
Academic Editors: Raimondo

Schettini and Guanghui

(Richard) Wang

Received: 1 February 2025

Revised: 12 March 2025

Accepted: 14 March 2025

Published: 26 March 2025

Citation: Dimitriadis, A.; Kalliatakis,

G.; Osuala, R.; Kessler, D.; Mazzetti, S.;

Regge, D.; Diaz, O.; Lekadir, K.;

Fotiadis, D.; Tsiknakis, M.; et al.

Assessing Cancer Presence in Prostate

MRI Using Multi-Encoder

Cross-Attention Networks. J. Imaging

2025, 11, 98. https://doi.org/

10.3390/jimaging11040098

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Assessing Cancer Presence in Prostate MRI Using Multi-Encoder
Cross-Attention Networks
Avtantil Dimitriadis 1,2,3,† , Grigorios Kalliatakis 1,*,† , Richard Osuala 2 , Dimitri Kessler 2 ,
Simone Mazzetti 4 , Daniele Regge 4 , Oliver Diaz 2 , Karim Lekadir 2,5 , Dimitrios Fotiadis 6 ,
Manolis Tsiknakis 1,3 , Nikolaos Papanikolaou 7 , ProCAncer-I Consortium ‡ and Kostas Marias 1,3

1 Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), N. Plastira 100,
Vassilika Vouton, 70013 Heraklion, Greece; dimitriadi@ics.forth.gr (A.D.); tsiknaki@ics.forth.gr (M.T.);
kmarias@ics.forth.gr (K.M.)

2 Department of Mathematics and Computer Science, Universitat de Barcelona, Gran Via de les Corts Catalanes,
585, L’Eixample, 08007 Barcelona, Spain; richard.osuala@ub.edu (R.O.); dimitri.kessler@ub.edu (D.K.);
oliver.diaz@ub.edu (O.D.); karim.lekadir@ub.edu (K.L.)

3 Department of Electrical and Computer Engineering, Hellenic Mediterranean University (HMU),
Estavromenos, 71410 Heraklion, Greece

4 Department of Radiology, Candiolo Cancer Institute–FPO, IRCCS, 10060 Candiolo Torino, Italy;
simone.mazzetti@ircc.it (S.M.); daniele.regge@ircc.it (D.R.)

5 Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
6 Department of Biomedical Research Institute–FORTH, University Campus of Ioannina, 45110 Ioannina,

Greece; fotiadis@uoi.gr
7 Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal;

nickolas.papanikolaou@research.fchampalimaud.org
* Correspondence: gkalliatak@ics.forth.gr
† These authors contributed equally to this work.
‡ A list of the members of the ProCAncer-I Consortium is provided in the Appendix B.

Abstract: Prostate cancer (PCa) is currently the second most prevalent cancer among men.
Accurate diagnosis of PCa can provide effective treatment for patients and reduce mortality.
Previous works have merely focused on either lesion detection or lesion classification
of PCa from magnetic resonance imaging (MRI). In this work we focus on a critical, yet
underexplored task of the PCa clinical workflow: distinguishing cases with cancer presence
(pathologically confirmed PCa patients) from conditions with no suspicious PCa findings
(no cancer presence). To this end, we conduct large-scale experiments for this task for the
first time by adopting and processing the multi-centric ProstateNET Imaging Archive which
contains more than 6 million image representations of PCa from more than 11,000 PCa cases,
representing the largest collection of PCa MR images. Bi-parametric MR (bpMRI) images of
4504 patients alongside their clinical variables are used for training, while the architectures
are evaluated on two hold-out test sets of 975 retrospective and 435 prospective patients.
Our proposed multi-encoder-cross-attention-fusion architecture achieved a promising area
under the receiver operating characteristic curve (AUC) of 0.91. This demonstrates our
method’s capability of fusing complex bi-parametric imaging modalities and enhancing
model robustness, paving the way towards the clinical adoption of deep learning models
for accurately determining the presence of PCa across patient populations.

Keywords: prostate cancer; cross-attention; deep learning

1. Introduction
Prostate cancer (PCa) is a malignancy of the urinary system in men, with the second

highest incidence and the fifth leading cause of cancer death among men worldwide in
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2020 [1]. The reported incidence rates of PCa are 37.5 per 100,000 in developed countries and
11.3 per 100,000 in developing countries [1], with an estimated worldwide 1.6 million cases
and 366,000 deaths annually [2]. Despite these facts, if PCa is detected at the early stages its
survival rates increase due to the commonly slow progression of the disease [3]. Therefore,
effective monitoring and early diagnosis are crucial for improving patients’ survival.

Currently, accepted clinical strategies for PCa diagnosis include a combination of the
prostate-specific antigen (PSA) test, digital rectal exam, trans-rectal ultrasound (TRUS),
and pelvic magnetic resonance imaging (MRI). PSA screening, however, results in over-
diagnosis, subsequently requiring the patients to undergo invasive prostate biopsy. This
procedure causes pain, risk of bleeding, and the potential for over-treatment [4,5]. Pelvic
MRI has been increasingly becoming the standard of care for PCa diagnosis in radiology
settings. An international standardised guideline to image interpretation (PI-RADS v2) [6]
has been developed within the radiology community; however, there remain challenges
with inter-observer variability in the use of this guideline [7].

Deep learning (DL) methods, in particular, Convolutional Neural Networks (CNNs),
have recently shown promising results in a variety of computer vision tasks, such as
segmentation, classification, and object detection [8–10]. These methods consist of convo-
lutional layers that are able to extract features from low-level local features to high-level
global features from input images in a data-driven way. Therefore, the medical imaging
research community has shifted their interest toward DL-based methods for designing
computer-aided cancer detection and diagnosis (CAD) tools. CAD algorithms can be asso-
ciated with two main tasks in PCa: (a) lesion classification, i.e., Computer-Aided Diagnosis
(CADx), pathological characterisation of an already known lesion; (b) lesion detection,
i.e., Computer-Aided Detection (CADe). The first group includes algorithms that classify
manually annotated regions, such as lesion segmentations. The second group includes
algorithms that detect and localise PCa lesions and provide the user with probability maps,
segmentations, and/or bounding boxes as output.

In their review, Twilt et al. [11] pointed out that from 59 studies, 66% of the articles
described lesion classification algorithms while the remaining 34% described lesion detec-
tion algorithms. Out of the included studies, 17% described a two-class lesion classification
task using a DL approach, with most focusing solely on the algorithm’s stand-alone perfor-
mance rather than investigating the influence of CADx in a prospective clinical workflow.
Among the included DL studies, cohort sizes ranged from 18 to 499 patients (median = 278).
Only a limited number of studies involved multi-centric data (16%), whereas the remaining
studies utilised retrospectively collected data from a single center (84%).

