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Abstract

The PI-CAI (Prostate Imaging: Cancer AI) challenge led to expert-level diagnostic algo-
rithms for clinically significant prostate cancer detection. The algorithms receive bipara-
metric MRI scans as input, which consist of T2-weighted and diffusion-weighted scans.
These scans can be misaligned due to multiple factors in the scanning process. Image
registration can alleviate this issue by predicting the deformation between the sequences.
We investigate the effect of image registration on the diagnostic performance of AI-based
prostate cancer diagnosis. First, the image registration algorithm, developed in MeVisLab,
is analyzed using a dataset with paired lesion annotations. Second, the effect on diagnosis is
evaluated by comparing case-level cancer diagnosis performance between using the original
dataset, rigidly aligned diffusion-weighted scans, or deformably aligned diffusion-weighted
scans. Rigid registration showed no improvement. Deformable registration demonstrated
a substantial improvement in lesion overlap (+10% median Dice score) and a positive yet
non-significant improvement in diagnostic performance (+0.3% AUROC, p=0.18). Our in-
vestigation shows that a substantial improvement in lesion alignment does not directly lead
to a significant improvement in diagnostic performance. Qualitative analysis indicated that
jointly developing image registration methods and diagnostic AI algorithms could enhance
diagnostic accuracy and patient outcomes.
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1. Introduction

Prostate cancer (PCa) has 1.4 million new cases each year (Sung et al., 2021), a high
incidence-to-mortality ratio and risks associated with treatment and biopsy; making non-
invasive diagnosis of clinically significant prostate cancer (csPCa) crucial to reduce both
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overtreatment and unnecessary (confirmatory) biopsies (Stavrinides et al., 2019). MRI
scans provide the best non-invasive diagnosis for prostate cancer (Eldred-Evans et al., 2021),
for which a 47% increase in demand is expected by 2040 (Sung et al., 2021). Due to
the world-wide shortage of diagnostic personnel (Hricak et al., 2021), workload efficiency
optimization is necessary to maintain healthcare accessibility in high-income countries and
improve accessibility in low and middle-income countries.

Computer-aided diagnosis (CAD) can assist radiologists to diagnose csPCa and reduce
the radiology workload (Winkel et al., 2021), but the observed workload reduction is limited.
Larger workload reduction can be achieved through autonomous operation of diagnostic
algorithms. Recent advances resulted in expert-level diagnostic performance for csPCa
detection algorithms using biparmetric MRI (Saha et al., 2023).

Biparametric MRI (bpMRI) consists of T2-weighted (T2W) and diffusion-weighted imag-
ing (DWI), and the DWI is used to calculate the apparent diffusion coefficient (ADC) and
typically also the high b-value (HBV) map. T2W and DWI scans are usually acquired in
immediate succession in about 15-30 minutes, but slight patient movement and processes
like bladder filling can lead to misalignment between sequences (Kovacs et al., 2023). This
misalignment results in lesion image features being misaligned between the sequences. For
an accurate csPCa diagnosis, the information of both sequences are necessary to consider
(Weinreb et al., 2016), meaning that csPCa detection algorithms have to combine infor-
mation from different spatial locations when misalignment occurs. Current state-of-the-art
csPCa algorithms (see Appendix B for more details) use an early fusion strategy for the
combination of the different sequences, which may lead to challenges in accurate lesion
detection and characterization when the lesion image features are not well aligned.

In Appendix F, we discuss in more details why such a misalignment results in incorrect
predictions. To address this, misalignment in the Prostate Imaging – Cancer Artificial
Intelligence (PI-CAI) dataset was manually corrected (85/1000 (8.5%) of the test cases and
54/9107 (0.6%) of training cases), and algorithms were subsequently trained and evaluated
on these manually aligned MRI studies. However, manual alignment is labor-intensive,
potentially undermining the efficiency gains offered by automated csPCa diagnostic methods
when required during inference. Consequently, the efficacy of these algorithms in scenarios
where sequences are not manually aligned remains uncertain and might be limited.

