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ABSTRACT

Background and objective: Employing deep learning models in critical domains such as medical
imaging poses challenges associated with the limited availability of training data. We present a
strategy for improving the performance and generalization capabilities of models trained in low-data
regimes.
Methods: The proposed method starts with a pre-training phase, where features learned in a self-
supervised learning setting are disentangled to improve the robustness of the representations for
downstream tasks. We then introduce a meta-fine-tuning step, leveraging related classes between
meta-training and meta-testing phases but varying the granularity level. This approach aims to
enhance the model’s generalization capabilities by exposing it to more challenging classification
tasks during meta-training and evaluating it on easier tasks but holding greater clinical relevance
during meta-testing. We demonstrate the effectiveness of the proposed approach through a series of
experiments exploring several backbones, as well as diverse pre-training and fine-tuning schemes, on
two distinct medical tasks, i.e., classification of prostate cancer aggressiveness from MRI data and
classification of breast cancer malignity from microscopic images.
Results: Our results indicate that the proposed approach consistently yields superior performance w.r.t.
ablation experiments, maintaining competitiveness even when a distribution shift between training
and evaluation data occurs.
Conclusion: Extensive experiments demonstrate the effectiveness and wide applicability of the
proposed approach. We hope that this work will add another solution to the arsenal of addressing
learning issues in data-scarce imaging domains.

Keywords Few-shot learning · Meta-learning · Disentangled representation learning · Self-supervised learning ·
Classification ·Medical image analysis

1 Introduction

Developing deep learning models that are able to perform competitively on small datasets is essential, especially in
domains where data are scarce. Few-shot learning (FSL) is a paradigm designed to train models by using a limited
number of examples [1]. One of the most relevant applications of FSL is in the medical image domain [2, 3, 4, 5],
where datasets are often small because of the difficulty and cost of acquiring such images and the need to protect patient
privacy. The use of FSL has become increasingly popular since the advent of meta-learning, defined as the ability
to ‘learn to learn.‘ Indeed, in a meta-learning framework, models are trained on tasks rather than data, enabling the
model to generalize better [6]. Several studies [7, 8] have shown that employing self-supervised learning (SSL) on
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additional unlabeled data as a pre-training step can boost the effectiveness of a meta-trained model. However, the main
challenge with SSL methods, particularly contrastive-learning methods, is that they tend to disentangle features related
to image augmentations used to generate additional instances for the contrastive setting (such as rotation and color
jitter) rather than class-specific ones [9]. This way, models rely on the wrong features to perform the downstream task,
resulting in poorer generalization. To learn more disentangled features beyond augmentations during SSL, Wang et
al. [9] proposed a new method called Iterative Partition-based Invariant Risk Minimization (IP-IRM). This iterative
algorithm systematically disentangles one feature at a time by partitioning the training samples into two subsets based
on an entangled feature (e.g., color) and minimizing a contrastive loss invariant w.r.t. the two subsets. The invariance
between subsets ensures the disentanglement of the selected feature [9]. Our work builds on a simple idea: leveraging
the power of disentangled SSL as a pre-training step to extract robust feature representations and coupling it with the
generalization capabilities of a meta-learning framework to enhance the classification performance of models trained in
the FSL regime. Specifically, we use IP-IRM to pre-train a convolutional backbone to generate robust features and
then fine-tune it with a meta-learning approach based on Prototypical Networks called Meta Deep Brownian Distance
Covariance (Meta DeepBDC) [10]. We also propose a novel meta-learning approach that uses different but related
classes during the meta-training and meta-testing stages. Specifically, we use a dataset from the same domain with
finer-grained classes for meta-training and coarser-grained classes for meta-testing, i.e., meta-training classes are
subgroups of meta-testing classes. The aim is to train the model on more complex and diverse classification tasks,
where complexity comes from higher granularity and diversity comes from a larger number of classes from which to
choose in each episode. On the other hand, meta-testing episodes are easier to address since the classes are broader and
the episodes less varied. This approach may be beneficial when coarse classes are still clinically relevant and there is
insufficient data to expect good performance on more detailed classes.

To prove the versatility of our method, we evaluate our approach on two different medical imaging datasets and clinical
tasks: the PI-CAI challenge dataset [11] of multiparametric MRI (mpMRI) prostate images and the Breast cancer
Histopathological Image (BreakHis) challenge dataset [12] of microscopic breast images. Using the first dataset, our
objective is to classify the prostate mpMRI images based on the tumour severity by predicting a prognostic value
defined by the International Society of Urological Pathology (ISUP) [13]. Following the mpMRI investigation, a
biopsy examination (an invasive and uncomfortable procedure) is usually required to determine the tumour severity in
suspected lesions [14]. In this sense, a prediction model that performs accurate diagnosis directly from MRI images
would help radiologists limit overdiagnosis, thus reducing patient discomfort.

Concerning the BreakHis dataset, we consider as a clinical task the classification of benign and malignant lesions,
which affects the patient’s treatment plan. Breast cancer diagnosis from microscopic images is a challenging and
time-consuming work as it requires manually detecting cancer nuclei [15]. This leads to high workload for pathologists,
long diagnosis time and potential misdiagnosis due to human factors such as eye fatigue, in addition to device-dependant
influences [16]. For all these reason, developing an automated classification of breast cancer biopsy samples could
support pathologists by improving diagnosis accuracy and breast cancer early detection.

Below, we outline the primary contributions of our work:

• We propose to exploit the strengths of disentangled SSL as a pre-training step for a meta-fine-tuned model to
enhance the generalizability performance in the FSL domain.

• We propose a novel meta-learning approach that trains the model on more complex tasks than the ones used
during meta-testing by employing related classes with different levels of granularity. Specifically, we use finer
classes during meta-training and coarser ones during meta-testing, which are still clinically relevant.

• We examine the robustness of our approach across distribution shifts by using data from different vendors
between the training and evaluation phases.

We structured this paper as follows: Section 2 provides a comprehensive review of related works; Section 3 yields a
theoretical background of the methods employed in this study; in Section 4, we delineate our proposed approach and
detail the experimental settings, whereas the results of our experiments are presented in Section 5. In Section 6, we
discuss and explain our findings. Eventually, in Section 7, we summarize our contribution and the applicability range of
our study, finally outlining potential future directions.

2 Related works

Our work synergistically integrates meta-learning, SSL, and feature disentanglement methods to enhance the perfor-
mance of models trained in an FSL setting. This section provides an overview of the state-of-the-art research in the
interplay of these techniques, drawing parallels and highlighting differences with our proposed approach. First, we
discuss existing works that leverage meta-learning methods to perform medical image classification in an FSL regime,
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aligning with our primary task. Next, similar to our approach, we examine studies that employ an SSL pre-training step
to improve the performance of downstream tasks performed in an FSL setting. In the subsequent paragraph, we outline
papers that propose different methodologies for improving FSL performance by leveraging feature disentanglement.
Finally, we delve into the works that promote feature disentanglement in an SSL setting, culminating in a study that
evaluates the efficacy of this approach in an FSL regime.

