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Executive Summary

Deliverable 6.1, led by partner RADBOUDUMC, titled ”Development of Vendor-Specific AI Models,” de-
scribes the work performed in Tasks 6.1, 6.2, and 6.3 in WP6. Task 6.1 describes the ”Prospective data
upload to the platform” (Leader: RADBOUDUMC, Participants: FPO, FCHAMPALIMAUD, HULAFE,
UNIPI, IPC, HACETTEPE, GAONA St Savvas, RMH, QUIRONSALUD, IDIBGI, JCC, NCI)”. Task 6.2
describes the ”Deep learning methods for semi-automatic segmentation” (Leader: QUIBIM, Participants:
ADVANTIS, FORTH, FCHAMPALIMAUD). Task 6.3 describes the ”Development of vendor-specific models
for diagnostics, prognosis, and treatment” (Leader: RADBOUDUMC, Participants: FCHAMPALIMAUD,
FPO, HULAFE). The work performed significantly contributes to achieving especially three of seven objec-
tives:

1 ”Develop a comprehensive data resource related to prostate cancer for clinical care, research and
innovation.”

3 ”Develop and Deploy Novel AI Models to Address the Unanswered Clinical Questions regarding
Prostate Cancer Management across the Disease Continuum.”

5 ”Validate, verify and explain or interpret the performance of AI models in order to increase trust and
render them applicable in clinical practice.”

The WP6 concept is to collect and apply prospective data for two purposes. Firstly, prospective, per-
device/center data allows for fine-tuning of trained AI master models (WP5) to a specific center or device
that is hypothesized to optimize performance. Secondly, prospective data is new data that allows for robust
validation of developed AI and segmentation models (WP5) on unseen data.

In this Deliverable 6.1, we report on the complete execution of the collection of prospective data (T6.1)
and our strategy to mitigate earlier reported delays in data ingestion. We report the work prospectively
validating previously developed (WP5) segmentation and detection algorithms for all eight use cases (T6.2).
We report on our extensive scientific explorations of the unique vendor-specific concepts in the ProCAncer-
I (T6.3). Vendor-specific fine-tuning is hypothesized to improve diagnostic performance over the master
models developed in WP5. Elaborate experimentation work on radiomics AI shows that prospective fine-
tuning indeed shows the expected improvement. We are also reporting ongoing extensive experiments with
deep learning vendor-specific modeling. The results show a mix of benefits to deep learning AI master
models that have successfully generalized over all vendors. We have discovered dependencies on the amount
of data available, the varying case complexity, and the varying image quality ranges. These breakthrough
observations allow for an AI technology-based adaptation of ProCAncer-I concepts and will enable the
scientific community to choose strategies that lead to the best possible AI models for validation in WP7 to
start ”addressing the unanswered clinical questions”. The results are being submitted to scientific meetings
and peer-reviewed journals.
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Chapter 1

Prospective Data Collection

1.1 Chapter Summary

In this chapter, we show that we successfully collected prospective data, which enabled us to proceed with the
tasks outlined in this Deliverable. We had to make slight adjustments due to data collection challenges that
have been reported earlier. While data collection is a critical component of AI development, our experiences
within this project, as well as various other EU initiatives, have revealed that it encompasses a broader range
of considerations than initially anticipated. While the original retrospective data was successfully obtained
(as detailed in Deliverable 5.1), the subsequent delay has impacted prospective data collection.

To address this, we have implemented a mitigation strategy involving modifying the criterion that initially
distinguished data between retrospective and prospective cohorts. Per the project proposal, prospective data
collection was defined as the enrollment of patients including their clinical and MRI data after January 2022.
After internal deliberation during various meetings, it was determined that prospective cases should be
defined as data satisfying the ground truth after January 2022. Consequently, this approach allows for
including, for example, patients with negative MRI results from 2021 yet fulfilling the one-year follow-up
criteria in 2022.

Moreover, in light of the delays and challenges faced by a few centers in enrolling participants and meeting
the criteria for reference standards, a decision was made to permit the inclusion of additional retrospective
patients in a separate data bucket, separate from the retrospective data as obtained and outlined during
WP5 developments.

These measures have collectively enabled the acquisition of sufficient (prospective) data, facilitating the
execution of all experiments within WP6.

1.2 Current Status of Prospective Data Collection

Enrolment of prospective patients started in each clinical center between May 2021 and July 2022 after each
local Ethics Committee approved the study protocol. At the time being, the following figure coming from
the ProstateNET monitoring service visualizes the current status of prospective data upload.

The expected total number of prospective patients to be collected and uploaded on the ProstateNET is
about 4,500, corresponding to 8,700 data points. At the end of October 2023, the number of prospective
cases available on the platform was 1,113 (25% of the total number of prospective cases) (Figure 1.1). All
clinical data partners have started with the enrollment of prospective data, and almost all clinical data
partners are in the final stages of uploading prospective cases.