During inference, image registration can address the issue of misaligned sequences, by
providing a plausible estimation of the patient movement and deformation and thus re-
places the manual alignment step. Although the prostate cancer detection research field is
vibrant, there has been limited focus on the registration of prostate MRI sequences. To
address the issue of global misalignment, (Sanyal et al., 2020) proposed an affine registra-
tion approach based on prostate gland segmentation and (De Vente et al., 2020) presented
a rigid registration based on Mutual Information. For compensating local deformations,
both (Pellicer-Valero et al., 2022) and (Netzer et al., 2021), employed the SimpleITK non-
rigid B-Spline registration using Mutual Information. However, the focus of these studies
was not on the evaluation of registration performance, resulting in only (Netzer et al., 2021)
examining this using the Dice Score of automatically generated prostate segmentations. In
contrast, the other studies have assessed registration performance through visual examina-
tion of registered ADC images. To the best of our knowledge, only recently (Kovacs et al.,
2023) explored the impact of image registration on prostate cancer detection performance

2



Deformable MRI Sequence Registration for AI-based Prostate Cancer Diagnosis

AI system
Fixed T2W image

Moving ADC image

HBV image

Displacement field

Image 
Registration

Figure 1: Overview of our method. The T2W scan is used as fixed image and the ADC
map as moving image to find the displacement field using the registration method.
The displacement field is applied to the ADC and HBV maps. The registered
and original scans are used as input for the PI-CAI AI system (see Section 2.3) to
detect clinically significant prostate cancer. The case-level diagnosis performance
of the end-to-end pipeline is evaluated and used as a measure of effectiveness.

of algorithms using bpMRI. The results show that the B-Spline registration, which is based
on (Netzer et al., 2021), improves the overlap of manually annotated lesions as measured
by the Dice score. Additionally, the performance of the downstream task of patient-level
csPCa diagnosis measured by the AUROC showed a non-significant improvement from 0.76
to 0.79. These results suggest that registration is a useful preprocessing step in an auto-
mated prostate cancer diagnosis pipeline. However, due to limited sample size (only 46
positive cases in the test set) and the lack of external testing, the ability to draw definitive
conclusions is hindered.

In this study, we conduct a comprehensive analysis of the impact of image registration on
the clinical downstream task of case-level csPCa diagnosis, utilizing two extensive evaluation
datasets. Registration accuracy is assessed through the measurement of lesion alignment
across an independent dataset comprising 473 cases, each annotated with paired lesions per
modality. Further, we evaluate the downstream diagnostic efficacy on an external testing
set consisting of 546 cases.
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2. Materials and Methods

2.1. Registration

The aim of the image registration approach is to align the DWI maps (ADC and HBV)
with the T2W scan (see Figure 1). Since the csPCa detection algorithms resample the DWI
maps to the T2W scan, we chose the T2W scan as the fixed image and the ADC map as
the moving image for the registration. The image registration algorithm is developed in the
MeVisLab framework using the RegLib. We adopt a two-step approach which consists of
a rigid registration and a deformable registration. Hereby, the registration pipeline starts
with robust methods with fewer degrees of freedom and moves on to more precise, but less
robust methods, which require better starting points due to their higher degrees of freedom.
The calculated rigid and deformable transformation are applied to both DWI maps.

Let F ,M : R3 → R denote the fixed image and moving image, respectively, and let
Ω ⊂ R3 be a domain modeling the field of view of F . The registration method aims to
compute a deformation y : Ω → R3 that aligns the fixed image F and the moving image
M on the field of view Ω such that F(x) and M(y(x)) are similar for x ∈ Ω.

Rigid Registration The rigid registration adopts the method of (Rühaak et al., 2017).
We use the normalized gradient field distance measure (Haber and Modersitzki, 2006), that
focuses on the alignment of image gradients of the fixed image F and the deformed moving
image M(y). The edge hyper-parameter ϵ > 0 is used to suppress small image noise,
without affecting image edges. The optimization problem is solved using a Gauss-Newton
optimization scheme and is embedded into a multi-level scheme with two levels.

Deformable Registration We deploy the matrix-free deformable registration of (König
et al., 2018). The deformation is defined as a minimizer of the cost function

min
y

D(F ,M(y)) + αR(y),

with the normalized gradient field distance measure DNGF. To focus the registration to in-
side the prostate, we restrict ΩNGF to the support of the prostate segmentation of the fixed
image, which is automatically generated with the prostate segmentation algorithm provided
by (Saha et al., 2022). The second-order curvature regularizer Rcurv (Fischer and Moder-
sitzki, 2003) enforces smooth deformation by penalizing spatial derivatives. The parameter
α is a weighting factor of the regularizer. The optimization problem is solved using the
limited-memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) optimization scheme (Liu
and Nocedal, 1989). Optimization was performed in a multi-level scheme with two levels
on images with successively declining levels of smoothing to guide registration from larger
structures to smaller refinements. The deformable registration uses the output of the rigid
registration as an initial starting point. Hyperparameters of the registration method were
experimentally set using the first ten cases of the PI-CAI training dataset.
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2.2. Data

Three datasets with bpMRI scans (axial T2W, ADC and HBV (b ≥ 1000) imaging) for
prostate cancer detection were used. For each dataset, the reference standard was set by
histopathology, with clinically significant prostate cancer defined as ISUP 2-5 (intermediate
to very high risk) (Epstein et al., 2016). Informed consent was waived, given the retrospec-
tive scientific use of deidentified patient data. Scan characteristics are given in Table A.