2.1 FSL in Medical Image Classification

Several studies have tackled the challenge of medical image classification within an FSL framework. Some of these
works exclusively rely on meta-learning algorithms. For instance, Singh et al. [17] applied the Reptile algorithm
by meta-training the model on more prevalent diseases and evaluating it on rare diseases. Other works augmented
the meta-learning paradigm by incorporating additional modules and pre-training steps. Dai et al. [3], for example,
enhanced a gradient-based meta-learning algorithm by integrating it with a prior-guided Variational Autoencoder
(VAE) to improve target features. From another perspective, Jiang et al. [4] merged meta-learning with transfer
learning, utilizing a multi-learner model (autoencoder, metric-learner, and task learner) trained based on either a
transfer learning or a meta-learning criterion at different stages. In this work, we propose to boost the meta-learning
framework capabilities according to two main approaches: embedding a pre-training step that leverages disentangled
SSL and elevating the generalization capabilities of the episodic meta-learning by varying the class granularity between
meta-training and meta-testing episodes.

2.2 SSL as a pre-training step in FSL

In line with our research, the concept of improving the performance of FSL-trained models through an SSL pre-training
step has been explored in various studies. For instance, Chen et al. [18] promoted a more robust data representation in
downstream tasks by incorporating a contrastive SSL pre-training step followed by episodic training on natural images.
In the facial expression recognition domain, Chen et al. [19] integrated SSL and FSL by performing an SSL pre-training,
followed by a classical fully-supervised fine-tuning phase of the feature extractor. The authors then used the fine-tuned
model to build the prototype and perform a few-shot classification. In another approach Medina et al. [20] adopted a
transfer learning strategy that constructs a metric embedding, closely clustering unlabeled prototypical samples and
their augmentations through a self-supervised approach. The pre-trained embedding serves as a starting point for
few-shot classification, achieved by prototypical fine-tuning of the final classification layer. Yang et al. [21] suggest
incorporating contrastive learning into both the pre-training and meta-fine-tuning stages to enhance the performance
of few-shot classification. In the pre-training stage, they introduced a self-supervised contrastive loss that leverages
global and local information to learn effective initial representations. Concerning the meta-training stage, instead, they
proposed a cross-view episodic training mechanism that involves performing nearest centroid classification on two
different views of the same episode and employing a distance-scaled contrastive loss based on these views. Our work
employs an enhanced SSL version for pre-training, which ensures the disentanglement of features, aiming at improving
the quality of the features extracted during the subsequent downstream task.

2.3 Feature disentanglement for FSL

The concept of promoting feature disentanglement to improve performance in the FSL domain has been explored in the
literature as well, particularly within the realm of natural images. Hu et al. [22] employed feature disentanglement to
generate augmented features through hallucination, aiming to mitigate data sparsity in few-shot classification. Similarly,
the utilization of feature disentanglement for hallucination was adopted by Lin et al. [23], where they extracted
class-specific and appearance-specific features for base categories and then employed them to hallucinate image features
for novel categories. In another study, Cheng et al. [24] presented a disentangled feature representation framework
tailored for few-shot applications. This framework adaptively decouples discriminative features, modeled by the
classification branch, from the class-irrelevant component of the variation branch, thereby enhancing performance on
few-shot tasks.

Unlike the described approaches that employ feature disentanglement in a supervised setting to directly improve
FSL classification, our work leverages the disentanglement of features at the unsupervised pre-training level. This
unsupervised approach enhances the extraction of robust features, which subsequently benefits the FSL downstream
task.

2.4 SSL and Feature disentanglement

Disentangled representation learning is a well-studied problem in supervised learning [25, 26, 27, 28, 29, 30]. On the
other hand, forcing the feature disentanglement in unsupervised learning is considered more challenging [31]. Most of
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the existing methods for unsupervised disentanglement use generative models such as Generative Adversarial Networks
(GAN) [32, 33, 34] and VAE [35, 36, 37]. Wang et al. [9] proposed the first method for unsupervised disentanglement
called IP-IRM, which leverages the IRM algorithm [38] to implement a disentangled SSL. Here, the authors assess the
efficacy of their method in an FSL setting but differently from the present work, without fine-tuning the feature extractor
on the downstream task. Indeed, they directly classify the feature embeddings generated by the feature extractor using
both a k-nearest neighbors algorithm and a standalone linear classifier.

On the contrary, in this work, we consider the use of the IP-IRM algorithm as a pre-training step, intending to improve
the learning of robust data representation for the downstream task, which is performed by fine-tuning the feature
extractor through a meta-learning approach.

3 Background and Motivation

Based on the state-of-the-art methods, we defined a new approach aimed at further improving the capabilities of models
trained in an FSL manner. In this section, we offer a theoretical insight into the algorithms utilized for this purpose,
motivating their relevance and adoption in our approach.

3.1 SimCLR

Zhang et al. [39] emphasized that for downstream classification tasks, predictive and contrastive SSL methods yield
superior results compared to generative SSL approaches due to their ability to focus on high-level anatomical structures
rather than pixel-wise information. Specifically, they demonstrated the robust performance of SimCLR, BYOL [40],
and RPL [41] across various tasks, including segmentation and classification, highlighting their effectiveness in learning
robust representations. Following these guidelines, we considered a contrastive method, namely SimCLR [42], as our
SSL algorithm.

As demonstrated by [9], a significant portion of the disentangled features learned by SimCLR are related to augmenta-
tions, whereas other meaningful features remain entangled. This results in a decreased generalization performance
when evaluating the model on downstream tasks. To overcome this limitation, we employed the IP-IRM algorithm [9]
to enforce the disentanglement of features beyond augmentation-related ones during SSL. In the subsequent paragraph,
we provide a more detailed description of the IRM algorithm [38] and its derivative IP-IRM algorithm [9].

3.2 Iterative Partition-based Invariant Risk Minimization

It is often the case that during training the model environment-related features instead of class-specific ones. To identify
and eliminate such features, we can leverage the assumption that if data are collected in different environments, spurious
correlations are unstable, as they vary with changes in the environment itself [43]. Based on this principle, the IRM
algorithm disentangles features by seeking a data representation where the optimal classifier remains consistent across
all environments. In simpler terms, the same classifier performs effectively regardless of the environment of the training
data, enabling robust generalization over out-of-distribution data. In summary, we aim for a data representation that is
effective in producing accurate predictions and capable of generating an invariant predictor across all environments.
Mathematically speaking, given a set of different environments e, a risk under the environment Re, and a fixed and
dummy classifier w represented as a scalar, we want to find a representation of the data ϕ such that:

min
ϕ

∑
e

Re(ϕ) + λ · ∥∇w|w=1Re(w · ϕ)∥2. (1)

The first term corresponds to Empirical Risk Minimization (ERM) [44], wherein the goal is to minimize the average
risk across environments (predictive power) using a predictor ϕ. The second term encourages the predictor ϕ to exhibit
invariance across different environments. The parameter λ represents a regularization term that balances these two
components.