In Figure 1.2, we observe the distribution of cases among the ProCAncer-I Use Cases (UC). Notably,
the number of cases allocated to UC1 (detection of prostate cancer) and UC2 (characterization of prostate
cancer) surpasses the number of cases in the other UCs. This distribution can be explained by the fact that
the ground truth for UC1 and UC2 can be satisfied based on biopsy outcomes, while the remaining use cases
necessitate a more extended patient follow-up period. For instance, confirming or excluding biochemical
relapse after treatment requires a longer observation period, thereby delaying the inclusion of patient data
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Figure 1.1: Prospective Data Upload Status (obtained end of October 2023)

for the corresponding use cases.
It is anticipated that the number of cases in the other use case categories will increase in the following

months as the necessary extended follow-up periods to establish the ground truth for these use cases become
available.

Figure 1.2: Prospective Data Distribution Among ProCancer-I Use Cases (obtained end of October 2023)

1.3 Additional Retrospective Data Upload for Validation

A few centers have raised challenges in prospective data enrollment, resulting in a reduced estimation of total
patients available to upload as prospective data. Together with the consortium and in discussion with the
Management Board, a decision was made to permit the inclusion of supplementary retrospective patients.
These additional retrospective cases will be carefully compiled distinctively from the retrospective repository
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compiled in WP5 and will be marked with the specific purpose of model validation. By incorporating this
supplementary data, clinical partners can effectively meet their initial projections of data contribution,
ensuring that this data is preserved for the same purpose as the prospective data.

In light of this decision, a new version of the electronic Case Report Form (eCRF) was created and
subsequently made available to four out of the thirteen participating centers within the Consortium. As
of the most recent update on October 30, 2023, these centers include FChampalimaud, IPC, RMH, and
RadboudUMC.

Figure 1.3: eCRF version with the possibility to tag retrospective cases for validation

1.4 Agreements on Ongoing Prospective Data Curation

The collection of prospective data will continue in the coming half year. The Management Board, in agree-
ment with the whole Consortium, set the next deadlines for the prospective enrolment, i.e., 50% by the end
of November 2023, 80% by the end of February 2024, with completion of the collection by May 2024.

Figure 1.4: Overview of number prospective data uploaded and ongoing uploading agreements
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Chapter 2

Prospective Validation of the
Segmentation Master Models
(Experiments Set 1)

2.1 Chapter Summary

In this chapter we present the evaluation of the segmentation models models developed in D5.3 by FCHAM-
PALIMAUD on prospective data. It can be noted that for both whole gland and zone segmentations, the
performance is similar, while for lesions segmentation, we see a considerable improvement, which is most
likely due to the small number of prospective annotated samples available. We do not provide a description
of the training/data preparation since it was previously specified in D5.3.

2.2 Methods

Data Description

For prospective validation, cases were downloaded from the ProstateNet platform on October 11th 2023.
An overview of the data, stratified by manufacturer, can be seen in Tab. 2.1. Since whole gland masks are
generated by merging both Peripheral (PZ) and Transitional+Center (TZ) masks, they share the same data
composition.

Analysis Description

For the prospective data validation presented in this chapter, we use only the FCHAMPALIMAUD ProstateAll
models developed in D5.3. We test exclusively the full resolution T2W models as those were the best ones
during retrospective evaluation. Additionally, we perform a fairness analysis regarding data provider.

Total Siemens Philips GE
Gland 211 29 176 6

Lesions 19 7 8 4

Table 2.1: Stratification of prospective samples by manufacturer for Gland and Lesion segmentation.
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Vendor-Specific AI Models
CHAPTER 2. PROSPECTIVE VALIDATION OF THE SEGMENTATION MASTER MODELS

(EXPERIMENTS SET 1)

2.3 Results

In order to understand if our segmentation models were capable of generalizing to new, prospective data, we
tested models that performed the best on the retrospective data - Full resolution ProstateAll nnUNets - on
211 cases, for both Whole Gland and Zone segmentations, and 19 cases for lesions segmentation.

Table 2.2 and Figure 2.1 show the obtained results. As it can be observed, the results are fairly similar to
the ones obtained during retrospective evaluation, with Whole Gland showing the largest performance drop
of ≈ 4%, Peripheral Zone dropping ≈ 2%, Transitional Zone gaining ≈ 1%, and lastly, Lesion segmentation
showing a huge performance increase, of ≈ 27%. Analysing Fig. 2.1, it is clear that the performance of
the lesion segmentation model is quite broad, both failing to segment anything in 3 out of 19 cases, and
producing Dice scores above 0.8 for 9 out of 19 cases.

When comparing the performance for each of the providers ( Fig. 2.2 ) it can be observed that over-
all, regardless of the segmentation task, all providers show similar scores, that is, apart from RMH, that
shows considerably worse performance for all metrics regarding lesion segmentation. All zero and low scores
obtained are in cases provided by that institution, which could indicate that there is some localized issue
regarding the provided lesion annotation.

Additionally, it is also possible to know that the lesion segmentation models are capable of detecting the
lesions, showing a very high Recall, of 0.86, for predictions above an IoU of 10%. In fact, if not for the
outlier performance solely on RMH data, they would have a perfect Recall of 1.