Patient-level classification frameworks aim to classify patients as having or not having
PCa [12]. However, integrating region-of-interest (ROI)-based or slice-level results into
patient-level outcomes remains a significant challenge as they usually rely on basic merging
methods such as simple voting [13]. Yoo et al. [14] proposed a CNN-based approach to
detect clinically significant PCa using diffusion-weighted imaging (DWI). Features from
CNN outputs were selected via decision trees and used to train a random forest classifier,
achieving receiver operating characteristic curves (AUCs) of 0.87 (slice-level) and 0.84
(patient-level). The study used a private dataset with 319 patients for training and 108
for testing.

Aldoj et al. [15] proposed a 3D multi-modal CNN architecture that uses lesion center
parameters and different 3D volume combinations, T2-weighted images (T2ws), appar-
ent diffusion coefficient maps (ADCs), and diffusion-weighted images (DWIs), as input
channels to classify clinically significant and insignificant PCa lesions. Their best model
achieved an AUC of 0.91, sensitivity of 0.81, and specificity of 0.91. The study used the
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publicly available PROSTATEx dataset [16] with 175 patients used for model training and
25 patients for testing.

In this paper, we propose a novel multi-encoder-cross-attention 3D convolutional
architecture to predict patient-level presence or absence of PCa by classifying whole MRI
volumes. Our approach addresses the issue of isolated standalone solutions per modality
by integrating multiple modalities into a single model to learn multi-faceted patterns from
combined patient data thereby achieving higher efficiency while improving classification
performance. Additionally, and in order to promote further collaboration, comparison,
and development of task-specific model architectures, we benchmark the performance of
our proposed architectures on 975 unseen retrospective cases and 435 unseen prospective
cases. To the best of our knowledge, this is the first type of work, at such large scale,
seeking to address a pressing real-world clinical scenario: how to stratify men with prostate
hypertrophy or inflammation despite the high PSA values and those who should undergo
additional diagnostic tests (e.g., biopsy) to identify if suspicious findings identified on MRI
are clinically significant . It is to be noted that this research provides relevant clinical insight
on whether prostate cancer is present rather than focusing on the separate task of tumour
localisation within the gland. With definition of tumour extension and localisation being
out of scope for this article, we advocate per-lesion analysis as a subsequent step in our
proposed workflow to address issues such as unilateral or bilateral localisation of tumours
and possibly also extracapsular extension, which are factors that affect the T-stage (primary
tumour staging (T)). The main contributions of this paper are summarised as follows:

• Establishing a new performance benchmark adopting and processing the largest and
most diverse multi-centric PCa MR image database worldwide (6458 retrospective
cases and 436 prospective cases)

• Design and implementation of a classification scheme to distinguish pathologically
confirmed PCa patients from conditions with no suspicious PCa findings from whole
MRI volumes

• Introducing a novel multi-encoder-cross-sequence attention neural network architec-
ture for bpMRI data, enhanced by the integration of clinical variables

• The proposed architecture shows better generalisation performance, AUC of 0.87,
in an out-of-distribution setting compared to radiologists (AUC of 0.76) and other
architectures frequently used in the literature (AUC of 0.80 and 0.84), respectively.

• Thorough fairness analysis to identify potential biases in the modelling process

2. Materials and Methods
2.1. Patient-Level PCa Classification Workflow

We define the patient-level differentiation of suspicious findings from no PCa findings
as a binary classification task. Specifically, while the input of the proposed model is
a whole 3D MRI volume comprising the prostate gland and surrounding tissues, the
output is a discrete label of value either 0 for PCa negative or 1 for PCa positive. Figure 1
shows the complete pipeline of our proposed patient-level classification scheme. It should
be noted that the formulation of our classification task is fundamentally different from
common tasks found in the literature, such as lesion classification, lesion detection [11],
clinically significant prostate cancer detection [17], prediction of PCa aggressiveness [18],
and classification of a segmented ROI [19]. In order to train learning algorithms for these
two groups, manually annotated regions of interest (lesions) are required, while cases
without PCa findings are ignored due to being outside the scope of the required training
data characteristics. Bridging this gap, our networks are optimised in an end-to-end
training framework provided with the information of a patient’s presence/absence of PCa
based on a biopsy-proven ground truth label.
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Figure 1. Pipeline of our proposed patient-level classification scheme to distinguish pathologically
confirmed PCa patients from conditions with no suspicious PCa findings. Individual steps in the
pipeline are indicated by numbers circled in green, which are described in the text. The validation set
was used for hyperparameter tuning and model selection; thus, the best model, determined by the
lowest validation loss, was evaluated on the unseen retrospective and prospective test cohorts.

2.2. Clinical Variables

PSA is a widely used biomarker for PCa detection; however, it can be influenced
by other factors, such as benign prostatic hyperplasia (BPH) or prostatitis. A high PSAD
can suggest cancer more strongly than a high PSA alone, especially in men with larger
prostates [20]. Combining both can potentially improve the model’s ability to distinguish
between cancerous and benign conditions. Additionally, higher PSAD has been associated
with more aggressive prostate cancers [21].

To accurately calculate PSA density, the prostate volume must be precisely determined.
First, we count the total number of voxels representing the prostate tissue, denoted by
Nvoxels. The volume of a single voxel, Vvoxel, is computed from the physical dimensions of
each voxel (dx, dy, dz) provided by the T2w DICOM.

Finally, the prostate volume is used in the denominator with the patient’s PSA level
to calculate the PSA density. To this end, a segmentation of the whole prostate gland was
performed on the ProstateNet dataset using the T2w sequence, utilising the nnU-Net V2
model [22] available through the open-source MONAI framework [23]. The random splits
for training, validation, and test sets were determined by the nnU-Net V2 framework,
comprising 391, 98, and 55 entries, respectively. The performance evaluation, based on
a 5-fold cross-validation on the ProstateNet dataset [24], yielded a mean Dice Similarity
Coefficient (DSC) of 0.9257, with a standard deviation of ±0.0013. According to a recent
systematic review for a whole prostate gland segmentation [25], most deep learning algo-
rithms (39 of 42 [93%]) had a DSC at or above expert level (DSC ≥ 0.86). Thus, our statistics
indicate a high level of accuracy in the segmentation of prostate images, demonstrating
the effectiveness of the model employed in capturing the relevant anatomical structures.
This precise segmentation enables us to accurately estimate PSA density across the entire
dataset. In addition to PSA density, clinical variables, such as age and PSA, are considered
in the study. All variables are normalised to the range [−1, 1] to ensure uniformity and
comparability in the model’s input data. This normalisation is essential for the subsequent
integration of these variables with the feature vectors derived from imaging data.