The authors in [1] leveraged this idea to force the disentanglement of features when the training is performed in an
unsupervised, specifically in a self-supervised way, by iterating the IRM algorithm on different subsets of an unlabeled
dataset. Specifically, the idea is to subdivide the unlabeled dataset into two partitions based on a partition matrix P.
For the i-th image, Pi,k = 1 if it belongs to the k-th subset and 0 otherwise. Each partition is then utilized to train the
feature extractor ϕ in a self-supervised manner. The pretext task loss (L) is defined by the contrastive loss, which takes
the following form:

L =
∑
x∈Xk

− log

(
exp(xTx∗ · θ)∑

x′∈Xk∪X∗\x exp(x
Tx∗ · θ)

)
, (2)
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where θ = 1 is a parameter to evaluate the invariance of the SSL loss across the subsets, Xk represents the features of
the k-th subset, and X ∗ the features of their augmented version.

In the first step, the parameters of ϕ are updated by:

min
Φ

∑
P∈P

2∑
k=1

[L+ λ1∥∇θ=1L∥2], (3)

where λ1 is a hyperparameter that regulates the IRM loss term, with its minimization promoting invariance across
subsets.

In the second step, the parameters of ϕ are held fixed, and the objective is to identify a new partition to be disentangled,
denoted by P∗. The desired partition is the one that maximizes the invariance between the losses, i.e.:

P∗ = argmax
P

2∑
k=1

[
L+ λ2∥∇θ=1L∥2

]
. (4)

The P matrix is updated as P ← P ∪ P∗. These two steps are iterated until convergence is achieved. For further details
on the IP-IRM algorithm, refer to [9].

3.3 Meta Deep Brownian Distance Covariance

Meta DeepBDC is a meta-learning method based on Prototypical Networks [45]. In traditional Prototypical Networks,
data are represented by their first moment (mean), and similarity between class prototypes and query embeddings
is assessed using metrics like Euclidean or cosine distance. However, studies have shown that incorporating richer
statistics, including second moments, while adopting the Frobenius norm or Kullback-Leiberler divergence as similarity
measures results in improved performance [46, 47]. It should be noted that these studies often neglect joint distributions,
limiting the learning of relationships between the two embeddings. To overcome this limitation, Xie et al. [10] proposed
using the BDC metric, defined as the Euclidean distance between the joint characteristic function and the product of the
marginals of two random variables, X and Y. BDC is mathematically formulated as:

ρ(X,Y ) =

∫
Rp

∫
Rq

|ΦXY (t, s)− ΦX(t)ΦY (s)|2

cpcq||t||1+p||s||1+q
dtds, (5)

where ΦX(t) and ΦY (s) are the marginal distributions of X and Y , respectively, ΦXY (t, s) is the joint characteristic
function of the two random variables and cp is defined as cp = π(1+p)/2/Γ((1+ p)/2), where Γ is the complete gamma
function.

In the image domain, the similarity between two images can be computed as the inner product between their respective
BDC matrices. In the context of Meta DeepBDC, the algorithm calculates a BDC matrix for each support and query
embedding. Subsequently, the prototype for each class is determined as the average of the BDC matrices belonging to
that class. Classification is then executed by computing a distance distribution between the query BDC matrix and each
class prototype. See [10] for more details.

4 Material and Methods

This section delves into the proposed approach, outlining the core concept and the experiments undertaken to validate
its effectiveness.

4.1 The main idea

Our work aims to improve the capabilities of FSL-trained models by synergistically combining the strengths of SSL,
feature disentanglement, and meta-learning methods. Specifically, we propose to perform a pre-training step exploiting
an SSL setting where feature disentanglement is promoted, addressing the limitations of classical contrastive SSL.
This step aims to equip the model with robust features that enhance its performance during the downstream task. To
effectively disentangle features, we employ the IP-IRM algorithm. This algorithm iteratively partitions an unlabeled
dataset into two partitions based on a feature to be disentangled. The disentanglement is performed by minimizing the
invariance of the SSL loss across the two partitions.
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Subsequently, we employ meta-learning to fine-tune the pre-trained model on the downstream task using a labeled
dataset. Meta-learning further enhances the model’s generalization abilities, enabling effective performance in low-data
settings. Specifically, we divide the labeled dataset into three subsets to perform meta-training, meta-validation,
and meta-test. To further improve the meta-learning framework’s effectiveness, we propose utilizing related classes
at different granularity levels between the meta-training and meta-testing episodes, i.e., the meta-training subset is
composed of images labeled ad a finer-grained level, whereas meta-validation and meta-test images are labeled with
coarser-grained ones. We illustrate our proposed approach in Fig. 1.

4.2 Problem definition

Given a set of datasets D = {D1, D2, . . . , DN}, each one comprises both labeled and unlabeled images, denoted as
Di = {(x, y)1, . . . , (x, y)m, (x)m+1, . . . , (x)n}, where (x, y)k represents an image-label pair, and (x)h is the image
alone. We split each dataset as Di

lab = {(x, y)1, (x, y)2, . . . , (x, y)m} and Di
unlab = {(x)m+1, (x)m+2, . . . , (x)n}.

We further separate the labeled dataset into two distinct sets of classes, namely Ci
fine and Ci

coarse, where |Ci
coarse| <

|Ci
fine|. Specifically, Ci

fine contains classes that are subgroups of classes in Ci
coarse. In line with this, we further

divide Di
lab into three subsets for training, validation, and testing, labeling the images in each subset as follows:

Di
meta−train = {(x, y)k, yk ∈ Ci

fine}, Di
meta−val = {(x, y)k, yk ∈ Ci

coarse}, and Di
meta−test = {(x, y)k, yk ∈

Ci
coarse}.

Our objective is to utilize Di
unlab to pre-train a feature extractor ϕ following an SSL approach, where feature dis-

entanglement is enforced. Subsequently, we conduct fine-tuning on ϕ using a meta-learning approach, leveraging
Di

meta−train, Di
meta−val, and Di

meta−test.

4.3 Pre-training phase

4.3.1 Proposed pre-training step

The initial step in our approach involves a disentangled SSL pre-training phase, which leverages the SimCLR and
IP-IRM algorithms. As with the IP-IRM algorithm, our pre-training phase is conducted iteratively. Specifically, at each
iteration, the Di

unlab is subdivided into two subsets w.r.t. a feature to be yet disentangled, and the SSL loss invariance is
minimized between the two subsets.