Whole Gland Peripheral Zone Transitional Zone Lesions
Dice 0.88± 0.01 0.78± 0.01 0.87± 0.01 0.66± 0.06
HD 15.7± 1.36 19.19± 1.35 12.65± 0.88 30.15± 10.77

ASSD 0.57± 0.05 0.68± 0.04 0.79± 0.2 11.02± 8.17
RAVD 0.15± 0.02 0.21± 0.04 0.63± 0.33 0.09± 0.16
Recall 1 1 1 0.86

Table 2.2: Mean prospective results stratified by segmentation task.
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(EXPERIMENTS SET 1)
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Figure 2.1: Distribution of the prospective results stratified by segmentation task.
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Figure 2.2: Distribution of the prospective results stratified by data provider.

10



Vendor-Specific AI Models
CHAPTER 2. PROSPECTIVE VALIDATION OF THE SEGMENTATION MASTER MODELS

(EXPERIMENTS SET 1)

2.4 Discussion

The results obtained from the prospective validation of the segmentation models show that there is no
deterioration in performance, with whole gland and prostate zone models producing results similar to those
obtained on retrospective data, and the lesion segmentation models showing a considerable performance
improvement. Alas, this was done on a very small sample of prospective cases, which raises some concerns
about the real applicability of the models.
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Chapter 3

Prospective Validation of Radiomics
Master Models (Experiments Set 1)

3.1 Chapter Summary

Each FCHAMPALIMAUD model developed in Deliverable 5.3 (Chapter 4: Radiomics Master Models) was
validated with prospectively collected data. All prospective data preprocessing was exactly the same as in
the retrospective dataset, so the preprocessing steps described in the following section (Methodology) are
identical to those found in Deliverable 5.3 (Chapter 4: Radiomics Master Models). In this Chapter, we
present the performance results on the prospective cases, which reflect the behaviour of these models on
contemporary data.

3.2 Methods

Prospective Data Description

Our dataset consisted of T2W, DWI and ADC exams labelled as prospective in the ProstateNet image
archive created under the scope of the ProCAncer-I project. The exams were acquired in the initial stages
of the disease continuum. Ethics committee approval and patient consent were obtained by each clinical
partner.

Feature Extraction

The extraction of radiomic and deep features was performed following the same methodology and parameters
as described in Deliverable 5.3, including, for the radiomic features, the co-registration of T2W and DWI
sequences and the automatic generation of the whole prostate gland segmentations. The quality of which,
was assessed by an expert radiologist. Those results can be found in deliverable 5.3.

The clinical variables included for each use case are described in Deliverable 5.3. Cases with missing data
were removed from the prospective validation cohort.

Model Validation

The master models developed and presented in deliverable 5.3 (Chapter 4: Radiomics Master Models) are
summarized in Tables 3.1 and 3.2.

The master models were validated in a similar manner to the one described in Deliverable 5.3. We present
the performance on the prospective cohort in terms of AUC, Sensitivity/Recall, Specificity, Precision, F1,
F2 and Cohen’s Kappa. Additionally, a fairness analysis is also conducted.

12
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T2W, DWI
and ADC

CatBoost 3899 2077 1365 457 0.7347 0.7931 0.4859 0.2158

2 ISUP {1,2,3} vs ISUP {4,5} radiomics
T2W, DWI
and ADC

LightGBM 4107 2077 1365 665 0.8427 0.5313 0.8802 0.2552

5
biochemical recurrence
after RP at follow-up.
Pre-surgery prediction

hybrid T2W CatBoost 709 429 182 98 0.6899 0.7143 0.5366 0.0038

5
biochemical recurrence
after RP at follow-up.
Post-surgery prediction

hybrid
noERC

T2W CatBoost 676 429 182 65 0.8188 0.8571 0.5854 0.0528

Table 3.1: Description of master models developed in workpackage 5.3. for each of the larger UCs

Train size CV performanceSmall
Use Cases

Target definition Data type
MRI

volumes
ML

algorithm Full Siemens Philips GE AUC Sen Spe pdt

3 metastasis at 6 months follow-up
hybrid
noERC

DWI SGD 62 31 22 9 0.8077 0.6155 1 0.5

6
biochemical recurrence
after RT at follow-up

raddeep
noERC

DWI SGD 73 59 11 3 0.8393 0.8056 0.873 0.5

7a urinary toxicity T2W sigmoid SVM 136 0.6988 0.7323 0.606 0.5?
7a rectal toxicity T2W sigmoid SVM 136 0.7835 0.7654 0.6774 0.5?

8 left active surveillance
raddeep
noERC

ADC SGD 92 81 10 1 0.6905 0.6667 0.7143 0.5

7b QoL (low, intermediate and high) radclin T2W CatBoost 198 47 151 0 0.5489 - - -

Table 3.2: Description of master models developed in workpackage 5.3. for each of the smaller UCs
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3.3 Results

Data Description

The total prospective dataset is composed of 530 patients (UC 2). Of these, 21 patients are also suitable for
UC3, the prediction of metastasis, 47 patients for UC 5, the biochemical recurrence use case, and 30 patients
for UC 8, the prediction of early withdrawal from the active surveillance program. The dataset size changes
during the workflow are described in Table 3.3 for each use case.

