3 Average performance for all sequence types and all models stratified by testing split (cross-validation or “CV” and hold-out
test set or “Test”)

Exclusion Model Split T2W DWI ADC DCE Others

W/o %FOV/SAR CatBoost CV 97.4% (0.7%) 97.5% (0.6%) 96.5% (0.8%) 99.0% (0.9%) 98.1% (0.3%)

W/o SD/%FOV/SAR 96.2% (0.6%) 97.1% (0.8%) 96.3% (1.1%) 98.8% (0.7%) 97.4% (0.5%)

W/o SD 95.8% (1.0%) 96.8% (0.6%) 95.9% (0.7%) 98.8% (1.0%) 97.1% (0.6%)

All features 97.2% (1.0%) 97.3% (0.3%) 96.4% (0.4%) 98.9% (1.3%) 98.1% (0.4%)

W/o %FOV/SAR XGBoost 99.5% (0.3%) 99.4% (0.4%) 99.7% (0.2%) 97.8% (1.4%) 99.1% (0.4%)

W/o SD/%FOV/SAR 99.3% (0.2%) 99.2% (0.3%) 99.5% (0.3%) 98.0% (0.8%) 99.1% (0.3%)

W/o SD 99.2% (0.4%) 99.3% (0.3%) 99.6% (0.1%) 97.9% (0.6%) 99.0% (0.4%)

All features 99.5% (0.4%) 99.4% (0.3%) 99.6% (0.3%) 97.4% (0.9%) 99.1% (0.4%)

W/o %FOV/SAR CatBoost Test 97.2% (0.4%) 97.2% (0.5%) 96.2% (0.7%) 99.5% (0.2%) 98.1% (0.3%)

W/o SD/%FOV/SAR 95.8% (0.4%) 96.8% (0.6%) 96.0% (0.7%) 98.9% (1.0%) 97.1% (0.5%)

W/o SD 95.4% (0.7%) 96.4% (0.3%) 95.3% (0.4%) 98.9% (1.0%) 96.9% (0.4%)

All features 96.8% (0.7%) 96.9% (0.1%) 95.9% (0.1%) 99.2% (1.1%) 97.8% (0.3%)

W/o %FOV/SAR XGBoost 99.6% (0.1%) 99.4% (0.2%) 99.6% (0.1%) 97.8% (1.5%) 99.2% (0.5%)

W/o SD/%FOV/SAR 99.4% (0.1%) 99.3% (0.0%) 99.5% (0.1%) 98.4% (0.5%) 99.2% (0.0%)

W/o SD 99.3% (0.1%) 99.3% (0.1%) 99.4% (0.1%) 97.3% (1.9%) 98.8% (0.5%)

All features 99.7% (0.1%) 99.3% (0.1%) 99.6% (0.0%) 96.9% (1.2%) 98.8% (0.5%)

Numbers in parentheses correspond to the standard deviation of each estimate rounded to the second decimal place. Standard deviations were calculated using the
performances for individual folds. The highest performance for each class at each stage (CV, Test) is highlighted in bold

Table 4 Coefficient values, their associated standard error (Std.
error) and one-way t-tests for a linear model where the hold-out
test set F1-score is the dependent variable and categorical factors
corresponding to model, feature sets and sequence types were
the independent variables

Parameter Coefficient Std. error t-value p-value

Model

CatBoost 0.968 0.00555 174 < 0.0001*

XGboost 0.985 0.00555 177 < 0.0001*

Feature sets (vs. standard)

W/o SD −0.0007 0.00524 −0.134 0.895

W/o %FOV/SAR 0.00464 0.00524 0.886 0.382

W/o SD/%FOV/SAR 0.00139 0.00524 0.265 0.793

Sequence type (vs. ADC)