PI-CAI: For csPCa detection model development, 10,207 cases of 9129 patients from
10 Dutch hospitals and 1 Norwegian hospital were used (Saha et al., 2022). Cases were
acquired using 1.5 or 3-Tesla MRI scanners between 2012 and 2021 from patients with
suspicion of harboring prostate cancer. Exclusion criteria included prior prostate-specific
treatment, prior ISUP ≥ 2 findings, incomplete studies, and diagnostically insufficient image
quality. Manual voxel-level annotations were available for 1175 positive training cases (1323
lesions) and for an additional 892 positive training cases (1037 lesions) AI-derived voxel-level
annotations were provided.

PCNN: For testing of the registration algorithm, cases from the PI-CAI training set with
manual voxel-level annotations per modality (T2W and ADC) were included. This selected
473 cases of 438 patients from Prostaat Centrum Noord-Nederland (PCNN) (8 hospitals).

PROMIS: For external testing, 546 cases of 546 patients from 11 United Kingdom hospi-
tals were included (Ahmed et al., 2017). Cases were acquired using 1.5-Tesla MRI scanners
between 2012 and 2015 from patients with suspicion of harboring prostate cancer. Ex-
clusion criteria included prior prostate treatment, prior biopsies, incomplete studies, and
diagnostically insufficient image quality. No manual voxel-level annotations were available.

2.3. PI-CAI AI system

The PI-CAI AI system was developed in the PI-CAI challenge. The algorithm is the ensem-
ble of the top 5 submissions, selected based on testing with 1000 cases. The models were
trained using a dataset of 9107 cases. The algorithm uses the axial T2W, ADC and HBV
scans and clinical variables (e.g. PSA density). The U-Net backbone was predominantly
used, with early fusion of the scans. See Supplementary Materials Section B for details.

3. Experiments

The aim of this study is to evaluate the effect of image registration on the clinical down-
stream task of case-level csPCa diagnosis. We first evaluated the registration performance
by measuring lesion alignment and the plausibility of the displacement field. In the second
experiment, we employed the csPCa detection algorithms developed in the PI-CAI chal-
lenge for the diagnostic evaluation. For both experiments, we compare the results on three
dataset variants: the original dataset, the dataset with rigidly aligned T2W and DWI scans,
and the dataset with deformably aligned T2W and DWI scans.

Registration performance The evaluation of registration performance was conducted
using the PCNN validation dataset, chosen for its availability of lesion annotations across
both T2W and ADC scans. The hyperparameters for the registration method were manually
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fine-tuned using only the first 10 cases from the PI-CAI Public Training and Development
dataset, which did not overlap with this PCNN dataset. Therefore, the PCNN dataset
serves as an independent evaluation set for assessing the registration performance.

To quantitatively assess the quality of image registration in the absence of reference
displacement fields, we employed two surrogate metrics. The Dice coefficient was utilized
to quantify the overlap of lesion segmentations between T2W scans and ADC maps. Al-
though we recognize that the Dice coefficient may not be the perfect metric for assessing
the registration performance (Rohlfing, 2011), its usage is justified in this context given
the critical importance of accurate lesion alignment in T2W scans and ADC maps for the
reliable performance of csPCa detection algorithms. The choice of the Dice score, therefore,
aligns with our objective to prioritize lesion alignment in the evaluation of registration ef-
fectiveness. Additionally, to ensure realistic deformations, we evaluated the plausibility of
the displacement field by examining the percentage of voxels exhibiting folding within the
prostate region of the predicted deformation field.

csPCa detection performance Diagnostic performance is assessed using the area under
the receiver operator characteristic curve (AUROC). For case-level risk estimation of sig-
nificant cancer, we utilized voxel-level detection maps generated by each of the five PI-CAI
AI ensemble algorithms (detailed in Appendix B) on the external PROMIS test dataset.

Additionally, we evaluated diagnostic performance using the PCNN dataset, to facilitate
an evaluation of diagnostic performance in relation to the registration accuracy. We note
that this dataset is not independent for the diagnostic algorithms, since this is a subset of
the training data of the algorithms. Therefore, the results can be found in Appendix E
and Appendix F.