2.3. Deep Convolutional Networks

All 3D models implemented in this study leverage a VGG backbone architecture [26],
while each bi-parametric volume is resampled into 3.0, 0.5, 0.5 mm spacing, and a central
crop of 32 × 224 × 224 matrix covering the prostate is extracted, as shown in steps 1 and 2
in Figure 1. Importantly, all sequences in the dataset are individually normalised to values
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between 0 and 1 using a patient-level min-max normalisation strategy. This normalisation
is executed by subtracting the minimum pixel intensity value from each voxel and dividing
by the range of the pixel intensities within each individual image.

2.3.1. 3-Channel Architecture

The standard 3D CNN VGG architecture was modified to process MRI volumes by
stacking T2w, DWI-high-b-value, and ADC sequences into the three input channels. These
channels were originally configured for RGB colour data in traditional image processing
applications, as depicted in Figure 2a. The encoder is designed with multiple stages, each
containing an increasing number of feature maps ([64, 128, 256, 512]) and blocks per stage
([1, 2, 3, 4]). Each stage involves convolutions, batch normalisation (BN), ReLU activations,
and includes a dropout rate of 0.5, followed by adaptive pooling (GlobalMaxAvgPool) that
combines features through max and average pooling to produce a 512-dimensional feature
vector. This vector concatenated with clinical variables is subsequently processed by a
linear layer to generate a one-dimensional prediction.

T2w DWI ADC

Conv. Base

Classifier
PSADAgePSA

calculated

PredictionTrainable LayerClinical Variable

Conv. Base

Classifier

Conv. Base Conv. Base

T2w DWI ADC

PSADAgePSA

calculated

PredictionTrainable LayerClinical Variable

Sequence 1 Sequence 2 Sequence 3

(a) (b)

Figure 2. The two baseline 3D architectures implemented for this study, in accordance with other
works in the literature [14]. The ‘3-Channel’ network modifies a 3D CNN architecture to process MRI
volumes as channel-wise concatenated inputs. For our ‘Multi-Encoder-Fusion’ networks, we propose
an early fusion (feature-level fusion) strategy of the latent representations retrieved from the 3D CNN
encoders. (a) 3-Channel network. (b) Multi-Encoder (ME) Fusion network.

2.3.2. Multi-Encoder-Fusion Architecture

The multi-encoder-fusion architecture leverages an early fusion strategy. Early fusion
refers to combining different modalities at the input level and raw data can be fused directly
without any pre-processing. In this architecture, the three different input sequences (xi,
xj, xk) are passed through separate encoders to extract their respective 512-dimensional
feature vectors (hi, hj, hk). These vectors are then concatenated along with clinical variables,
forming a 1539-dimensional representation of all inputs h, which is subsequently fed into a
classifier as depicted by Figure 2b. This approach ensures an efficient feature integration
while maintaining the model’s capacity to capture MRI sequence-specific nuances.

2.3.3. Multi-Encoder-Cross-Attention-Fusion Architecture

PCa commonly manifests as hypointense areas (lower signal intensity compared to
surrounding normal tissue) on T2W, and as hyperintense areas (higher signal intensity
compared to surrounding normal tissue) on DWI with high diffusion weighting (b-values).
In addition, these lesions typically show low ADC values on the corresponding maps. Thus,
these modality-specific visual correlations between MRI sequences serve as the intuition
behind our proposed cross-attention fusion mechanism. The core idea of our proposed
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architecture is to enrich the feature representations of each input sequence (xi, xj, xk) by
incorporating information from the other sequences in a meaningful and efficient way.
To achieve this, we introduce a novel cross-sequence attention mechanism specifically
designed for the task at hand, as illustrated in Figure 3.
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Figure 3. Our proposed multi-encoder-cross-attention-fusion architecture is specifically designed
to enrich the feature representations of each MRI sequence by incorporating information from the
other MRI sequences. The cross-attention module is depicted as a generic representation, making it
applicable to any number of attention heads.

Our proposed cross-modality fusion mechanism combines two separate modules:
self-attention and cross-attention to learn accurate latent representations per-feature (self-
attention), per-modality (head k to head k + 1 feature concatenation), and cross-modality
(cross-attention) representation, as seen in Figure 4. It takes as input a set of extracted
feature vectors {hi, hj, hk}, each of dimension Rd. The output consists of three “attended”
vectors {ĥi, ĥj, ĥk}, still in Rd. Each feature vector, extracted from the convolutional base hi,
acts as the query for one of the attention heads, while the keys and values are derived from
all feature vectors {hi, hj, hk}. Additionally, the mechanism includes a cascading step where
the result of each attention head is added back into the input feature for the next head,
allowing iterative refinement across heads. For each feature vector hi ∈ Rd corresponding
to sequence i ∈ {1, 2, 3}, we first apply a linear transformation to obtain the query vector:

Qi = hiW
Q
i ,

where WQ
i ∈ Rd×d is a learnable parameter, keeping Qi ∈ Rd. Similarly, for each

j ∈ {1, 2, 3}, we compute the keys and values:

Kj = hjWK
j , Vj = hjWV

j ,

with WK
j , WV

j ∈ Rd×d being learnable parameters. Thus, at each step i, the query Qi is
derived from hi alone, while the keys and values are the collection of {K1, K2, K3} and
{V1, V2, V3}, respectively.
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Figure 4. Our proposed cross-modality fusion mechanism combines two separate modules: self-attention
and cross-attention to learn accurate latent representations per-feature (self-attention), per-modality
(head k to head k + 1 feature concatenation), and cross-modality (cross-attention) representation.

Our module employs H = 2 attention heads. We split the transformed queries, keys,
and values into H sub-vectors each of dimension dh = d

H . For each head h ∈ {1, . . . , H},
the transformations are as follows:

Qi ∈ Rd −→
[
Q1

i , Q2
i , . . . , QH

i

]
,

Kj ∈ Rd −→
[
K1

j , K2
j , . . . , KH

j

]
,

Vj ∈ Rd −→
[
V1

j , V2
j , . . . , VH

j

]
.

For a given head h when sequence i serves as the query source, the attention scores
are computed by comparing Qh

i to all keys {Kh
1, Kh

2, Kh
3}. Specifically, we calculate the

unnormalised attention score from query i to key j as follows:

αh
i→j =

(Qh
i ) · (Kh

j )
⊤

√
dh

,

where αh
i→j represents the attention score. Applying the softmax function over j ∈ {1, 2, 3}

yields the attention probabilities:

AttnProbh
i→j =

exp(αh
i→j)

∑3
m=1 exp(αh

i→m)
.