4.3.2 Pre-training ablations

To evaluate the efficacy of the initial stage of our proposed approach, we compared it with two alternative pre-training
methodologies. The first approach involves the use of the conventional SimCLR algorithm, corresponding to the initial
iteration of the IP-IRM algorithm, where all samples belong to the first subset (i.e., the first column of P is set to 1). In
this scenario, pre-training was conducted on the same dataset used by the IP-IRM algorithm, specifically Di

unlab. The
second approach entails fully-supervised pre-training on the Imagenet dataset, utilizing pre-trained parameters provided
by the PyTorch library [48].

4.4 Fine-tuning phase

4.4.1 Proposed Meta-learning framework

After pre-training the feature extractor ϕ, we meta-fine-tuned it on the downstream task using the Meta DeepBDC
algorithm [10], which employs an episodic training approach. During the episodic training, the model is presented with
multiple classification tasks, each comprising a support set and a query set. The support set represents the training data
for that specific task, while the query set is used to evaluate the model’s performance on that task. Following the N-way
K-shot paradigm, each support set consists of N classes, each represented by K image examples. In Meta DeepBDC, a
BDC matrix is calculated for each support and query sample during each meta-training episode. The average of the
support BDC matrices belonging to the same class forms the class prototype, and classification within each episode is
performed by computing a similarity distribution of the query BDC matrix against all the class prototypes. Once the
meta-fine-tuning is finalized, we evaluated its performance on various meta-testing tasks employing the same approach
as in the meta-training phase.

In traditional meta-learning experiments, meta-training and meta-testing tasks typically involve unrelated sets of classes
[45, 49, 50], e.g., distinguishing dog breeds in meta-training and cat breeds in meta-testing. However, some studies
adopted a different approach by using distinct classes for meta-training and meta-testing that still belong to the same
underlying data distribution. For instance, the authors in [4, 17] used the same image modalities and anatomical
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Query set
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feature backbone

Support set

GS 3+4 GS 4+3 GS 5+3GS 3+3

Support
BDC matrices

Unlabeled dataset

Step 2: Meta-fine-tuning

Step 1: Pre-training

Figure 1: Illustration of the proposed approach. In the pre-training step, the feature backbone undergoes pre-training
using the IP-IRM algorithm. At each iteration, the unlabeled dataset is divided into two subsets to maximize invariance
between SSL losses. Subsequently, these subsets are employed to update the feature backbone parameters by minimizing
the invariance between the SSL losses. The pre-trained backbone then undergoes meta-fine-tuning using the Meta
DeepBDC algorithm. Meta-training episodes contain finer-grained classes while meta-testing coarser-grained ones
belonging to the same source dataset. In both the meta-training and meta-testing phases a BDC matrix is computed for
each support and query sample. Class prototypes are derived by averaging the BDC matrices of all support samples for
that class. Classification is achieved by computing a similarity distribution of the query BDC matrix w.r.t. the class
prototypes.

structure but explored different types of diseases between meta-training and meta-testing. We propose a novel approach
wherein the model is tasked with similar classification tasks during meta-training and meta-testing but at different
levels of granularity. Specifically, the meta-training classes (Cfine) constitute subgroups of the meta-testing ones
(Ccoarse), i.e., |Cfine| > |Ccoarse|. This design choice serves two purposes. First, during meta-training, the model
is challenged to distinguish images at a finer granularity level. Second, since the number of ways (distinct classes)
remains constant between meta-training and meta-testing, and the total number of meta-training classes is higher, the
episodes in meta-training become more diversely composed. These two facets amplify the complexity of the training
phase, consequently strengthening the model’s generalization capabilities. Meanwhile, since the model is tasked with
similar but simpler tasks during meta-testing, we expect that its classification capabilities will improve accordingly.
Our reasoning behind this approach holds relevance in contexts where the meta-testing tasks carry higher clinical
significance despite being easier.
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4.4.2 Fine-tuning ablations

To evaluate the effectiveness of the described approach, we conducted three ablation fine-tuning experiments. To
assess whether using finer-grained classes during meta-training compared to meta-testing contributes to higher model
generalizability, we performed two additional meta-learning experiments by generating the meta-training set from a
different source dataset than the one used for meta-testing. Formally, we considered an additional dataset Dj where j ̸= i

and new sets of fine-grained and coarse-grained classes, namely Cj
fine and Cj

coarse respectively. In the first ablation
experiment, the meta-training classes belonged to Cj

fine, i.e., Dj
meta−train = {(x, y)k, yk ∈ Cj

fine}. In the second one,
we considered the coarser-grained set of classes for meta-learning as well, Dj

meta−train = {(x, y)k, yk ∈ Cj
coarse}.

Meta-validation and meta-testing sets remained unchanged.

Furthermore, as a third ablation experiment, we fine-tuned the pre-trained backbones using the classical fully-supervised
approach. For this experiment, we utilized the same dataset splitting as in the proposed meta-learning approach but
with a consistent class set across all subsets, denoted as Ci

coarse. Specifically, the datasets considered were as follows:
Di

train = {(x, y)k, yk ∈ Ci
coarse}, Di

val = {(x, y)k, yk ∈ Ci
coarse}, and Di

test = {(x, y)k, yk ∈ Ci
coarse}.

4.5 Datasets

We employed two datasets: the PI-CAI challenge dataset [dataset] [11], consisting of 1500 mpMRI acquisitions of
prostate cancer and the BreakHis dataset [dataset] [12], specifically its processed version curated by Pereira [dataset]
[51]. Both datasets were confirmed to have been collected with institutional/ethical review board approval.

4.5.1 PI-CAI dataset

For our experiments, we focused exclusively on T2-weighted images of patients with both cancerous and benign lesions.
All acquisitions of benign lesions, specifically those without biopsy or with a negative biopsy (for which we lacked
ground truth), were used as Dunlab. This dataset comprised 11202 images from 849 patients. Conversely, we utilized
the acquisitions of cancerous lesions as Dlab for the fine-tuning phase. The labeled dataset contains 2049 images from
382 patients, which we divided into 1611 for training, 200 for validation, and 238 for testing. During the splitting
process, we ensured patient stratification, i.e., all images from the same patient were grouped in the same subset,
avoiding any data leakage.

Each mpMRI acquisition was provided together with a biopsy report indicating the severity of each lesion, assessed by
the Gleason Score (GS), which can assume values ranging from 1 + 1 to 5 + 5 based on the severity of the two most
common patterns in the biopsy specimen. Related to the GS, each lesion was assigned a prognostic score according
to the ISUP guidelines [13], which ranges from 1 to 5, according to the tumor severity. Fig. 2a visually represents
the relationship between ISUP and GS. For this study, our focus was exclusively on lesions with ISUP scores ≥ 2, as
annotations for ISUP-1 lesions, necessary to perform the image pre-processing steps, were unavailable. Consequently,
we considered the eight GS classes (from 3 + 4 to 5 + 5) as the Cfine class set and the four ISUP classes (from 2 to
5) as the Ccoarse set. For clarification purposes, we provided the labeling criteria for the training, validation, and test
subsets in Table 1.