Since the PROMIS dataset contains scans with very large field-of-views with anatomical
structures not present in the PI-CAI training dataset, we filtered out lesion predictions
further than 3 mm away from the prostate segmentation. Following the approach used in
the PI-CAI challenge, each algorithm’s case-level prediction was the maximum lesion-level
prediction, and the AI system’s case-level prediction was the equally-weighted prediction of
each algorithm.

Statistical analysis The diagnostic performance differences on the external testing set
were statistically analyzed. The performance with the deformably and rigidly aligned im-
ages are compared against the performance with the original dataset. To determine the
probability of one configuration outperforming another, we performed DeLong’s test (De-
Long et al., 1988). Multiplicity was corrected for using the Holm-Bonferroni method, with
a base alpha value of 0.05. Details are in Appendix D.

4. Results

Registration performance The median Dice score improved to 0.58 with deformable
registration, compared to 0.48 for the original dataset and 0.47 with rigid registration.

For one case, 1% of voxels in the prostate were folded. For all other cases, no foldings
occurred in the deformation field. Quantitative results are summarized in Figure 3 and
Appendix Figure B. One example is shown in Figure 2. Additionally, in Appendix F, the
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Figure 2: Qualitative registration results showing an exemplary case with prostate gland,
lesion annotated on T2, lesion annotated on ADC. In the last two column,

the prediction maps (PM) generated with the original dataset and the deformably
aligned dataset are overlayed on the T2W scan.
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Figure 3: Quantitative registration results. (left) Distribution of Dice scores between the
lesion annotation on the T2W and ADC scans for the original and deformably
aligned PCNN datasets. (right) Model performance for the PI-CAI AI system
with the original, rigidly aligned and deformably aligned PROMIS datasets.

cases with largest improvement, median improvement, and the largest decrease in Dice score
are visualized, alongside the clinical interpretation for each case.

csPCa diagnosis performance For the PROMIS external testing dataset, the PI-CAI
AI system showed a positive yet non-significant improvement in diagnostic performance
(+0.3% AUROC, p=0.18) with deformably aligned scans compared to the original dataset.
A comprehensive qualitative analysis of representative cases is given in Appendix F.
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5. Discussion and Conclusion

In this study, we investigated the effect of image registration on the clinical downstream
task of case-level csPCa diagnosis when integrated at the inference stage. Deformable regis-
tration demonstrated a substantial improvement in lesion overlap on the validation dataset
(+9% average Dice score) which is even slightly more than the one reported in (Kovacs et al.,
2023) (+6% average Dice score). However, since different datasets were used, a direct com-
parison is not possible. Additionally, we showed a positive yet non-significant improvement
in diagnostic performance on the PROMIS test dataset (+0.3% AUROC, p=0.18) with de-
formably aligned scans. Our investigation shows that a substantial improvement in lesion
alignment does not directly equal a significant improvement in diagnostic performance. To
illustrate the impact of misalignment on the algorithmic results, we present detailed visu-
alizations and analyses of several PCNN and PROMIS cases in Appendix F. These results
showed that the PI-CAI AI system demonstrated robustness to minor misalignments, partic-
ularly when these misalignments did not result in lesions being misrepresented in incorrect
zones. Additionally, we anticipate a comparable number of misaligned cases in the PROMIS
dataset as observed in the PI-CAI dataset, where the incidence was low. Therefore, the
expected improvement in AUROC is limited. The positive yet non-significant improvement
in diagnostic performance might be the result from those cases.

Our method had limitations. The deformable registration method potentially introduced
unrecognized artifacts into the images which might result in worse diagnostic performance.
Addressing this through retraining the csPCa algorithms to adapt to registration-induced
image variations represents a promising strategy. It is crucial to note that the registration
method avoided the generation of physiological unrealistic deformations. This is achieved
by applying a high regularization weight to obtain smooth and plausible displacement fields.
Another critical aspect is the choice of resampling strategy. This factor considerably impacts
the smoothing of ADC values, especially for small lesions, and influences the diagnostic
quality of images through the effects of multiple resamples. Merging all resampling steps
into one would visibly increase the quality, but is only possible in an end-to-end approach.

The relevance of the PROMIS dataset in present-day analyses has been a subject of
debate, particularly among radiologists. The diagnostic quality of MRI scans has markedly
improved since the trial finished in 2015. Additionally, the PROMIS dataset contains ac-
quired high b-value scans, while contemporary protocols calculate this based on acquired
lower b-value scans, which results in less noise and better diagnostic quality. Despite these
limitations, the relevance of the PROMIS dataset should not be understated. This dataset
can serve as a benchmark for scenarios where access to high-end, expensive scanners is lim-
ited. This situation is a common reality for many institutions, highlighting the importance
of developing algorithms that can perform well across a range of image acquisition methods.