The output of each head is then a weighted sum of the corresponding values:

HeadOutputh
i =

3

∑
j=1

AttnProbh
i→j Vh

j .
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After computing the outputs for all heads, we concatenate them along the feature dimension:

ConcatOutputi =
H⊕

h=1

HeadOutputh
i ∈ Rd,

where ⊕ denotes concatenation.

2.4. Experimental Setting

All networks were trained using the Adam optimiser [27] with a learning rate of
3 × 10−5 including L1 and L2 regularisation strategies, assigning them a value of 3 × 10−5.
Data augmentation is applied, including random flip and rotation. During training, gradi-
ent descent optimises the network weights according to the error calculated by the binary
cross-entropy loss function. After each training epoch, the model performance on the
validation set was assessed by the AUC.

Model testing was carried out in the previously unseen test cohorts using the best
performing model on the validation set. The experiments were conducted on a workstation
featuring an Intel®Core™ i9-10940X @ 3.30 GHz processor, an NVIDIA GeForce RTX 3090
GPU and with 24 GB of RAM, running a 64-bit operating system. PyTorch 2.0.1 was used
during the experiments, written in Python 3.9.

2.5. Prostate MRI Dataset

Data are obtained from the ProstateNET Imaging Archive [24]. The platform hosts
the largest collection of anonymised PCa multi-parametric (mp) MRI imaging data, in line
with European data protection legislation (GDPR). The archive contains imaging data from
13 different clinical centers, 3 scanner manufacturers, and 27 scanner models, making it the
largest and most diverse PCa MR image dataset worldwide so far. A total of 6458 retrospec-
tive bi-parametric prostate MRI examinations are included in this study. They were split
into 70% training set (4504 exams), 15% validation set (979 exams), and 15% test set (975
exams). The ratio between the PCa-positive examinations and PCa-negative examinations
were kept roughly similar throughout all subsets, as seen in Figure 5b. Furthermore, 436
bi-parametric prostate MRI examinations from the prospective cohort of ProstateNET are
included as an additional hold-out test set (Figure 5a).

Patients who underwent
bi-parametric MRI

(n=8203)

Excluded (n=1745)
•  Endorectal coil

 •  Fat suppressed
•  Image quality/artifacts

Final study population
(n=6458)

Training cohort
(n=5483)

Training
(n=4504)

Validation
(n=979)

Test
cohort

(n=975)

Prospective
Test cohort

(n=436)

val

train

test

prospective
test

1755 (38.97%)
2749 (61.03%)

377 (38.51%)
602 (61.49%)

377 (38.67%)
598 (61.33%)

192 (44.04%)
244 (55.96%)

(a) (b)

Figure 5. Patient selection process for training, validation, test, and retrospective test sets. (a) Flow
diagram of the study design. (b) Number of patients with and without PCa.
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3. Experimental Results
3.1. Evaluation Metrics

The assessment of the models was conducted using two hold-out test sets, as seen
in Figure 5a. For each test set, the sensitivity, specificity, positive predicted value (PPV),
and negative predicted value (NPV) were calculated based on the recorded true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN) of each class. In
addition, from the predicted probabilities, we computed the Area Under the Receiver
Operating Characteristic (AUROC). The ROC curve plots the True Positive Rate against
the False Positive rate. The AUROC of a random classifier is 0.5, and a perfect classifier
has an AUROC of 1. Sensitivity, or the true positive rate, quantifies how well a model
identifies true positives. Sensitivity measures the proportion of subjects with an actual
positive outcome who are correctly given a positive prediction by the DL model (suspicious
findings). Specificity, or the TN rate, quantifies how well a model identifies true negatives.
Specificity measures the proportion of subjects with an actual negative outcome who are
correctly given a negative prediction by the DL model (non-suspicious PCa findings).
Finally, confidence intervals (CI) play an important role in deep learning that help us
in finding the uncertainty in model predictions and parameter estimates. A confidence
interval (CI) is a range of values that likely contains the true population parameter, such as
the mean or proportion based on a sample. A 95% confidence interval of [0.88–0.91] for the
MECA-Fusion model accuracy in Table 1 means that if we repeated the process multiple
times, about 95% of the intervals would contain the true accuracy. This helps us assess
model reliability and make informed decisions.

Table 1. Patient-level classification performance on the ProstateNET’s retrospective test cohort. bold
highilights the best performing model.

Model AUC (95% CI) Sensitivity Specificity PPV NPV

radiologists 0.82 0.83 0.71 81.95% 72.48%
3-Channel 0.82 (0.78–0.84) 0.85 0.62 78.01% 72.27%

3-Channel+clinical 0.85 (0.82–0.87) 0.89 0.62 78.79% 78.04%
ME-Fusion 0.85 (0.83–0.87) 0.81 0.74 83.17% 71.06%

ME-Fusion+clinical 0.87 (0.84–0.89) 0.86 0.69 81.48% 75.65%
MECA-Fusion 0.86 (0.84–0.89) 0.86 0.7 81.97% 75.92%

MECA-Fusion+clinical 0.90 (0.88–0.91) 0.91 0.72 83.75% 83.46%

Although sensitivity and specificity are highly relevant statistical parameters for
assessing the performance of a diagnostic test, in real-world practice, it is often more
meaningful to predict whether a particular patient will truly have the disease based on a
positive or a negative prediction made by the DL model. To this end, PPV and NPV reflect
the proportion of positive and negative results that are TP and TN, respectively. In other
words, PPV answers the question, ‘if I have a positive DL prediction, what is the probability
that I actually have the disease?’. Conversely, NPV answers the question, ‘if I have a
negative DL prediction, what is the probability that I actually do not have the disease?’.
PPV and NPV depend on the pre-test probability, which is determined by baseline risk
factors, such as disease prevalence [28], and can be computed as follows:

PPV =
Sensitivity × Prevalence

Sensitivity × Prevalence + (1 − Speci f icity)× (1 − Prevalence)
(1)

NPV =
Speci f icity × (1 − Prevalence)

(1 − Sensitivity)× Prevalence + Speci f icity × (1 − Prevalence)
(2)
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3.2. Results

The performance of our architecture, equipped with the proposed cross-modality
fusion mechanism was thoroughly evaluated against the two baseline architectures (‘3-
Channel’ and ‘Multi-Encoder-Fusion’) across two distinct cohorts from ProstateNET, as
seen in Figure 6. This evaluation not only assesses the accuracy of the three different models,
but also its clinical applicability in distinguishing between cancerous and non-cancerous
prostate MRI scans compared to radiologists.