Furthermore, to emulate a realistic scenario with distinct distributions in training and testing data, we considered
only Siemens vendor data for training and only Philips vendor data for both validation and testing. We opted for the
analogous distributions among validation and test datasets since, as emphasized by Setlur et al. [52], using validation
samples that are not independent and identically distributed with the test samples can result in unreliable results when
determining the optimal model, especially the one that maximizes performance on the test set. The vendor used for the
training dataset was also employed for the pre-training dataset, ensuring a complete separation in data distributions
between the pre-training/training and evaluation phases.

As for the data pre-processing, we utilized the provided whole prostate segmentation to extract the mask centroid
for each slice. We standardized the field of view (FOV) at 100 mm to ensure consistency across all acquisitions and
cropped each image based on this value around the found centroid. We determined the number of rows (Nrows) and
columns (Ncols) for the fixed FOV, leveraging the pixel spacing in millimeters along the x-axis (px) and the y-axis
(py) according to the following formulae: Ncols = FOVx

px and Nrows =
FOVy

py . Furthermore, we resized all images
to a uniform matrix size of 128 × 128 pixels to maintain a consistent pixel count. Finally, we performed a z-score
normalization on all images using an in-volume approach.
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Figure 2: Relationship between fine and coarse labels in (a) PI-CAI dataset and (b) BreakHis dataset.

4.5.2 BreakHis dataset

The dataset consists of 7909 microscopic images of breast tumor tissues from 82 patients, taken at four different
magnification levels: 40X, 100X, 200X, and 400X. Each image has a size of 224 by 224 pixels. We used the images at
40X, 100X, and 200X magnification levels for a total of 6090 images as Dunlab by ignoring their labels. On the other
hand, we used the images at 400X magnification level, namely 1819 images, as Dlab to perform the fine-tuning step.
We split this dataset into training, validation, and test sets, with 1475, 165, and 183 images, respectively. The dataset
has eight classes of lesions which we considered as Cfine set: adenosis, tubular adenoma, fibroadenoma, phyllodes
tumor, papillary carcinoma, lobular carcinoma, mucinous carcinoma, and ductal carcinoma. The dataset also provides
a binary classification of the lesions into benign and malignant, which we considered as Ccoarse set. Specifically, the
first four fine classes are benign, while the last four are malignant. We provided a visual representation of the relatioship
between fine and coarse classes in Fig. 2b. For clarification purposes, we also provided the labeling criteria for training,
validation, and test sets of the BreakHis dataset in Table 1.

Table 1: A summary of the labeling procedure for the two examined datasets. ISUP = International Society of Urological
Pathology, GS = Gleason Score, AD = Adenosis, TA = Tubular Adenoma, FA = Fibroadenoma, PT = Phyllodes Tumor,
PC = Papillary Carcinoma, LC = Lobular Carcinoma, MC = Mucinous Carcinoma, DC = Ductal Carcinoma.

Dataset Subset Meta-fine-tuning labels Fully-supervised fine-tuning labels

PI-CAI
(Meta) Training GS: 3 + 4, 4 + 3, 4 + 4, 3 + 5, 5 + 3, 4 + 5, 5 + 4, 5 + 5 ISUP: 2, 3, 4, 5

(Meta) Validation ISUP: 2, 3, 4, 5 ISUP: 2, 3, 4, 5
(Meta) Test ISUP: 2, 3, 4, 5 ISUP: 2, 3, 4, 5

BreakHis
(Meta) Training AD, TA, FA, PT, PC, LC, MC, DC Benign, Malignant

(Meta) Validation Benign, Malignant Benign, Malignant
(Meta) Test Benign, Malignant Benign, Malignant

9
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4.6 Experiments

We performed all our experiments using four popular CNNs as backbones, namely, ResNet-18, ResNet-50, VGG-16
and DenseNet-121.

4.6.1 Pre-training

In both the vanilla SSL and SSL+IP-IRM pre-training phases, we conducted a hyperparameter optimization to determine
the best configuration for our experiments. This involved evaluating various values for weight decay (WD), batch size
(BS), and the number of epochs, as outlined in Table 2. Following the approach established in the original SimCLR
paper [42], we set the learning rate (LR) as a function of the BS, as follows:

LR =
0.3 ·BS

256
. (6)

We opted for large BS values, aligning with the observation made by Chen et al. [42] that larger BS generally yield
improved performance. Consistent with the original implementation, we conducted our experiments using the SGD
optimizer and employed the cosine decay schedule to adjust the learning rate throughout epochs. To mitigate the risk of
performance degradation associated with inconsistent input sizes [39], we maintained the same input size during both
the pre-training and fine-tuning phases.

As highlighted in [39], performance on proxy tasks does not consistently correlate positively with performance on
downstream tasks. Therefore, we selected the optimal pre-training hyperparameters as the ones that maximize the
performance of the fine-tuned model. Finally, regarding the composition of augmentations, we utilized the combination
that yielded the best performance according to the original paper, i.e., random cropping and random color distortion
augmentations.

Table 2: A summary of the hyperparameters optimized during pre-training and meta-fine-tuning phases. The provided
learning rate values must be considered as initial values before decay. The learning rate is decreased by a factor of 10
with each decay epoch.

Hyperparameter Values
Pre-training phase

Weight decay [10−2, 10−3, 10−4, 10−5]
Batch size [128,256,512]

Epochs [100,400]
Meta-fine-tuning phase

Learning rate [10−1, 10−2, 10−3, 10−4]
Weight decay [10−2, 10−3, 10−4, 10−5]

Epochs [100,400]
Decay epochs for 100 epochs [20,50]
Decay epochs for 400 epochs [80,200]

4.6.2 Fine-tuning

To establish a fair comparison across all experiments, we defined a baseline model, namely the fully-supervised-
pretrained model on the ImageNet dataset, fine-tuned using the traditional fully-supervised approach. We optimized
its hyperparameters, such as LR, WD, and the number of epochs, and we employed these optimized hyperparameters
for all subsequent fine-tuning experiments. To enhance the training process, particularly in terms of optimization and
generalization, we exploited a learning rate decay strategy. This strategy involves reducing the LR by a factor of 10
after a predetermined number of warm-up epochs. We reported the hyperparameters evaluated during the baseline
optimization in Table 2.

As for our meta-fine-tuning experiments, we performed a 4-way K-shot training for the PI-CAI dataset and a 2-way
K-shot for the BreakHis dataset. For both datasets, we evaluated both 1-shot and 5-shot configurations, resulting in
support sets containing either one or five examples per class, respectively. In contrast, the query set always consisted of
10 examples for each class. We conducted 600 episodes throughout both the meta-training and meta-validation phases,
as well as the meta-testing phase. Additionally, we replicated the meta-testing evaluation five times.