In conclusion, our study shows that while image registration can substantially improve
lesion overlap in csPCa diagnosis, it does not directly lead to a significant improvement
in diagnostic performance. However, the qualitative analysis showed promising results and
indicate that joint development of image registration methods and diagnostic AI algorithms
could enhance diagnostic accuracy and patient outcome.
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Elschot, Jeroen Veltman, Jurgen Fütterer, Maarten de Rooij, and Henkjan Huisman.
Artificial intelligence and radiologists at prostate cancer detection in MRI: The PI-CAI
challenge (study protocol). Zenodo, 2022. doi: 10.5281/zenodo.6667655.

Anindo Saha, Joeran Bosma, Jasper Twilt, Bram van Ginneken, Derya Yakar, Mattijs
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Appendix A. Scan characteristics

Table A: Scan characteristics showing the median, (95% confidence interval) and [min-max]
in voxels or mm/voxel.

PI-CAI PCNN PROMIS

T2W in-plane size 640 (320, 1024) [256, 1078] 1024 (296, 1024) [256, 1024] 512 (256, 512) [256, 640]
T2W number of slices 21 (19, 29) [15, 45] 27 (20, 35) [15, 45] 26 (23, 38) [15, 94]
T2W in-plane resolution 0.3 (0.3, 0.6) [0.2, 0.8] 0.3 (0.2, 0.7) [0.2, 0.8] 0.4 (0.4, 0.8) [0.4, 0.9]
T2W slice thickness 3.6 (3.0, 3.6) [1.3, 5.0] 3.0 (3.0, 4.8) [2.2, 4.8] 3.3 (3.3, 3.6) [0.8, 6.5]

ADC in-plane size 128 (102, 256) [70, 336] 240 (114, 256) [108, 336] 172 (128, 172) [126, 256]
ADC number of slices 21 (19, 29) [11, 41] 27 (11, 33) [11, 41] 13 (11, 19) [11, 24]
ADC in-plane resolution 2.0 (1.4, 2.0) [0.9, 2.6] 1.4 (0.9, 1.9) [0.9, 2.0] 1.5 (1.5, 1.7) [1.1, 2.0]
ADC slice thickness 3.6 (3.0, 3.6) [3.0, 5.8] 3.0 (3.0, 5.5) [3.0, 5.8] 5.0 (5.0, 5.5) [4.0, 6.0]

Appendix B. PI-CAI AI system

The PI-CAI Challenge involved a multi-step development of the PI-CAI AI system. In the
development phase, participants could access an annotated dataset of 1500 MRI cases, and
create AI models incorporating MRI scans and various clinical variables (e.g. patient age,
PSA level, prostate volume, scanner manufacturer) for csPCa detection and diagnosis. Dur-
ing the development phase, teams could periodically submit their algorithm to be validated
on 100 tuning cases. At the end of this phase, each team could submit a single algorithm
for blind testing on 1000 cases. The training methods from the top five teams, after minor
optimizations for computational efficiency, were trained on a larger dataset of 9107 cases.
Once trained, all five algorithms were ensembled with equal weighting into the single PI-CAI
AI system. Each algorithm’s test performance is available on the leaderboard (https://pi-
cai.grand-challenge.org/evaluation/closed-testing-phase-final-ranking/leaderboard/). Each
algorithm is described in more detail in the “Supplementary File” which is linked on the
same leaderboard.

Here, we provide a brief summary of the methods. The ensemble of the top 5 teams
from the PI-CAI challenge involved 50 models. The architectures were configured by the
nnU-Net (21x) and nnDetection (5x) frameworks, or by the teams: ITUNet (5x) (Kan
et al., 2022), two variants of the SPCNet (2x5x) (Seetharaman et al., 2021), a UNet (5x)
and the Z-SSMNet (5x) architecture which was based on (Dong et al., 2022). 49 of these
models used early fusion for the T2-weighted and diffusion-weighted inputs, where scans
are resampled to the same spacing and concatenated as channels before processing by the
network. One model, which was used to segment the prostate, only used the T2-weighted
scan.

None of the teams leveraged affine or non-rigid deformations between the input sequences
during training (such as in (Kovacs et al., 2023)). The data augmentation schemes did
include e.g. rotation, scaling and translation, but applied this to the T2-weighted and
diffusion-weighted images equally.

i
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Appendix C. Computational Resources

For image registration, we used an NVIDIA 1080 Ti with a total wall clock time of 8 hours.
For inference on the PROMIS and PCNN datasets, we used several GPUs (NVIDIA GTX
Titan X, GTX 1080 Ti, RTX 2080 Ti or A100) with a total wall clock time of 200 hours.