UC 2 UC 3 UC 5 UC 6 UC 7a UC 7b UC 8
Initial number of patients 530 21 47 0 0 0 30
T2 available 494 21 47 - - - 30
T2 segmentation 494 21 47 - - - 30
T2 extraction 492 21 46 - - - 30
Available ground truth 492 21 46 - - - 30
DWI exists 487 21 46 - - - 30
DWI exists and T2 mask available 487 21 46 - - - 30
DWI extraction 469 21 45 - - - 30
Available ground truth 469 21 45 - - - 30
ADC exists 489 21 46 - - - 30
ADC exists and T2 mask available 489 21 46 - - - 30
ADC extraction 466 21 45 - - - 30
Available ground truth 466 21 45 - - - 30

Table 3.3: Data workflow, specifying the number of prospective patients in each use case after each step.

For use cases 6, 7a and 7b, no prospective patients were available. For UC 8, as the model requires no
endorectal coil in the exam, only 18 patients were available. All of these 18, had a negative ground truth and
the model correctly predicted all of them, so no further results are shown. For UC 3, as the model requires
no endorectal coil in the exam, only 12 patients were available. The performance on this small cohort is
shown, however there were not enough patients to conduct a fairness analysis.

Use Case 2 - ISUP 1 vs ISUP 2,3,4,5

Model Performance

The prospective cohort for UC 2 included 466 patients. Defining the ground truth as ISUP 1 vs ISUP 2, 3,
4 and 5 resulted in 184 negative and 282 positive cases. The master model’s predictions are shown in the
confusion matrix in Figure 3.1 and the model’s performance is described in Table 3.4, where the hold-out
test set performance (previously shared in D5.3.) is included for comparison purposes. The results show the
model was able to generalize to the prospective cohort, with minimal differences in performance. Overall,
the performance found on the hold-out test set was reproduced and confirmed in the prospective cohort.

Fairness Analysis

Tables 3.5 to 3.11 show the master model’s performance on different subsets of the prospective test set.
Regarding scanner manufacturer (Table 3.5), the model is showing robustness, with its performance on the
different cohorts not differing more than 10% across all performance metrics. For cases where an endorectal
coil is used, there is a significant reduction in Precision (15.6% less precise), but this is followed by a 6.7%
increase in Recall, which overall results in a very similar F-score.

Regarding lesion location, we see a significant drop in both precision and recall when an index lesion is
not located in the peripheral zone (Table 3.7), which results in an F-score almost 16% lower when compared
to a patient with an index lesion located in this area. This is not the case, however, for the transitional zone
(Table 3.8), where the performance metrics for both subcohorts are not more than 5% apart, indicating strong
robustness. Finally, regarding the central zone and anterior stroma (Tables 3.9 and 3.10), the relatively small
number of cases prevent us from drawing definitive conclusions, however, the model does seem to perform
better in the minority subcohorts, which might suggest robustness.
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Figure 3.1: Confusion matrix of the
radiomics uc2 T2&DWI&ADC LGBM
model’s predictions on the prospective
cohort.

Hold-out
test set

Prospective
cohort

AUC 0.7648 0.7364
Sensitivity/Recall/TPR 0.6510 0.7163

Specificity/TNR 0.7647 0.6196
Precision/PPV 0.8899 0.7426

F1 0.7519 0.7292
F2 0.6879 0.7214

CohensKappa 0.3305 0.3327

Table 3.4: Multi-metric performance of the ra-
diomics uc2 T2&DWI&ADC LGBM model on the
held-out test set and the prospective cohort.

manufacturer Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

SIEMENS 0.6931 0.7524 0.7619 0.7500 101 37 64 2077
PHILIPS 0.7163 0.6759 0.7604 0.6577 215 104 111 1365

GE MEDICAL
SYSTEMS

0.6133 0.7486 0.7168 0.7570 150 43 107 665

Table 3.5: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by scanner manufacturer.

Endorectal coil Accuracy Fbeta 2 Precision Recall
Test
counts

Test counts
target 0

Test counts
target 1

Train
counts

Patients without ERC 0.7003 0.7186 0.7742 0.7059 397 159 238 3899
Patients with ERC 0.5507 0.7359 0.6182 0.7727 69 25 44 208

Table 3.6: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of endorectal coil.

index lesion
location PZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.6896 0.7401 0.7699 0.7331 393 142 251 3258
0 0.6164 0.5732 0.5455 0.5807 73 42 31 849

Table 3.7: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.6803 0.7274 0.7500 0.7220 391 150 241 3284
1 0.6667 0.6863 0.7000 0.6829 75 34 41 823

Table 3.8: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the transitional zone.