10



Disentagled Self-Supervision and Meta-Learning for Medical Images Few-Shot Classification

In all fine-tuning experiments, we refrained from using any data augmentation. This decision was based on evidence
suggesting that data augmentation can diminish the positive impact of SSL pre-training and may even negatively impact
model performance, as discussed in [39].

4.6.3 Evaluation metrics and loss function

To evaluate the performance of our models, we employed both binary and multi-class Area Under the ROC Curve
(AUROC), which proves more stable in the context of accuracy when handling the imbalance often found in medical
imaging datasets. For the computation of multi-class AUROC, we adopted the One-vs-rest approach, averaging the
binary AUROC between each class and all the others. In the meta-learning experiments, AUROC was assessed in
each episode, and the final AUROC performance was determined by averaging the AUROC of each episode during the
meta-testing phase.

Given our objective of maximizing the AUROC metric, we adopted the AUC margin loss (AUC-M) as our loss function.
Introduced in [53] and defined in the LibAUC library [54], AUC-M loss is a surrogate loss function designed to
maximize the ROC curve. Specifically, AUC-M loss is a min-max loss function that encourages the model to learn a
decision boundary that separates positive and negative examples with a large margin. This property makes the AUC-M
loss more robust to noisy data and not adversely affected by simple data. As an optimizer algorithm, following [54], we
employed the Proximal Epoch Stochastic method (PESG) [55], which is a stochastic method designed to solve smooth
non-convex strongly-concave min-max problems, such as deep AUC maximization [55].

5 Results

The hyperparameter optimization of the baseline model led to the following values for both ResNet-18 and ResNet-50:
10−2 LR, 10−2 WD, and 100 epochs for the PI-CAI dataset, and 10−1 LR, 10−2 WD, and 100 epochs for the BreakHis
dataset. For the VGG-16, we found that the optimal hyperparameters are 10−3 LR, 10−5 WD and 100 epoch for the
PI-CAI dataset, 10−3 LR, 10−4 WD and 100 epochs for the BreakHis dataset. Finally, concerning the DenseNet-121
backbone, the hyperparameter optimization provided the following optimal hyperparameters: 10−2 LR, 10−4 WD and
100 epochs for the PI-CAI dataset and 10−2 LR, 10−5 WD and 100 epochs for the BreakHis dataset.

Concerning model performance, we presented the results for the PI-CAI dataset in Table 3. There are two main
perspectives from which to analyze the results. The first perspective pertains to the pre-training type, which varies
according to the Table 3 rows. Specifically, for each backbone, the last row (SimCLR+IP-IRM) indicates the pre-
training step of the proposed approach, while the other two rows (Fully-supervised and SimCLR) represent the
ablation pre-training experiments. The second perspective relates to the fine-tuning method, which varies with the
columns in Table 3. We presented the results of the proposed meta-fine-tuning approach in the grouped column
Meta-train on PI-CAI (fine). In contrast, we detailed the ablation fine-tuning experiments in the remaining three
columns, namely Meta-train on BreakHis (fine), Meta-train on BreakHis (coarse), and Fully-supervised. The
Meta-train on BreakHis (fine) and Meta-train on BreakHis (coarse) columns showcase the results wherein we
utilized different sources for the meta-train and meta-testing datasets, considering both fine-grained and coarse-grained
classes during meta-training, respectively. On the other hand, the Fully-supervised column presents the results of a
classical fully-supervised fine-tuning on the entire dataset. To offer a more immediate visualization, we depicted the
results for the PI-CAI dataset in a bar chart presented in Fig. 3a. In this representation, for each backbone and each
k-shot setting (1-shot or 5-shot), we delineated the outcomes of various pre-training experiments using bars of different
colors, and we portrayed the distinct fine-tuning experiments through separate groups of bars.

Similarly, we presented the results on the BreakHis dataset in Table 4. As in the approach taken for the PI-CAI datasets,
we organized the results of different pre-training experiments as distinct rows and the fine-tuning experiments as
separate columns in Table 4. In this context, we detailed the outcomes of the proposed fine-tuning approach in column
Meta-train of BreakHis (fine). Conversely, we delineated the ablation experiment in columns Meta-train on PI-CAI
(fine), Meta-train on PI-CAI (coarse), where a diverse source dataset for meta-training and meta-testing is utilized,
and in column Fully-supervised, representing the conventional fully-supervised fine-tuning. In line with the PI-CAI
dataset, we illustrated the results in Fig. 3b. In the same way as for the PI-CAI dataset, for each backbone and k-shot
setting we represented the diverse pre-training experiments through bars of different colors while differentiating the
fine-tuning experiments by distinct bar groups.

Pre-training results. For each fine-tuning experiment, in both Table 3 and Table 4, we highlighted the pre-training
approach that performs best in bold. Specifically, for the PI-CAI dataset, SimCLR+IP-IRM pre-training produces the
most favorable results for all the 5-shot and fully-supervised fine-tuning experiments. In contrast, for three out of six
1-shot experiments (two for the ResNet-18 and one for the ResNet-50), the optimal performance is achieved through
SimCLR alone. A similar trend is evident in the BreakHis dataset, where SimCLR alone serves as the best pre-training
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Figure 3: Results visual representation for (a) PI-CAI dataset and (b) BreakHis dataset. Each plot represents the results
of a backbone in a 1-shot or 5-shot setting. We represented each fine-tuning scheme with a three-column group. In each
group, the three colours indicate the three pre-training approaches.
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Table 3: Test set results in terms of multi-class AUROC for the PI-CAI dataset. In all the experiments, the downstream
task consists of classifying the images into four ISUP classes. We experimented with performing meta-training on both
finer-grained classes (eight GS classes and eight breast tumor classes, denoted as fine) and coarser ones (four malignant
breast tumor classes, denoted as coarse). For each experiment, we highlighted the proposed and ablation approaches
accordingly.

Backbone Pre-training type Fine-tuning type
Meta-train on PI-CAI (fine)

(Proposed)
Meta-train on BreakHis (fine)

(Ablation)
Meta-train on BreakHis (coarse)

(Ablation)
Fully-supervised

(Ablation)
4-way 1-shot 4-way 5-shot 4-way 1-shot 4-way 5-shot 4-way 1-shot 4-way 5-shot Whole dataset

ResNet-18
Fully-supervised (Ablation) 0.585 0.763 0.594 0.659 0.588 0.626 0.487

SimCLR (Ablation) 0.624 0.779 0.600 0.667 0.592 0.727 0.515
SimCLR + IP-IRM (Proposed) 0.615 0.780 0.618 0.767 0.591 0.749 0.533

ResNet-50
Fully-supervised (Ablation) 0.587 0.740 0.582 0.683 0.578 0.616 0.509

SimCLR (Ablation) 0.628 0.790 0.581 0.744 0.605 0.732 0.553
SimCLR + IP-IRM (Proposed) 0.640 0.821 0.595 0.773 0.602 0.756 0.620

VGG-16
Fully-supervised (Ablation) 0.579 0.712 0.569 0.693 0.563 0.704 0.562

SimCLR (Ablation) 0.608 0.776 0.578 0.701 0.571 0.706 0.576
SimCLR + IP-IRM (Proposed) 0.626 0.803 0.603 0.720 0.593 0.717 0.585

DenseNet-121
Fully-supervised (Ablation) 0.549 0.635 0.597 0.727 0.599 0.726 0.560

SimCLR (Ablation) 0.597 0.730 0.566 0.685 0.589 0.709 0.611
SimCLR + IP-IRM (Proposed) 0.621 0.771 0.612 0.729 0.610 0.727 0.617

Table 4: Test set results in terms of binary AUROC for the BreakHis dataset. In all the experiments, the downstream
task consists of classifying the images into two classes (Benign vs. Malignant). We experimented with performing
meta-training on both finer-grained classes (eight breast tumor classes and eight GS classes, denoted as fine) and coarser
ones (four ISUP classes, denoted as coarse). For each experiment, we highlighted the proposed and ablation approaches
accordingly.