In the retrospective test cohort, our proposed architecture, ‘Multi-Encoder-Cross-
Attention-Fusion (MECA-Fusion)’, together with clinical variables, achieved the highest
AUC with 0.90 (95% Confidence Interval (CI): 0.88–0.91) at patient level, as seen in Figure 6a.
Our proposed architecture also achieves the highest sensitivity among all models with 0.91.
Even without the use of clinical variables, our proposed method constantly outperforms
the two baseline methods in terms of AUC, sensitivity, PPV, and NPV, as seen in Table 1.
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Figure 6. Receiver operating characteristic (ROC) curves of the deep learning models making
independent predictions on the two different hold-out test sets. (a) Retrospective holdout test set.
(b) Prospective holdout test set.

The prospective test cohort presented a different challenge, as seen in Table 2. Our
proposed architectures continues to outperform the ‘3-Channel’ and ‘Multi-Encoder-Fusion’
architectures in terms of AUC, sensitivity, PPV, and NPV, as seen in Figure 6b. This illus-
trates our model’s robustness and applicability to varying disease prevalence. Furthermore,
the highest PPV for this cohort indicates the ability of our proposed model to reduce
FP effectively.

Table 2. Patient-level classification performance on the ProstateNET’s prospective test cohort.

Model AUC (95% CI) Sensitivity Specificity PPV NPV

radiologists 0.76 0.87 0.65 73.15% 82.02%
3-Channel 0.71 (0.66–0.75) 0.71 0.53 62.34% 62.51%

3-Channel+clinical 0.80 (0.76–0.84) 0.78 0.67 72.15% 73.54%
ME-Fusion 0.80 (0.75–0.84) 0.75 0.71 73.92% 72.15%

ME-Fusion+clinical 0.84 (0.80–0.87) 0.78 0.77 78.80% 76.15%
MECA-Fusion 0.83 (0.78–0.86) 0.80 0.73 76.46% 76.91%

MECA-Fusion+clinical 0.87 (0.83–0.90) 0.86 0.75 79.04% 83.02%

3.3. Statistical Analysis

The results of the DeLong statistical tests [29] across both retrospective and prospective
cohorts highlight the superiority of our proposed architecture. Specifically for the retrospec-
tive cohort, our model demonstrated significant performance gains over the baseline model
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with stacked channels in the absence of clinical data (p = 0.005) and remained superior when
clinical data were incorporated (p = 0.001). While our proposed model outperformed the
fusion model without clinical data, the difference was not statistically significant (p = 0.058).
However, when clinical data were added, our proposed model significantly exceeded the
performance of the fusion model (p = 0.00004). Furthermore, integrating clinical data led
to significant improvements for each model variant, including the baseline model with
stacked channels (p = 0.0009), the baseline multi-encoder-fusion model (p = 0.036), and our
proposed model (p = 0.03), underlining the importance of clinical information.

In the prospective cohort, our proposed model continues to outperform the baseline
model with stacked channels both without (p = 0.001) and with (p = 0.01) clinical data.
A notable advantage was also observed when comparing the proposed model to the
baseline multi-encoder-fusion model without (p = 0.03) and with (p = 0.005) clinical data,
indicating consistent gains across different fusion strategies. Similar to the retrospective
cohort, adding clinical data significantly improved performance for all model variants,
including the baseline model with stacked channels (p = 0.0036) and baseline multi-encoder-
fusion model (p = 0.005). Importantly, our proposed model benefited significantly from
the inclusion of clinical data (p = 0.005), highlighting its capacity to integrate imaging and
clinical features more efficiently.

3.4. Fairness and Sub-Cohort Analysis

Different DL architectures tend to perform unevenly based on varying forms and
levels of stratification. Analyzing this is crucial for identifying potential biases in the
modelling process. Additionally by understanding for which sub-cohorts different models
perform better, it is possible to better define real world scenarios where they can be applied
effectively. In this section, different stratifying variables—PSA, age, dataset provider,
magnetic field, and manufacturer—are analysed for all three DL models. The results for
the retrospective and prospective hold-out test sets are displayed in Figures 7 and 8 and
Appendix A, respectively.

3.4.1. PSA

In this study, we assess the performance of our models across different PSA subgroups,
categorising them according to the D’Amico risk criteria. This approach divided the groups
into three classes: [0 ng/mL–10 ng/mL), [10 ng/mL–20 ng/mL], and >20 ng/mL. For the
retrospective cohort utilising both imaging and clinical data, the MECA-Fusion model demon-
strated significant superiority in the [0 ng/mL–10 ng/mL) PSA category compared to the other
models, with a p-value < 0.001. In the [10–20] category, the MECA-Fusion model also showed
significant improvements, with p-values < 0.0001 against the 3-Channel model and <0.01
against the ME-Fusion model. However, in the >20 ng/mL PSA category, the MECA-Fusion
model did not achieve statistical significance, and the AUCs for the other models were notably
higher. When only imaging data were considered, the MECA-Fusion model retained its
significance in the same PSA categories except for the [0 ng/mL–10 ng/mL) category, where
it did not show statistical significance against the ME-Fusion model.

For the prospective cohort analysis, incorporating imaging and clinical data (Figure A2c)
revealed that the MECA-Fusion model was significant in the [0 ng/mL–10 ng/mL) cate-
gory with a p-value < 0.05 and in the [10 ng/mL–20 ng/mL] category only against the
3-Channel model with a p-value < 0.05. The model maintained a higher AUC compared to
the ME-Fusion model, although this was not statistically significant. In the >20 category, the
MECA-Fusion model showed higher AUCs compared to the retrospective cohort, though
it did not reach statistical significance. With only imaging data, the MECA-Fusion model
in the [0 ng/mL–10 ng/mL) category was significantly better than both the 3-Channel and
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ME-Fusion models, with p-values < 0.0001 and <0.05, respectively. It also showed significance
in the [10 ng/mL–20 ng/mL] category against the 3-Channel model with a p-value < 0.05. In-
terestingly, excluding clinical data appeared to reduce the MECA-Fusion model’s performance,
especially evident as it yielded a lower AUC compared to the ME-Fusion model.

(a) Magnetic field strength groups

(b) Manufacturer groups

(c) Data provider groups.