Regarding country of origin (Table 3.11), the model seems to perform in a similar manner, overall.
It is worth pointing out the lowest performance, which was achieved with Lithuanian data. Here, the
model achieved a perfect precision, but an extremely low recall. The highest performance was reached with
Portuguese data, however the small size of the subcohort prevents us from drawing definitive conclusions.
Finally, the model exceeded expectations with data from Greece, which was almost completely absent during
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index lesion
location CZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.6733 0.7138 0.7356 0.7085 453 182 271 3919
1 0.8462 0.9091 0.9091 0.9091 13 2 11 188

Table 3.9: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the central zone.

index lesion
location AS

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.6741 0.7132 0.7375 0.7074 451 181 270 3859
1 0.8000 0.9016 0.8462 0.9167 15 3 12 248

Table 3.10: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the anterior stroma.

training. Despite this, on the Greek subcohort the model achieved the second highest F-score (after Portugal)
of 0.8781.

country Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Netherlands 0.6833 0.7143 0.6969 0.7188 60 28 32 1622
Portugal 0.8182 0.9000 0.9000 0.9000 11 1 10 576
Lithuania 0.7922 0.1351 1.0000 0.1111 77 59 18 466

UK 0.6000 0.7229 0.8000 0.7059 20 3 17 447
Turkey 0.6346 0.6965 0.8485 0.6667 52 10 42 359
Italy 0.5541 0.7317 0.6207 0.7659 74 27 47 281
Spain 0.6309 0.7026 0.7963 0.6825 84 21 63 243
Greece 0.7500 0.8781 0.7313 0.9245 88 35 53 18

Table 3.11: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by country of origin of the data.

Use Case 2 - ISUP 1,2 vs ISUP 3,4,5

Model Performance

The prospective cohort for UC 2 included 395 patients, after exclusion of 71 cases where the MRI examination
was performed with an endorectal coil. Defining the ground truth as ISUP 1 or 2 vs ISUP 3, 4 and 5 resulted
in 292 negative and 103 positive cases. The master model’s predictions are shown in the confusion matrix in
Figure 3.2 and the model’s performance is described in Table 3.12, where the hold-out test set performance
(previously shared in D5.3.) is included for comparison purposes.

Overall, the model was able to generalize to the prospective cohort. In terms of precision, F1, F2 and
Cohen’s Kappa the performance on the prospective data was no more than 3 percentual points away from
the hold-out test set performance. Additionally, for the same probability decision threshold, we observe a
minor reduction in specificity (6% lower), but a significant rise in sensitivity (10% higher).

Fairness Analysis

Tables 3.13 to 3.18 show the master model’s performance on different subsets of the prospective test set.
Regarding scanner manufacturer (Table 3.13), the model shows similar recall scores in the three subcohorts,
however, Phillips cases stand out in terms of precision, scoring 10% higher than Siemens and GE.

Regarding lesion location, we see a consistent rise in performance on the minority sub-cohorts: index
lesion located in the TZ, CZ or AS (Tables 3.8, 3.9 and 3.10, respectively). Though for the CZ and AS
the relatively small number of cases prevents us from drawing definitive conclusions. In terms of PZ lesion
location we see a reduction in precision and an increase in recall, when the index lesion is not located in the
PZ, but, overall, this results in a similar F-score.
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Figure 3.2: Confusion matrix of the
radclin uc2 T2&DWI&ADC noERC
CatBoost model’s predictions on the
prospective cohort.

Hold-out
test set

Prospective
cohort

AUC 0.7347 0.7801
Sensitivity/Recall/TPR 0.7931 0.8932

Specificity/TNR 0.4859 0.4281
Precision/PPV 0.3866 0.3552

F1 0.5198 0.5083
F2 0.6553 0.6855

CohensKappa 0.2128 0.2156

Table 3.12: Multi-metric performance of the rad-
clin uc2 T2&DWI&ADC noERC CatBoost model on
the held-out test set and the prospective cohort.

manufacturer Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

SIEMENS 0.5149 0.6667 0.3188 0.9167 101 77 24 2077
PHILIPS 0.6093 0.7162 0.4077 0.8833 215 155 60 1365

GE MEDICAL
SYSTEMS

0.4304 0.6250 0.2833 0.8947 79 60 19 457

Table 3.13: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the prospec-
tive test set, divided by scanner manufacturer.

index lesion
location PZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.5375 0.6894 0.3673 0.8829 333 239 94 3077
0 0.6129 0.6522 0.2727 1 62 53 9 822

Table 3.14: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the prospec-
tive test set, divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.5333 0.6643 0.3410 0.8706 330 245 85 31134
1 0.6308 0.7895 0.4286 1 65 47 18 786

Table 3.15: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the prospec-
tive test set, divided by presence/absence of lesion in the transitional zone.

index lesion
location CZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.5431 0.6688 0.3387 0.8842 383 288 95 3716
1 0.7500 0.9302 0.7273 1 12 4 8 183

Table 3.16: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the prospec-
tive test set, divided by presence/absence of lesion in the central zone.