Backbone Pre-training type Fine-tuning type
Meta-train on BreakHis (fine)

(Proposed)
Meta-train on PI-CAI (fine)

(Ablation)
Meta-train on PI-CAI (coarse)

(Ablation)
Fully-supervised

(Ablation)
2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot Whole dataset

ResNet-18
Fully-supervised (Ablation) 0.510 0.678 0.499 0.669 0.570 0.661 0.843

SimCLR (Ablation) 0.694 0.763 0.556 0.654 0.601 0.675 0.862
SimCLR + IP-IRM (Proposed) 0.658 0.772 0.618 0.688 0.594 0.685 0.923

ResNet-50
Fully-supervised (Ablation) 0.576 0.783 0.490 0.735 0.568 0.746 0.928

SimCLR (Ablation) 0.754 0.793 0.615 0.739 0.615 0.692 0.847
SimCLR + IP-IRM (Proposed) 0.742 0.802 0.620 0.700 0.591 0.754 0.946

VGG-16
Fully-supervised (Ablation) 0.556 0.608 0.554 0.613 0.551 0.639 0.775

SimCLR (Ablation) 0.644 0.750 0.638 0.739 0.590 0.692 0.802
SimCLR + IP-IRM (Proposed) 0.725 0.791 0.712 0.777 0.588 0.775 0.853

DenseNet-121
Fully-supervised (Ablation) 0.565 0.620 0.584 0.675 0.568 0.651 0.673

SimCLR (Ablation) 0.613 0.761 0.597 0.699 0.596 0.669 0.883
SimCLR + IP-IRM (Proposed) 0.702 0.797 0.658 0.790 0.649 0.774 0.896

step for five 1-shot configurations (two for the ResNet-18, two for the ResNet-50 and one for the VGG-16). However,
for all 5-shot configurations except one, as well as the fully-supervised approach, consistent enhancements are observed
with SimCLR+IP-IRM pre-training.

Meta-fine-tuning results. In describing the meta-fine-tuning results, among the pre-training approaches (three for each
meta-fine-tuning strategy), we refer to the one that provided the best AUROC value. Concerning the PI-CAI dataset,
according to Table 3, the optimal performance is obtained by the proposed approach (first fine-tuning type column of
Table 3), yielding 0.780 AUROC for ResNet-18, 0.821 for ResNet-50, 0.803 for VGG-16 and 0.771 for DenseNet-121.
In terms of the ablation experiments, employing the meta-learning approach with granularity and dataset shift (second
fine-tuning type column in Table 3) provides the second-best performance, achieving the highest AUROC of 0.767
for ResNet-18, 0.773 for ResNet-50, 0.720 for VGG-16 and 0.729 for DenseNet-121. Lastly, when meta-training is
conducted on coarser classes (third fine-tuning type column in Table 3), classification performance is further degraded,
with an AUROC of 0.749 for ResNet-18, 0.756 for ResNet-50, 0.717 for VGG-16 and of 0.727 for DenseNet-121.

Exploring the BreakHis dataset, the proposed meta-fine-tuning configuration (first fine-tuning type column of Table 4)
yields the most favorable results for all the backbones, with AUROCs of 0.772, 0.802, 0.791 and 0.797 for ResNet-18,
ResNet-50, VGG-16 and DenseNet-121, respectively. Considering the ablation experiments, for ResNet-18, VGG-16
and DenseNet-121, the second-best performance is observed when both granularity and dataset source shift are present
(second fine-tuning type column of Table 4), resulting in 0.688, 0.777 and 0.790 AUROC, respectively. On the other
hand, for the same three backbones, the least favorable outcome is obtained when coarser-grained classes are employed
for meta-training (third fine-tuning type column of Table 4), yielding an AUROC of 0.685, 0.775 and 0.774, respectively.
Conversely, for ResNet-50, using coarser classes for meta-training produces superior results, achieving a 0.754 AUROC
compared to 0.739 AUROC obtained with finer-grained classes.

13



Disentagled Self-Supervision and Meta-Learning for Medical Images Few-Shot Classification

Fully-supervised fine-tuning results. As the last ablation experiment, we considered performing a fully-supervised
fine-tuning on the entire dataset. For the PI-CAI dataset, this fine-tuning strategy (results provided in the fourth
fine-tuning type column of Table 3) exhibits the worst performance w.r.t. all the 5-shot settings and even w.r.t. several
1-shot, especially when the proposed meta-fine-tuning approach is employed. Indeed, for the four backbones the
higher AUROC is 0.533, 0.620, 0.585 and 0.617, respectively. This underscores that the meta-learning approach
significantly enhances the generalization ability of both backbones, no matter the low-data regime, and that the proposed
meta-fine-tuning approach surpasses the fully-supervised one even in the 1-shot regime. Conversely, for the BreakHis
dataset, the fully-supervised fine-tuning approach (fourth fine-tuning type column of Table 4) exhibits considerable
strength, overcoming all the results provided by the meta-fine-tuning strategies. Indeed, this approach yields 0.923,
0.946, 0.853 and 0.896 AUROC for ResNet-18, ResNet-50, VGG-16 and DenseNet-121, respectively.

6 Discussion

In this work, we introduced an approach to enhance the performance of models trained in an FSL paradigm. The
proposed strategy comprises a pre-training step that utilizes SSL coupled with the IP-IRM algorithm, which forces
the feature disentanglement, ultimately guiding the model in learning more robust feature representation for the
downstream task and making it distinguish between invariant and task-specific features. In addition, we proposed an
enhanced meta-learning framework that leverages classes between the meta-training and meta-testing phases at different
granularity levels. This approach aims to improve the model’s generalization ability by exposing it to a more diverse
and structured meta-training phase.