Figure 7. Fairness analysis for sub-cohorts stratified by (a) magnetic field strength, (b) manufacturer,
and (c) data provider. Point-and-range plots show model performance (mean and 95% CI), with
colored vertical lines indicating expected performance on the retrospective test set. Horizontal bar
plots display target and stratum counts. Asterisks (*) denote statistical significance compared to other
models, with *** (p ≤ 0.001), ** (p ≤ 0.01), and * (p ≤ 0.05). If no ‘|’ appears, significance is relative
to the 3-channel model; if ‘|’ is present, it applies to both compared models.

Further subdividing the PSA criteria into a more granular four-class system that
includes a lower risk category of <4 ng/mL, the retrospective analysis with both imaging
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and clinical data showed (Figure 8a) that the MECA-Fusion model was significantly better
in the lowest risk category (<4) with a p-value < 0.05 compared to the ME-Fusion model.
In the [4 ng/mL–10 ng/mL) category, the MECA-Fusion model continued to demonstrate
statistical significance, with p-values < 0.001 against the 3-Channel and <0.01 against
the ME-Fusion model. The removal of clinical data had a detrimental effect, rendering
the MECA-Fusion model non-significant in the lowest risk category and only significant
against the 3-Channel model in the [4 ng/mL–10 ng/mL) category with a p-value < 0.01.
Prospectively, with the inclusion of both imaging and clinical data (Figure A3a), the MECA
model was only significant in the [4 ng/mL–10 ng/mL) category with a p-value < 0.01.
When clinical data were removed, the model performed significantly better in the lower
risk category with a p-value < 0.05 against the 3-Channel model and retained better AUC
and significance in the [4 ng/mL–10 ng/mL) category with a p-value < 0.001.

(a) PSA groups

(b) Cumulative Age groups

Figure 8. Fairness analysis for sub-cohorts stratified by (a) PSA and (b) age. Point-and-range plots
show model performance (mean and 95% CI) with vertical lines indicating expected performance
on the retrospective test set. Horizontal bar plots display target and stratum counts. Asterisks (*)
denote statistical significance, with **** (p ≤ 0.0001), *** (p ≤ 0.001), ** (p ≤ 0.01), and * (p ≤ 0.05).
If no ‘|’ is shown, significance is relative to the 3-channel model; if ‘|’ appears, it applies to both
compared models.
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This comprehensive analysis underscores that including clinical data may not always
enhance the performance of the MECA model across all PSA subgroups, particularly in
certain lower risk categories. This indicates a complex relationship between clinical data
and how well the model works, emphasising the importance of customising approaches
based on PSA levels and the specific data at hand.

3.4.2. Age

Performance of the models was assessed for different groups of patients stratified by
age according to the following criteria:

• Patients who are less likely to undergo surgery (age group > 75), due to their health
status and life expectancy, compared to men with ⩽75 years

• Men candidates for prostate cancer screening programs, according to urology guide-
lines, i.e., aged 55–65 years, compared to the other age groups, i.e., <55 or >65 years

• Increasing age groups (i.e., >45 vs. >55 vs. >65 vs. >75) to identify possible trends of
the models performance on specific dichotomised patients groups

• Increasing age groups, classified as young (45–55), middle age (55–65), and older
(65–75) patients

Across all four stratified groups (retrospective vs. prospective, with and without
clinical data), the proposed MECA-Fusion model consistently achieves the highest AUC in
both subcohorts.

Patients who are less likely to undergo surgery. In the retrospective setting that
combines imaging and clinical data, MECA-Fusion shows statistically significant improve-
ments over both the baseline 3-Channel and ME-Fusion models with p < 0.0001. A similar
pattern emerges in the retrospective imaging-only plot, where MECA-Fusion again outper-
forms the other approaches—particularly in the ≤75 subgroup, with p < 0.05 or p < 0.001.
Moving to the prospective setting, the MECA-Fusion model continues to dominate in the
imaging + clinical data plot, evident by the significance markers when comparing it against
3-Channel and ME-Fusion (p < 0.01). Even in the prospective imaging-only scenario (Fig-
ure A3c), where overall margins are tighter, MECA-Fusion frequently retains a significant
edge. These plots underline that the MECA-Fusion architecture not only benefits from
integrating clinical data (where it tends to show greater gains) but also exhibits robust
performance advantages in imaging-based workflows, specifically for patient who might
undergo surgery.

Screening Candidate Groups (<55 years; 55–65 years; >65 years). Across all three
age subgroups (<55, 55–65, and >65), the MECA-Fusion architecture demonstrates the
highest AUC in both retrospective and prospective settings, whether clinical features
are included or not. In the retrospective imaging-plus-clinical-data plots, one observes
the significance of the cross-attention mechanism, underscoring its superiority over both
models in key subgroups—particularly in the middle (55–65) range, but also for those <55
and >65 (p < 0.05; p < 0.01; p < 0.01; p <0.0001). Similar patterns emerge in the retrospective
imaging-only scenario, although in the <55 cohort the performance is significantly dropped.
Meanwhile, in the prospective analysis (Figure A3b), the MECA-Fusion model again
achieves consistently higher AUCs and maintains significance against 3-Channel and
ME-Fusion in multiple subgroups, reinforcing its robustness when faced with out-of-
distribution data. Particularly low p-values (p ≤ 0.0001) indicate simultaneous significance
comparisons (first vs. 3-Channel, second vs. ME-Fusion). Taken together, these plots
illustrate that MECA-Fusion confers meaningful performance gains across a range of ages,
when clinical variables are incorporated.

Cumulative Age Groups (>75 years vs. >65 years vs. >55 years vs. >45 years). In our
analysis, we stratified patient age into four categories: >75, >65, >55, and >45 years, to assess
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our models across these diverse age subgroups. In the retrospective cohort incorporating
imaging and clinical data, the MECA model demonstrated statistical superiority against the
3-Channel model across all age groups, and notably outperformed the ME-Fusion model in
the >55 and >45 categories, as seen in Figure 8b. This highlights MECA-Fusion’s robust
performance, particularly as younger age subgroups were included. When examining
imaging data alone, MECA-Fusion maintained its advantage in the >75 category but lost
statistical significance and showed a lower AUC compared to the ME-Fusion model. This
suggests that the omission of clinical data notably decreases its effectiveness, especially in
older age groups. In the prospective dataset, with both imaging and clinical data included,
MECA-Fusion excelled in the younger age groups (>45 and >55), demonstrating significant
improvements over both baseline models with p-values < 0.01. However, in the >65 group,
it only surpassed the 3-Channel model, and in the >75 category, it did not achieve statistical
significance. Focusing on imaging data alone in the prospective analysis, MECA-Fusion
continued to outperform the 3-Channel model across nearly all age groups (Figure A2a). It
did, however, lose its edge against the ME-Fusion model in the >55 group, suggesting that
the exclusion of clinical data specifically undermines performance in this age cohort.