Appendix D. Statistical Analysis Plan

The csPCa detection performance on the external PROMIS testing dataset is statistically
evaluated. The study objectives are described in a predefined hierarchical tree and the
tests are performed accordingly (see Figure A). Multiplicity is corrected for at each stage
using the Holm-Bonferroni method, considering a base alpha value of 0.05. The hierarchical
structure is formed following the research question as proposed in this study. Our aim is to
investigate if image registration can boost model performance, in family 1A and 1B we test
whether either rigid or deformable registration is better than using no registration. If one or
both of these registration methods turn out to boost the performance of the AI model then
we move on to testing whether model performance is better using deformable registration
relative to rigid registration (family 2A) and/or whether model performance is better using
rigid registration relative to deformable registration (family 2B).

Calculation of p-values - DeLong’s test The p-value for a superiority test comparing
AUROC scores can be calculated using DeLong’s test (DeLong et al., 1988). To test the
null hypotheses as described in Figure A, we use the DeLong’s formulas to estimate the
variance of and the covariance between the AUROC scores. In our experiments we use the
faster implementation of the DeLong’s algorithm, as proposed by (Sun and Xu, 2014). We
can calculate the z score using the following formula:

z =
θ̂(1) − θ̂(2)√

V[θ̂(1)] + V[θ̂(2)]− 2C[θ̂(1), θ̂(2)]
(1)

The P value is then calculated from the z score using a one-tailed test.

ii
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Figure A: Flowchart illustrating the statistical plan to test the study objectives. The sig-
nificance thresholds used for family 1A and 1B are adjusted using the Holm-
Benferroni method, considering a base alpha of 0.05. If the null hypothesis of
family 1A is rejected, but that of family 1B is not rejected, then we move on to
testing family 2A with an alpha value of 0.05 but do not test family 2B. Con-
versely, if the null hypothesis for family 1B is rejected but that of family 1A
is not rejected, then we move on to testing family 2B with an alpha value of
0.05, but do not test family 2A. If the null hypothesis for both family 1A and
1B are rejected, then we move on to testing both family 2A and 2B, where the
significance threshold is once again adjusted using the Holm-Benferroni method
considering a base alpha value of 0.05. If neither family 1A nor 1B are rejected,
neither family 2A nor 2B will be tested.

Appendix E. Quantitative Results

Quantitative results for the registration methods are shown in Figure B. We evaluated the
diagnostic performance of the PI-CAI AI algorithms on the PCNN dataset, which was part
of the training data for these algorithms. For this evaluation, we also included 205 cases
that did not have lesion annotations per modality, including all 678 PCNN cases from the
PI-CAI dataset.

For the PCNN dataset, three algorithms showed a small increase in diagnostic perfor-
mance (+0.4%, +0.8%, +0.1% AUROC) and two algorithms showed decreased performance
(-8.1%, -1.2% AUROC). The ensemble of the first three algorithms demonstrated a small
increase in diagnostic performance (+0.5% AUROC), as shown in Figure B. The first three
algorithms were ensembled in this analysis because we observed that the latter two algo-
rithms demonstrated strong overfitting to the training cases. Their performance on these
training cases was much higher compared to the other three algorithms, but all algorithms
performed comparably on the testing leaderboard.

iii
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Figure B: (left) Distribution of Dice scores between the lesion annotation on the T2W
and ADC scans for the original, rigidly and deformably aligned PCNN dataset.
The median Dice score for the original dataset was 0.48, with 2.5% and 97.5%
quantiles of the distribution of Dice scores being 0.03 and 0.90. For the rigidly
aligned dataset these metrics were 0.47 [0.01, 0.82], and for the deformably
aligned dataset 0.58 [0.10, 0.81]. (right) Model performance for the Ensemble
of 3 PI-CAI algorithms with the original, rigidly aligned and deformably aligned
PCNN datasets. AUROC = area under the receiver operator characteristic curve.

Appendix F. Qualitative Results

In this section, we present qualitative results of the image registration and subsequent csPCa
detection algorithms. Results for the PCNN dataset are shown in Figure C, showing the
case with the largest improvement in Dice score (first row), the median improvement in Dice
score (second row) and the largest decrease in Dice score (third row) for the deformably
aligned dataset, compared to the original datasets.