Regarding country of origin (Table 3.18), the model shows consistently high recall, but fluctuating pre-
cision. The highest performances are reached with data from Italy, followed by UK, Turkey and Greece, all
displaying F-scores above 0.7. The worst performances were surprisingly found with cases from Lithuania
and Portugal, which were respectively the third and second most represented cohorts seen during training.
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index lesion
location AS

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.5474 0.6746 0.3455 0.8854 380 284 96 3653
1 0.6000 0.8537 0.5385 1 15 8 7 246

Table 3.17: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the prospec-
tive test set, divided by presence/absence of lesion in the anterior stroma.

country Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Netherlands 0.4833 0.6771 0.2955 1 60 47 13 1622
Portugal 0.4546 0.4546 0.1429 1 11 10 1 576
Lithuania 0.7792 0.3704 0.1053 1 77 75 2 466

UK 0.7000 0.7692 0.5455 0.8571 20 13 7 447
Turkey 0.5385 0.7500 0.4500 0.9000 52 32 20 359
Spain 0.4405 0.6522 0.3231 0.8750 84 60 24 243
Italy 0.6667 0.8333 0.5000 1 3 2 1 73
Greece 0.4773 0.7109 0.4225 0.8571 88 53 35 18

Table 3.18: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the prospec-
tive test set, divided by country of origin of the data.

Use Case 2 - ISUP 1,2,3 vs ISUP 4,5

Model Performance

The prospective cohort for UC 2 included 466 patients. Defining the ground truth as ISUP 1, 2 or 3 vs ISUP
4 and 5 resulted in 397 negative and 68 positive cases. The master model’s predictions are shown in the
confusion matrix in Figure 3.3 and the model’s performance is described in Table 3.19, where the hold-out
test set performance (previously shared in D5.3) is included for comparison purposes.

Figure 3.3: Confusion matrix of the
radiomics uc2 T2&DWI&ADC LGBM
model’s predictions on the prospective
cohort.

Hold-out
test set

Prospective
cohort

AUC 0.8427 0.7564
Sensitivity/Recall/TPR 0.5313 0.4412

Specificity/TNR 0.8802 0.8919
Precision/PPV 0.4595 0.4109

F1 0.4928 0.4255
F2 0.5152 0.4348

CohensKappa 0.3870 0.3233

Table 3.19: Multi-metric performance of the ra-
diomics uc2 T2&DWI&ADC LGBM model on the
held-out test set and the prospective cohort.

A slight reduction is observable in all performance metrics (no larger than 9%) with the exception of
Specificity, which shows an increase of 1%.

Fairness Analysis

Tables 3.20 to 3.26 show the master model’s performance on different subsets of the prospective test set.
Regarding scanner manufacturer (Table 3.20), there are clear differences across subcohorts. The lowest
performance is obtained with GE cases, which can be partly explained by the lowest performance on ERC
exams (Table 3.21) since most GE exams were acquired with endorectal coil.
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manufacturer Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

SIEMENS 0.7921 0.6000 0.3333 0.7500 101 89 12 2077
PHILIPS 0.8930 0.4676 0.6842 0.4333 215 185 30 1365

GE MEDICAL
SYSTEMS

0.7533 0.3053 0.2963 0.3077 150 124 26 650

Table 3.20: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by scanner manufacturer.

Endorectal coil Accuracy Fbeta 2 Precision Recall
Test
counts

Test counts
target 0

Test counts
target 1

Train
counts

Patients without ERC 0.8363 0.4856 0.4091 0.5094 397 344 53 3897
Patients with ERC 0.7681 0.2239 0.4286 0.2000 69 54 15 194

Table 3.21: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of endorectal coil.

Regarding lesion location, the model seems relatively robust with variations of F-score no greater than
10%. On both PZ and TZ (Tables 3.22 and 3.23) we see a slight increase in recall in the minority sub-cohorts.
Regarding the central zone and anterior stroma (Tables 3.24 and 3.25), the relatively small number of cases
prevent us from drawing definitive conclusions.

index lesion
location PZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.8219 0.4355 0.4355 0.4355 393 331 62 3245
0 0.8493 0.4286 0.2727 0.5000 73 67 6 846

Table 3.22: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.8312 0.4152 0.4035 0.4182 391 336 55 3271
1 0.8000 0.5147 0.4375 0.5385 75 62 13 820

Table 3.23: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the transitional zone.

index lesion
location CZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.8344 0.4235 0.3881 0.4333 453 393 60 3903
1 0.5385 0.5263 0.6667 0.5000 13 5 8 188

Table 3.24: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the central zone.

index lesion
location AS

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.8359 0.4299 0.4091 0.4355 451 389 62 3844
1 0.5333 0.4839 0.4286 0.5000 15 9 6 247

Table 3.25: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by presence/absence of lesion in the anterior stroma.

The highest performance (0.8333 F-score) is found on cases from Lithuania and UK, however these
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subcohorts contain one single positive case each, which immediately results in a perfect recall score. Thus,
this is not a reliable performance estimate as it is highly influenced by the perfect recall obtained. Following
these, are the Netherlands and Greece (third and fourth highest performances), which represent respectively,
the most and the least represented subsets during training.

country Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Netherlands 0.7167 0.6034 0.3182 0.7778 60 51 9 1622
Portugal 0.9091 0 0 0 11 10 1 575
Lithuania 0.9870 0.8333 0.5000 1.0000 77 76 1 466

UK 0.9500 0.8333 0.5000 1.0000 20 19 1 447
Turkey 0.6923 0.5000 0.5000 0.5000 52 36 16 362
Italy 0.7568 0.2083 0.3750 0.1875 74 58 16 266
Spain 0.7857 0.2174 0.1429 0.2500 84 76 8 243
Greece 0.8977 0.5479 0.8889 0.5000 88 72 16 15

Table 3.26: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the prospective test
set, divided by country of origin of the data.