Distinct Age Sub Groups ([45–55), [55–65], (65–75]). We analysed model performance
across three distinct age subgroups: [45–55), [55–65], and (65–75]. Within the retrospective
cohort that included imaging and clinical data, the MECA-Fusion model consistently out-
performed the 3-Channel model in all age groups, achieving significance with p-values of
<0.05, <0.05, and <0.001, respectively. Notably, it also significantly surpassed the ME-Fusion
model in the [55-65] age group with a p-value of <0.01. When evaluating the retrospective
cohort using only imaging data, the pattern generally held; however, the MECA model’s
performance notably declined in the [45–55) group, where it failed to reach statistical signif-
icance and exhibited a substantial 7% drop in AUC. In the prospective cohort incorporating
both imaging and clinical data (Figure A1c), MECA demonstrated significant improve-
ments specifically in the [55–65] age group compared to both comparator models, with a
p-value of <0.05. Interestingly, when clinical data were excluded, MECA remained superior
against the 3-Channel model across all age subgroups and was particularly significant in
the youngest group, [45–55), with a p-value of <0.05. This suggests that the exclusion of
clinical data may enhance MECA’s performance in certain demographic segments.

3.4.3. Dataset Provider

In a detailed examination across various data providers, the performance of the
MECA-Fusion model is compared to the two baseline models, as seen in Figure 7c. For the
retrospective hold-out test set incorporating both imaging and clinical data, the MECA-
Fusion model showed prominent performance. For data coming from the RMH center, it
achieved statistical significance against the 3-Channel model with a p-value < 0.01 and was
marginally significant compared to the ME-Fusion model with a p-value of 0.052. At other
centers, such as RadboudUMC, NCI, and FChampalimaud, the model was statistically
significant compared to the 3-Channel model with p-values < 0.05, demonstrating its
effectiveness in these environments. However, in other centers, while the MECA-Fusion
model showed higher AUC scores, it did not reach statistical significance. When only
imaging data were considered, the MECA-Fusion model for the RMH center became
significant against the ME-Fusion model with a p-value < 0.05 and maintained significant
improvements for the RadboudUMC data with a p-value shifting from <0.05 to <0.0001.
Interestingly, the inclusion of clinical data appeared to hinder the MECA-Fusion model
compared to the ME-Fusion model at FChampalimaud, suggesting a possible interaction
effect between model performance and clinical variables at this site. Centers like JCC,
IDIBGI, and FPO are short of cases to conduct a valid statistical analysis.



J. Imaging 2025, 11, 98 16 of 24

For the prospective hold out test set, with both imaging and clinical data (Figure A2b),
the MECA-Fusion model demonstrated statistical significance for the Quironsalud and JCC
centers against the 3-Channel model with p-values < 0.05. However, when only imaging
data are considered, the significance for the Quironsalud center was not maintained, but it
continued to show significant improvement for the JCC center. Again, centers like FPO and
UNIPI lacked sufficient data to conduct a valid statistical analysis.

3.4.4. Magnetic Field

In an extensive evaluation focusing on bias and domain adaptation across different
magnetic field strengths of MRI scanners, our MECA-Fusion model demonstrated varying
levels of performance, dependent on both types of data (clinical and imaging versus solely
imaging) and the retrospective or prospective cohorts.

For the retrospective cohort, when incorporating both imaging and clinical data, the
MECA-Fusion model exhibited statistically significant improvements at both 1.5 tesla
(p < 0.001) and 3 tesla (p < 0.001 compared to the 3-Channel model and p < 0.05 compared
to the ME-Fusion model), as seen in Figure 7a. When only imaging data were considered,
the performance of the MECA-Fusion model at 3 tesla remained significantly better than
the 3-Channel model (p < 0.0001), although it did not show significant differences when
compared to the ME-Fusion model. At 1.5 tesla with only imaging data, the MECA-Fusion
model did not achieve statistical significance compared to the other models, yet it recorded
a higher AUC.

For the prospective cohort analysis using both imaging and clinical data (Figure A1a),
the performance of the MECA-Fusion model was significantly better compared to the
3-Channel model at both 1.5 and 3 tesla (p < 0.05). The performance was nearly significant
when compared to the ME-Fusion model, with p-values closely approaching the threshold
of significance (p = 0.054 and p = 0.056, respectively). However, when only imaging
data were assessed, the MECA model showed statistical significance at 3 tesla against the
3-Channel model (p < 0.05) but did not demonstrate statistical significance at 1.5 tesla.

These findings underline that our proposed MECA-Fusion model has the capacity
to adapt across different domains, particularly highlighting its robustness and superior
performance in settings with varying magnetic field strengths.

3.4.5. Manufacturer

Examining the performance across different MRI scanner manufacturers in the ret-
rospective cohort using both imaging and clinical data, the MECA-Fusion model demon-
strated significant improvements over the baseline models, 3-Channel and ME-Fusion,
particularly on Siemens equipment, where it achieved p-values of less than 0.001 and
0.01 respectively. On Philips scanners, it also showcased significant superiority, achieving
p-values of less than 0.01 against the 3-Channel and less than 0.05 against the ME-Fusion.
Meanwhile, on GE equipment, the MECA-Fusion model was statistically significantly
better than the 3-Channel model (p < 0.05) and approached significance against the ME-
Fusion model (p = 0.055), as seen in Figure 7b. When imaging data only are considered,
the MECA-Fsuion model maintained its significant performance on Siemens against both
baseline models and exhibited higher AUC values on Philips and GE, though it did not
reach statistical significance.

The prospective cohort analysis further confirmed these findings, with the MECA-
Fusion model showing significant performance improvements on Siemens and Philips
when integrating both imaging and clinical data (Figure A1b), with p-values less than
0.05. Interestingly, including clinical data enhanced the performance of the MECA-Fusion
model, particularly on Siemens and Philips, where it remained statistically significant,
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(from p-value < 0.0001 to p-value < 0.05) when compared solely against the 3-Channel
model. This observation suggests that the inclusion of clinical variables not only increases
the efficacy of the MECA-Fusion model, but also moderately enhances the comparative
performance against the baseline models.