The first row shows the images for a 58-year-old man with a PSA level of 16 ng/mL and
a PSA density of 0.32 ng/mL/cc. The imaging shows mild benign prostatic hyperplasia
(BPH) in the transition zone. BPH is a benign condition, which grows over time. A typical
transition zone with BPH shows so-called ‘organized chaos’, with multiple nodules with vari-
able imaging appearance, often with diffusion restriction and enhancement. In transition
zone tumors, this typical encapsulation is lost, and the organized aspect changes to a homo-
geneous low T2W signal with marked diffusion restriction and vivid enhancement. In the
left transition zone of this patient (appearing on the right in the images), an encapsulated
BPH nodule is annotated in yellow on T2W, with low T2W signal intensity. On the ADC
map an area with marked diffusion restriction is annotated in red. A notable discrepancy
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Figure C: Qualitative results on the PCNN datset showing the case with the largest im-
provement in Dice score (first row), the median improvement in Dice score (sec-
ond row) and the largest decrease in Dice score (third row). The T2, ADC, and
deformably aligned ADC are shown with prostade gland, lesion annotated
on T2, lesion annotated on ADC. In the last two column, the prediction maps
(PM) generated with the original dataset and the deformbly aligned dataset are
overlayed on the T2W image. The label shows the ISUP grade, where 1 is indo-
lent cancer (negative), and ≥ 2 is intermediate to high-risk cancer (positive).

is observed in the alignment between the T2W and ADC imaging, leading to misalignment
between the lesion’s features on the T2W and ADC scans. In the PI-RADS scoring system,
T2W is the dominant sequence in the transitions zone, while in the peripheral zone DWI
is the most important sequence. The encapsulated nature on T2W of this nodule is a non-
suspicious sign in the transition zone. However, a lesion with similar diffusion restriction
in the peripheral zone would be a suspicious sign. Consequently, the PI-CAI AI system
with the original scans classifies the lesion in the middle of the transition zone instead of
within an encapsulated nodule more laterally due to the misalignment, which suggests a
higher risk level (prediction=0.63). The deformable image registration method aligned the
two modalities, and the PI-CAI AI system with the deformably aligned scans assigned a
lower risk level (prediction=0.47). Targeted biopsies revealed ISUP 1 in the left transition
zone, which is an indolent prostate cancer that is often invisible on prostate MRI.

The second row shows the images for a 76-year-old man with a PSA level of 0.94 ng/mL
and a PSA density of 0.03 ng/mL/cc. The images show a suspicious area in the left pe-
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ripheral zone with low T2W signal intensity (annotated in yellow) and low signal intensity
on ADC map (annotated in red), classified as a PI-RADS 5 lesion. Both variants of the
dataset (original and deformably aligned) show very similar efficacy (predictions of 0.48 for
both) due to similar alignment of the lesion’s features across scans. Targeted biopsy of this
area revealed ISUP 2 prostate cancer.

The third row shows the images for a 66-year-old man with a PSA level of 13 ng/mL
and a PSA density of 0.11 ng/mL/cc. The images show a tumor suspicious area ventral in
the apex of the prostate close to the anterior fibromusclar stroma (AFMS) ventral to the
transition zone of the prostate. The delineation of the lesion mask was guided by the image
features observed in the ADC scan and was subsequently adopted for the T2W scan as well.
Upon reconsideration of the lesion segmentation with two radiologists, it appears that the
extension into the AFMS is due to oversegmentation, rather than the lesion infiltrating the
AFMS. As such, the model predictions capture the lesion extent very well. The prediction
with the original dataset had a bit higher confidence (0.62 vs 0.56) for this positive case.
Targeted biopsy of this area revealed ISUP 2 prostate cancer.

Results for the PROMIS dataset are shown in Figure D. The first two cases were selected
to have the largest prediction increase and decrease for the deformably aligned dataset, com-
pared to the original datasets, for cases with a case-level prediction above 0.3, respectively.
The third case was a failure case with the deformably aligned scans. The last two cases
were selected to have the largest prediction increase and decrease for the deformably aligned
dataset, compared to the original datasets, respectively.

The first row shows the images for a 74-year-old man with a PSA level of 12 ng/mL
and a PSA density of 0.27 ng/mL/cc. The images show a well-defined lesion in the left
peripheral zone midprostate, with low signal intensity on T2W, and low signal intensity
on the ADC map, consistent with a suspicious lesion (PI-RADS 4). The T2W and ADC
map are misaligned, both in-plane and through-plane, resulting in the diffusion restriction
on the original ADC map to be misaligned with the lesion features on the T2W sequence.
The PI-CAI AI system identified the lesion with both variants of the dataset. With the
deformably aligned dataset the algorithm confidence increased to 0.51, from a prediction
of 0.36 before. Histopathological evaluation confirmed the aggressive nature of this lesion
(ISUP 2).