Use Case 3

Model Performance

The prospective cohort for UC 3 included 22 patients, however, only 12 of them had exams taken without
endorectal coil. The master model’s predictions on this small cohort are shown in the confusion matrix in
Figure 3.4 and the model’s performance is described in Table 3.27, where the hold-out test set performance
(previously shared in D5.3) is included for comparison purposes.

Figure 3.4: Confusion matrix of the
hybrid uc3 DWI noERC SGD model’s
predictions on the prospective cohort.

Hold-out
test set

Prospective
cohort

AUC 0.8077 0.6286
Sensitivity/Recall/TPR 0.6155 0.2857

Specificity/TNR 1 0.8000
Precision/PPV 1 0.6667

F1 0.7595 0.4000
F2 0.6657 0.3226

CohensKappa 0.3466 0.0769

Table 3.27: Multi-metric performance of the hy-
brid uc3 DWI noERC SGD model on the held-out
test set and the prospective cohort.

A consistent and significant reduction is observable in all performance metrics.

Use Case 5 - Pre-surgery

Model Performance

The prospective cohort for UC 5 included 46 patients. The master model’s predictions on this cohort are
shown in the confusion matrix in Figure 3.5 and the model’s performance is described in Table 3.28, where
the hold-out test set performance (previously shared in D5.3) is included for comparison purposes.
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Figure 3.5: Confusion matrix of the hy-
brid uc5 T2 CatBoost model’s predic-
tions on the prospective cohort.

Hold-out
test set

Prospective
cohort

AUC 0.6899 0.3182
Sensitivity/Recall/TPR 0.7143 0.5

Specificity/TNR 0.5366 0.3409
Precision/PPV 0.2083 0.0333

F1 0.3226 0.0625
F2 0.4808 0.1316

CohensKappa 0.1250 -0.0207

Table 3.28: Multi-metric performance of the hy-
brid uc5 T2 CatBoost model on the held-out test set
and the prospective cohort.

Fairness Analysis

Tables 3.29 to 3.34 show the master model’s performance on different subsets of the prospective test set. The
small number of positive cases in the prospective cohort (2 cases) makes it very difficult to draw definitive
conclusions. Most performance metrics easily go to zero when a sub-cohort does not include any positive
cases or fails in the one or two that it has. For this reason, we will focus on accuracy for this part of
the analysis. Looking at this metric, the model seems relatively robust across all sensitive attributes, with
accuracy always between 0.32 and 0.44, with the exception of Greek cases, where the model performed with
less than 1% accuracy.

manufacturer Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

PHILIPS 0.3200 0 0 0 25 25 0 429
SIEMENS 0 0 0 0 1 0 1 182

GE MEDICAL
SYSTEMS

0.4000 0.2941 0.0769 1 20 19 1 98

Table 3.29: hybrid uc5 T2 CatBoost model performance on sub cohorts of the prospective test set, divided
by scanner manufacturer.

index lesion
location PZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.3500 0.1471 0.0385 0.5000 40 38 2 633
0 0.3333 0 0 0 6 6 0 76

Table 3.30: hybrid uc5 T2 CatBoost model performance on sub cohorts of the prospective test set, divided
by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.3421 0.1515 0.0400 0.5000 38 36 2 592
1 0.3750 0 0 0 8 8 0 117

Table 3.31: hybrid uc5 T2 CatBoost model performance on sub cohorts of the prospective test set, divided
by presence/absence of lesion in the transitional zone.
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index lesion
location CZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.3488 0.1389 0.0357 0.5000 43 41 2 709
1 0.3333 0 0 0 3 3 0 0

Table 3.32: hybrid uc5 T2 CatBoost model performance on sub cohorts of the prospective test set, divided
by presence/absence of lesion in the central zone.

index lesion
location AS

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.3636 0.1389 0.0357 0.5000 44 42 2 649
1 0 0 0 0 2 2 0 60

Table 3.33: hybrid uc5 T2 CatBoost model performance on sub cohorts of the prospective test set, divided
by presence/absence of lesion in the anterior stroma.

country Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Spain 0.4286 0 0 0 7 6 1 96
Turkey 0.4400 0.2632 0.0667 1 25 24 1 82

Lithuania 0.3333 0 0 0 3 3 0 88
Greece 0.0909 0 0 0 11 11 0 0

Table 3.34: hybrid uc5 T2 CatBoost model performance on sub cohorts of the prospective test set, divided
by country of origin of the data.

Use Case 5 - Post-surgery

Model Performance

The prospective cohort for UC 5 included 46 patients, all of them with no endorectal coil. The master model’s
predictions on this cohort are shown in the confusion matrix in Figure 3.6 and the model’s performance is
described in Table 3.35, where the hold-out test set performance (previously shared in D5.3) is included for
comparison purposes.