T2W 0.032 0.00585 0.547 0.588

DWI 0.00403 0.00585 0.688 0.497

DCE 0.0102 0.00585 1.75 0.09

Others 0.00702 0.00585 1.2 0.24

*corresponds to statistically significant variables at a significance threshold of
0.05
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Fig. 3 Learning curves for series-type classification models for the hold-out test set. The x-axis represents the fraction of data used during training and
the y-axis represents the value for each metric. Plots are stratified by sequence type (colour). Black lines represent the average performance at each
fraction. Shaded grey regions correspond to constant performance
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Fig. 4 Leave-one-group-out cross-validation performance. A Cross-validation metrics stratified by model (colour) and series type; each point represents
the mean or weighted mean performance (illustrated with different shapes). B Confusion matrix, stratified by model and series type
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Some nuisance series (series that radiologists did not
label as part of the T2W-DWI-ADC triplet) were iden-
tified (14%, 12% and 0.8% of nuisance series were
identified as T2W, DWI or ADC, respectively). However,
we note that all misidentified T2W were correctly
identified, but were not adequate for deep learning
(sagittal or coronal orientation), had a wider FOV or
represented lower quality T2W compared to the T2W
selected by the radiologist; similarly, the nuisance series
misidentified as DWI series corresponded to lower b-
value series, whereas the nuisance series classified as
ADC series correspond to repeated ADC maps (likely
re-calculated based on different sets of b-values from
DWI series).

Additional series classification heuristics
Some additional heuristics were identified to further
refine sequence annotations for downstream machine-
learning analyses. Here, we present and make them
available so that they can be of use to other researchers
working with large prostate mpMRI data (Fig. 5):
1. Identification of axial plane series in T2W—the

identification of an axial plane is of crucial
importance as multiple T2W sequences with
different orientations may be obtained prior to the
completion of the study. To identify the T2W axial
sequences (which share the same orientation as
DWI and ADC sequences) we started by taking the
second column of the direction cosine matrix (which
corresponds to the orientation on the z-plane) and

identifying the index of the largest absolute value.
This value—0, 1 or 2—has a direct correspondence
to the three identifiable directions—sagittal, coronal
and axial, respectively.

2. Exclusion of large slice spacings in T2W—from our
experience, prostate T2W is typically obtained with
approximately 3 mm of between-slice spacing. The
exclusion of series with larger spacings is trivial:
using the slice spacing tag (0018,0088) in DICOM
files, this is easily extractable; we then keep all T2W
series which have slice spacing < 4.0 mm.

3. Exclusion of exponential ADC—exponential ADC
(eADC) is quantitively different from regular ADC,
which was considerably more abundant in ProstateNet.
To exclude eADC, we made use of the image type
attribute (0008,0008) in ADC DICOM files: this
includes “EADC” when images are eADC.

4. Exclusion of synthetic DWI—synthetic DWI (sDWI)
are composite images obtained from two regular DWIs
at different b-values. While they may hold additional
diagnostic performance [16], we focused on extracting
and working with conventional DWI only. As such, we
excluded sDWI by identifying the presence of
“synthetic” in the lower-case series description
attribute (0008, 103E) of the series predicted as
being DWI.

5. b-value-based selection of DWI—it is not uncommon
for bpMRI/mpMRI studies to have more than one
DWI series; however, the most recent PI-RADS
guidelines (PI-RADS v2.1) determined that the
evaluation of a single high b-value (approximately
1400) DWI is sufficient [17]. With this in mind, it is
relatively easy to select the highest b-value sequence
using the (0018, 9087) tag. However, depending on the
scanner manufacturer, it is possible that the diffusion
b-value tag is not specified. For instance, GE or
Siemens may use the (0043, 1039) and (0019, 100c)
private tags, respectively. With this in mind, automated
data curation developers should keep this in mind
when selecting high b-value DWI for their studies.

Discussion
In this work, we outline a simple methodology with a
comprehensive validation analysis for series-type classifi-
cation from metadata for prostate MRI. We show that
performance is generally good but requires centre-specific
data. Finally, we outline some heuristics to further facil-
itate automatic curation.
The performance achieved here is relatively comparable

with that of other studies using either metadata- or deep-
learning-based approaches [8–11]; specifically for prostate
MRI, a deep-learning-based approach also showed
remarkable performance (recall > 90% for external test set

Table 5 Coefficient values, their associated standard error (std.
error) and one-way t-tests for a linear͕ model where F1-score
difference between LOGOCV and CV performance is the
dependent variable and categorical factors corresponding to
model, feature sets and sequence types were the independent
variables

Parameter Coefficient Std. error t-value p-value

Model

CatBoost −0.265 0.0332 −7.98 < 0.0001*

XGBoost −0.0337 0.0332 −1.01 0.317

Feature sets (vs. Standard)

W/o SD −0.0346 0.0297 −1.16 0.252

W/o %FOV/SAR 0.00623 0.0297 0.21 0.835

W/o SD/%FOV/SAR −0.0358 0.0297 −1.21 0.235

Sequence type (vs. ADC)