The second row shows the images for a 67-year-old man with a PSA level of 5.2 ng/mL
and a PSA density of 0.10 ng/mL/cc. The T2W and ADC map are misaligned in-plane.
Consequently, a substantial part of the prostate on the ADC map appears outside of the
prostate region of the T2W sequence. The ADC map shows diffusion restriction (low signal
intensity; darker appearance) in the right transition zone midprostate. Due to the mis-
alignment, this darker area on the original ADC map appears to be in the right peripheral
zone on the T2W scan, and therefore misclassification can occur. After deformable align-
ment, the darker area on the ADC map aligns with the transition zone instead of peripheral
zone. This is reflected in the lesion detection of the PI-CAI AI system, which predicts a
lesion with confidence of 0.44 with the original scans and with a confidence of 0.18 with the
deformably aligned scans. Targeted biopsies revealed ISUP 1 in the right transition zone,
which is an indolent prostate cancer that is often invisible on prostate MRI. No aggressive
PCa was detected.
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Figure D: Qualitative results on the PROMIS datset. The T2, ADC, and deformably
aligned ADC are shown with prostade gland. In the last two column, the
prediction maps (PM) generated with the original dataset and the deformbly
aligned dataset are overlayed on the T2W image. The label shows the ISUP
grade, where 1 is indolent cancer (negative), and ≥ 2 is intermediate to high-risk
cancer (positive). The first two cases were selected to have the largest prediction
increase and decrease for the deformably aligned dataset, compared to the orig-
inal datasets, for cases with a case-level prediction above 0.3, respectively. The
third case was a failure case with the deformably aligned scans. The last two
cases were selected to have the larges prediction increase and decrease for the
deformably aligned dataset, compared to the original datasets, respectively.
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The third row shows the images for a 55-year-old man with a PSA level of 12 ng/mL and
a PSA density of 0.30 ng/mL/cc. The images show a small lesion in the right peripheral
zone midprostate. The lesion appears as a well circumscribed area with low signal intensity
(dark) on T2W images and the ADC map, suspicious for clinically significant cancer (PI-
RADS 4). For this case, the deformable image registration slightly misaligned the T2W and
ADC image features of the lesion, which resulted in the detection algorithm to decrease its
lesion prediction from 0.49 to 0.39. Histopathological evaluation confirmed the aggressive
nature of this lesion (ISUP 3).

The fourth row shows the images for a 61-year-old man with a PSA level of 7.7 ng/mL
and a PSA density of 0.12 ng/mL/cc. The images show ill-defined areas of low signal
intensity in the peripheral zone on both sides. On the left side there is a better defined area
with low signal intensity, however, without apparent restriction on the ADC map. This
was evaluated as PI-RADS 2 lesion, suggestive of (post)inflammatory changes or indolent
prostate cancer. The PI-CAI AI system with the original dataset assigned a very low
prediction of 0.07 to this case. The same algorithm with the deformably aligned imaging
assigned a prediction of 0.33 to this lesion. This adjustment indicates a nuanced increase
in the estimated risk, although it remains relatively low. Pathological evaluation classified
this lesion as indolent cancer, with an ISUP grade of 1, indicating a low-risk profile.

The fifth row presents the images for a 75-year-old man with a PSA level of 7.2 ng/mL
and a PSA density of 0.08 ng/mL/cc. Template mapping biopsy as part of the PROMIS
trial identified an aggressive lesion in the left side of the prostate (ISUP 3). This lesion was
not found during prospective radiological assessment. Retrospective consultation with an
expert urogenital radiologist also did not reveal image features that indicate the location of
this lesion.

Appendix G. Diagnostic performance

viii
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Appendix H. PROMIS Dataset acknowledgements

The PROMIS data used in the analysis for this manuscript were provided from the PROMIS
study, led by University College London (UCL). PROMIS was funded by the UK Govern-
ment Department of Health, National Institute of Health Research–Health Technology As-
sessment Programme, (Project number 09/22/67). Support was also provided by National
Institute for Health Research (NIHR) UCLH/UCL Biomedical Research Centre, National
Institute for Health Research (NIHR) The Royal Marsden and Institute for Cancer Research
Biomedical Research Centre and National Institute for Health Research (NIHR) Imperial
Biomedical Research Centre. The original PROMIS study was coordinated by the Medical
Research Council Clinical Trials Unit (MRC CTU) at UCL and sponsored by UCL. The
PROMIS Biobank was funded by Prostate Cancer UK (PG10-17). The PROMIS dataset
and the biobank is under the research governance of the ReIMAGINE Risk Trial Man-
agement Group (funded by Medical Research Council (UKRI) and Cancer Research UK:
MR/R014043/1).
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