4. Discussion
In the overall assessment of the model’s effectiveness across the entire ProstateNET

dataset, the proposed Multi-Encoder-Cross-Attention-Fusion model demonstrated high
performance across both retrospective and prospective test cohorts. In the retrospective
cohort, MECA-Fusion with clinical data achieved the highest AUC (0.90), sensitivity (0.91),
PPV of 83.75% and NPV of 83.46%, surpassing other models and radiologists’ assessments.
Similarly, in the prospective cohort, MECA-Fusion with clinical data led with an AUC of
0.87, sensitivity (0.86), PPV of 79.04% and NPV of 83.02%. Statistical analysis using the
DeLong tests confirmed the significant superiority of the MECA-Fusion model over the
two baseline models for both cohorts. In the retrospective cohort, our proposed model
showed significant improvements over both the ‘3-Channel’ and ‘Multi-Encoder-Fusion’
models, especially when clinical data were included. Notably, the inclusion of clinical
data consistently enhanced the performance across all model variations, justifying the
value of integrating clinical information. Similarly, in the prospective cohort, the MECA-
Fusion model consistently outperformed both baseline models. These findings highlight
the model’s robust capability to leverage both imaging and clinical data for improved diag-
nostic performance. These findings highlight our proposed model’s ability to generalize to
out-of-distribution data with a significantly reduced need for expert annotated data from
the new clinical setting.

4.1. Value of Clinical Data

We can see that clinical data largely enhance the performance of the DL models.
However, for the MECA-Fusion model, the inclusion of clinical data does not consistently
improve outcomes across all PSA subgroups. Specifically, in the highest PSA category (>20),
the inclusion of clinical data does not result in statistical significance, suggesting that in
cases with higher PSA levels, clinical data might not complement the model. Similarly, in
the lowest PSA risk category (<4), an in-depth view in the prospective cohort without the
use of clinical data shows that the model’s performance increases significantly, highlighting
that clinical data can undermine performance for specific categories. A similar pattern is
observed in the dataset-provider analysis. For the RMH data provider, the MECA-Fusion
model performed better when using imaging data only. Including clinical data there seems
to slightly degrade the performance relative to the ME-Fusion model.

4.2. Critical Cases

The MECA-Fusion model exhibits robust performance across different age groups,
especially in cohorts where it tends to show statistically significant improvements over other
models. In sub-cohorts divided by manufacturer and magnetic field strengths, the MECA-
Fusion model generally performs better with clinical data, notably achieving significant
results on Siemens and Philips machines, indicating its adaptability to varying vendors.

The performance of the MECA-Fusion model is notably higher in younger patients
across different stratifications. The model achieves significant AUC values and statistical
significance in these groups, indicating its utility in screening and early detection scenarios
where younger patient populations are involved.

Out-of-distribution data are crucial for evaluating the generalisation ability of DL
models. Our MECA-Fusion model demonstrates promising results, by retaining high AUC
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values and showing statistical significance in younger age categories and specific PSA
groups when clinical data are included. This signifies that the MECA-Fusion model can
adapt and perform well on out-of-distribution data, a prerequisite for deployment in real
world situations.

4.3. Design Choices and the Role of the Cross-Modality Fusion Mechanism

In Section 2.3.3, we note that PCa typically appears as a hypointense region on T2-
weighted images, a hyperintense region on high b-value DWI, and an area of low values
on the corresponding ADC maps. These distinct appearances motivated the introduction
of our proposed cross-attention mechanism to leverage the complementary features from
each sequence.

Our initial approach employed a single encoder shared by T2w, DWI, and ADC
inputs. Although this configuration already outperformed the 3-Channel baseline, it did
not yield substantial gains for either the Multi-Encoder (ME) Fusion or the MECA-Fusion
variants. To address this limitation, we incorporated three separate encoders—one for each
sequence—so that each network branch could learn more sequence-specific representations.
Coupled with the cross-attention mechanism, this multi-encoder strategy led to significantly
improved performance, particularly in the ME-Fusion and MECA-Fusion models.

Notably, ME-Fusion alone often achieved results comparable to those of the MECA-
Fusion model, indicating the effectiveness of specialised encoders in capturing the hetero-
geneity of PCa representation. Nonetheless, both ME-Fusion and MECA-Fusion consis-
tently outperformed any single-encoder architecture, underscoring the value of combining
sequence-specific feature extraction with cross-attention for robust diagnostic accuracy.

5. Conclusions
In this study, we introduced a novel multi-encoder-cross-attention 3D architecture

for assessing PCa presence in whole bi-parametric MRI volumes. With an architecture
specifically designed to exploit complementary features and the ProstateNET Imaging
Archive, the largest image database worldwide of PCa mpMRI data, we established new
baselines of performances. We evaluate our approach on a large separate prospective
real-world cohort (436 exams), demonstrating that our method can perform better than
standard clinical approaches and remains more robust to MRI bias field artifacts. Finally, a
thorough analysis on fairness for different sub-cohorts was conducted.
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Appendix C. Fairness Analysis

(a) Magnetic field strength

(b) Manufacturer

(c) Performance in Distinct Age Sub-groups

Figure A1. Fairness analysis for sub-cohorts stratified by (a) magnetic field strength, (b) manufacturer,
and (c) distinct age groups. Point-and-range plots show model performance (mean and 95% CI)
with vertical lines indicating expected performance on the test set. Asterisks (*) indicate statistical
significance compared to other models at p ≤ 0.05. If no ‘|’ symbol is shown, significance is relative
to the 3-channel model; if ‘|’ is present, it applies to both compared models.
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(a) Cumulative Age Sub-groups

(b) Data Provider

(c) PSA D’Amico Criteria with 3 Sub-groups

Figure A2. Fairnessanalysis for sub-cohorts stratified by (a) cumulative age groups, (b) data provider,
and (c) PSA 4 sub-groups.Point-and-range plots show model performance (mean and 95% CI)
with vertical lines indicating expected performance on the test set. Asterisks (*) indicate statistical
significance, with ** (p ≤ 0.01), * (p ≤ 0.05). If no ‘|’ is shown, significance is relative to the 3-channel
model; if ‘|’ is present, it applies to both compared models.



J. Imaging 2025, 11, 98 22 of 24

(a) PSA D’Amico Criteria with 4 Sub-groups

(b) Screening Candidate Age Sub-groups

(c) Patients who might and are less likely to undergo surgery

Figure A3. Fairness analysis for sub-cohorts stratified by (a) PSA 3 sub-groups, (b) screening
candidate groups, and (c) surgical likelihood. Point-and-range plots show model performance (mean
and 95% CI) with vertical lines indicating expected performance on the test set. Horizontal bar plots
display target and stratum counts. Asterisks (*) indicate statistical significance, with ** (p ≤ 0.01)
and * (p ≤ 0.05). If no ‘|’ symbol is shown, significance is relative to the 3-channel model; if a ‘|’ is
present, it applies to both compared models.
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