T2W −0.146 0.0364 −4.01 0.0003*

DWI 0.0418 0.0364 1.15 0.258

DCE −0.181 0.0364 −4.98 < 0.0001*

Others −0.179 0.0364 −4.91 < 0.0001*

*corresponds to statistically significant variables at a significance threshold of
0.05
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performance) [18]. In particular and using larger sample
sizes (11,000 series) for brain MRI series-type classifica-
tion, Jonske and others showed that including a deep-
learning module in a metadata-only model led to rela-
tively small performance gains (91.31% vs. 92.71% accu-
racy for the same approach with and without the deep-
learning module, respectively) [19]. This is demonstrative
that metadata-based approaches to series type classifica-
tion perform well and that gains from deep-learning-
based methods are limited.
Previous work in this field shows relatively good per-

formance while having smaller dataset sizes [8–11];
others, using considerably larger datasets (> 10,000 ser-
ies) [19, 20] or much larger datasets than the one used
here (600,000 series) [21] showed equally good perfor-
mance in brain MRI series type classification. This
relatively high stability is indicative of robust perfor-
mance across vastly different training dataset sizes and
domains. This is a sensible conclusion—what our
learning curve analysis shows is that there is relatively
consistent saturation for most models at approximately
10% of the data or even with smaller fractions of data.
These aspects are encouraging, as they may motivate

centres to implement similar approaches with smaller
data collections.
The relatively high heterogeneity in terms of perfor-

mance when considering the LOGOCV performance may
be related to specific factors—while ADC or DWI have
indicative tags (i.e. b-value or image type) which assist in
classification, private tags can make automated metadata
extraction more complicated; T2 can have high variability
in terms of direction and spacing; and the heterogeneity of
the “others” category, with many different types of
sequences, may hinder prediction across centres. This has
been shown in other studies in brain MRI series-type
classification, highlighting a performance drop when
models were externally validated [20, 21]. In prostate
MRI, this conclusion has also been highlighted for deep-
learning-based models—while performing well internally
(> 90% for most series types, similar to what is described
here), there are consistent performance drops on external
test sets [18]. This heterogeneity comes from standard
clinical practice—a small study across 23 MRI scanners in
London revealed striking amounts of protocol hetero-
geneity [22], while a study on 44 prostate mpMRI experts
showed there were some areas pertaining to mpMRI

Fig. 5 Visual examples of the ambiguities solved by heuristics. A Exclusion of exponential ADC (EADC) over conventional ADC. B Exclusion of synthetic
DWI over acquired DWI. C Selection of a sufficiently high b-values allowing for better lesion detection (the red arrow represents the location of a
potential lesion)
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acquisition, assessment and interpretation where con-
sensus was non-existent or hard to obtain [23]. In other
words, while guidelines are available, there is remarkable
heterogeneity in terms of protocol and data acquisition,
factors which compound with scanner vendor, model or
even software versions.
Temporal validation has become a key factor in ML

validation as model performance tends to degrade over
time [24]; as expected, this also happens in clinical ML
models [25, 26], which can be critical for patient-sensitive
applications. Here, we offer the first instance of temporal
validation for a metadata-based series-type predictor,
showing consistent performance, and present a set of
knowledge-based heuristics which can help developers
address some issues which arose during the multiple
validation phases of this work.
Some limitations can be identified—pixel information

was not tested but can potentially improve the relatively
poor LOGOCV performance at the cost of increased
computational cost. Additionally, we note that there is
myriad of ML models which could have been tested
here; however, recent benchmarks have shown
that tree-based methods (such as CatBoost or
XGBoost) consistently outperform other modern
approaches [27].

Conclusion
Using a large dataset of over 30,000 prostate mpMRI
series, we have designed a method, which automatically
organise large datasets lacking sequence annotations
with excellent performance in both retrospective and
prospective test sets. However, once we test how these
methods generalised to datasets absent from the
training data, we observe drops in performance, which
hinders the transferral of these methodologies to
external medical centres. Finally, we outline a set of
useful heuristics that medical informatics teams can
use to assist in the automatic curation of large prostate
mpMRI datasets.

Abbreviations
ADC Apparent diffusion coefficient
bpMRI Biparametric magnetic resonance imaging
DWI Diffusion-weighted imaging
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DCE Dynamic contrast enhancement
eADC Exponential apparent diffusion coefficient
FOV Field of view
LOGOCV Leave one-group out cross-validation
ML Machine-learning
MRI Magnetic resonance imaging
mpMRI Multiparametric magnetic resonance imaging
SD Series description
SAR Specific absorption rate
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