To evaluate the efficacy of the proposed pre-training strategy, we conducted two additional ablation experiments, i.e., a
vanilla SSL method and a classical fully-supervised approach. As for the pre-training phase, to assess the effectiveness
of the proposed meta-learning framework, we explored three additional ablation fine-tuning experiments as well, namely
two meta-fine-tuning and a fully-supervised fine-tuning experiment. We delve into the meta-fine-tuning experiments in
the following:

• Same source dataset with granularity shift (Proposed): Both meta-training and meta-testing sets derive
from the same source dataset, but the granularity of classes differs. We employed finer-grained classes for
meta-training to promote detailed feature learning and coarser-grained ones for meta-testing to assess the
model’s ability to generalize to broader categories.

• Different source datasets with granularity shift (Ablation): Meta-training and meta-testing sets are drawn
from distinct source datasets, but the granularity relationship between the classes remains consistent as in the
previous case. This approach aims to highlight the effectiveness of the proposed granularity shift even when
meta-training and meta-testing have different source datasets.

• Different Source Datasets with granularity consistency (Ablation): Meta-training and meta-testing sets
stem from different source datasets, but the granularity between classes is maintained consistently. We designed
this approach to evaluate whether reducing class granularity during the meta-training impacts the model’s
generalizability in the subsequent meta-testing phase.

In terms of pre-training, concerning the PI-CAI dataset, the results presented in Table 3 demonstrate that using the
IP-IRM algorithm consistently provides the best-performing outcomes across all fully-supervised and 5-shot fine-tuning
experiments. However, in the 1-shot experiments, the SimCLR alone outperforms the SimCLR+IP-IRM in three out
of twelve configurations. Regarding the BreakHis dataset, the proposed pre-training approach exhibits consistent
improvement in most of the experiments. However, similar to the PI-CAI dataset, some 1-shot experiments reveal that
SimCLR alone yields better results w.r.t. the IP-IRM algorithm. One possible explanation for this behaviour is that
during the pre-training phase, the IP-IRM algorithm may lead to an over-disentangled data representation, resulting in
excessively specialized representations and overly sensitive to variations in the training set. Consequently, in a 1-shot
setting where the model must learn from only one example and may not have the opportunity to grasp all relevant
features, it might struggle to generalize effectively, thus providing worse performance.

Regarding the fine-tuning phase on the PI-CAI dataset, it is clear that, for all backbones, the fully-supervised approach
establishes a lower bound, suggesting that the traditional training methodology alone is inadequate for this task. Indeed,
in all the experiments, the proposed meta-fine-tuning scheme exceeds the fully-supervised performance even in a
1-shot setting. In particular, the proposed meta-learning scheme delivers the best-performing results in both 1-shot and
5-shot scenarios, achieving a peak classification performance of 0.780, 0.821, 0.803 and 0.771 multiclass AUROC
for ResNet-18, ResNet-50, VGG-16 and DenseNet-121 models, respectively. For each backbone, we present the
ROC curves for a randomly selected meta-testing episode of the best-performing combination of pre-training and
meta-fine-tuning schemes in Fig.4a, Fig.4b, Fig.4c, and Fig.4d.
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In contrast, for the BreakHis dataset, the fully-supervised model demonstrates strong generalization capabilities. This
robust performance may be attributed to the lower complexity of the task compared to the classification of prostate cancer
aggressiveness, stemming from several reasons. Firstly, the breast malignity classification task involves distinguishing
only two classes in contrast to the four classes of the prostate case. Additionally, while microscopic images of breast
cancer typically exhibit the presence of the disease throughout the image with cell nuclei indicating the presence of
the tumor [56] highlighted compared to background structures [57], prostate MRI images depict lesions typically
occupying only a few pixels within the image [58]. Furthermore, the lesion signal in prostate T2-weighted images
may be isointense w.r.t. to the surrounding tissues [59], making its detection and categorization more challenging
for the model. Lastly, in our PI-CAI experiments, we deliberately introduced an additional layer of complexity by
explicitly considering different vendors between training and evaluation data. This aspect provides an additional level of
complexity not present in the BreakHis dataset. Consequently, for the BreakHis dataset, the restricted data availability
during meta-learning training tends to negatively impact the overall performance despite the enhanced generalization
capabilities of the meta-learning framework.

Among the meta-learning experiments, the proposed meta-learning strategy performs best in both 1-shot and 5-shot
settings, achieving peak performance with an AUROC of 0.772, 0.802, 0.791 and 0.797 for ResNet-18, ResNet-50,
VGG-16 and DenseNet-121, respectively. We illustrate the ROC curves for a randomly chosen meta-testing episode
of the best-performing pre-training and meta-finetuning combination for each backbone in Fig. 4e, Fig. 4f, Fig. 4g
and Fig. 4h. Concerning the two ablation meta-learning experiments, for ResNet-18, VGG-16 and DenseNet-121, the
performance trend is generally coherent, i.e., the performance degrades when considering a different meta-training
source and especially when using a coarser class set for meta-training. The only exception is provided by the ResNet-50
backbone where, in the 5-shot setting, meta-training on coarser classes yields a higher AUROC (0.754) compared to
meta-training on finer ones (0.739 AUROC).
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(d) DenseNet-121, PI-CAI dataset
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Figure 4: ROC curves for one random episode of meta-testing of each backbone pre-trained with SimCLR+IP-IRM and
meta-fine-tuned in a 5-shot setting. Meta-training and meta-testing classes have the same source dataset (PI-CAI or
BreakHis).

Overall, our experiments demonstrate the effectiveness of our proposed methods, which boost the FSL capabilities by
embedding a disentangled SSL pre-training step and a novel meta-training scheme, outperforming most of the ablation
experiments in both clinical challenges. Specifically, the disentangled SSL pre-training step proves to be particularly
effective as the training data increases, whereas, in a 1-shot setting, using vanilla SimCLR may sometimes provide better
performance. Additionally, when the classification task is particularly challenging, as in the PI-CAI dataset, the proposed
strategy significantly improves the classification capabilities of the model compared to a classical fully-supervised
approach on the entire dataset. Furthermore, our results on the PI-CAI dataset demonstrate the strong generalization
capabilities of the proposed approach even when training and evaluation data come from different vendors. Either way,
when the task is easier, as for the BreakHis dataset, and the fully-supervised baseline is stronger, our approach allows
for achieving competitive classification capabilities in a few-data regime. Finally, our findings demonstrate that even
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when meta-training and meta-testing data originate from different sources (unrelated meta-training and meta-testing
classes), generating meta-training episodes from finer class sets contributes to improved generalization capabilities.

7 Conclusions

In this study, we proposed a novel method for boosting the capabilities of FSL-trained models by leveraging disentangled
SSL and an enhanced meta-learning framework, and we demonstrated its effectiveness through extensive experiments
and ablation studies on relevant medical imaging tasks. Furthermore, the diversity of clinical scenarios experimented
demonstrated the versatility and potential broad application of our approach. Future work may delve into enriching
the meta-learning algorithm’s intrinsic capabilities by generating more informative prototypes leveraging support
embeddings hallucination.
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