Fairness Analysis

Tables 3.36 to 3.41 show the master model’s performance on different subsets of the prospective test set. In
concordance with the pre-surgical context, the small number of positive cases in the prospective cohort (2
cases) makes it very difficult to draw definitive conclusions. Most performance metrics easily go to zero when
a sub-cohort does not include any positive cases or fails in the one or two that it has. For this reason, we will
focus on accuracy for this part of the analysis. Additionally, the extremely small size of some sub-cohorts
prevents us from accurately assessing the performance (this was the case for all index lesion locations, Tables
3.37 - 3.40).

Regarding scanner manufacturer, the model achieves the highest performance with GE cases (accuracy
0.55), while it drops significantly for Philips (accuracy 0.16). In terms of country of origin (Table 3.41) the
highest performance is achieved with Turkish cases (accuracy 0.52).
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Figure 3.6: Confusion matrix of the hy-
brid uc5 T2 noERC CatBoost model’s
predictions on the prospective cohort.

Hold-out
test set

Prospective
cohort

AUC 0.8188 0.2727
Sensitivity/Recall/TPR 0.8571 0.5

Specificity/TNR 0.5854 0.3182
Precision/PPV 0.2609 0.0323

F1 0.4 0.0606
F2 0.5882 0.1282

CohensKappa 0.2272 -0.02297

Table 3.35: Multi-metric performance of the hy-
brid uc5 T2 noERC CatBoost model on the held-out
test set and the prospective cohort.

manufacturer Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

PHILIPS 0.1600 0 0 0 25 25 0 429
SIEMENS 0 0 0 0 1 0 1 182

GE MEDICAL
SYSTEMS

0.5500 0.3571 0.1000 1 20 19 1 65

Table 3.36: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the prospective test set,
divided by scanner manufacturer.

index lesion
location PZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.3500 0.1471 0.0385 0.5000 40 38 2 602
0 0.1667 0 0 0 6 6 0 74

Table 3.37: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the prospective test set,
divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.3684 0.1563 0.0417 0.5000 38 36 2 561
1 0.1250 0 0 0 8 8 0 115

Table 3.38: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the prospective test set,
divided by presence/absence of lesion in the transitional zone.

index lesion
location CZ

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.3256 0.1351 0.0345 0.5000 43 41 2 709
1 0.3333 0 0 0 3 3 0 0

Table 3.39: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the prospective test set,
divided by presence/absence of lesion in the central zone.

index lesion
location AS

Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.3409 0.1351 0.0345 0.5000 44 42 2 616
1 0 0 0 0 2 2 0 60

Table 3.40: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the prospective test set,
divided by presence/absence of lesion in the anterior stroma.

23



Vendor-Specific AI Models
CHAPTER 3. PROSPECTIVE VALIDATION OF RADIOMICS MASTER MODELS (EXPERIMENTS

SET 1)

country Accuracy Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Spain 0 0 0 0 7 6 1 96
Turkey 0.5200 0.2941 0.0769 1 25 24 1 82

Lithuania 0.3333 0 0 0 3 3 0 88
Greece 0.0909 0 0 0 11 11 0 0

Table 3.41: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the prospective test set,
divided by country of origin of the data.

3.4 Discussion

The prospective validation of the master models developed in Deliverable 5.3. is of extreme relevance for
their translation to the clinical setting, as it should, when done correctly, give the user an estimate of the
model’s ”real-world” performance. To do this type of analysis in a relevant manner, we need a significant
amount of data, hopefully, representative of the heterogeneity found in the clinic, whether in terms of image
quality, clinician expertise, patient socio-economic status, and so on. Unfortunately, the consortium was not
able to generate these large volumes of data in the prospective arm of the project for most use cases, making
it impossible to accurately prospectively validate them and keeping them as proof-of-concept type studies.

The exception to this, was use case 2, where over 400 cases were included in the prospective cohort. For
all ground truth definitions (ISUP 1 vs 2345, ISUP 12 vs 345 and ISUP 123 vs 45), the models generalized
extremely well to the prospective cases, showing only minor variations in the performance metrics when
compared with the hold-out test set performance reported in Deliverable 5.3.

Contrary to what was found for use case 2, the performance of models from use cases 3 and 5 dropped
significantly in the prospective cohort. Though it is relevant to take into account the rather small size of the
prospective dataset (12 and 46 cases, for use cases 3 and 5, respectively) and, in the case of use case 5, its
extreme imbalance (only 2 positive cases). For these reasons, it would be imprudent to assume that this is
the model’s actual performance out in the ”real-world”.

Despite this, several reasons could be behind the high and low generalizability of models trained for
the different use cases. Firstly, use case 2 models rely mainly on radiomics-only or combined with clinical
variables, while use case 3/5 models were trained with hybrid data, comprising radiomics, clinical variables
and deep features, the latter of which are known to easily overfit. Secondly, use case 3/5 models were trained
using only one MRI volume, namely T2W and DWI for use case 3 and 5, respectively, while use case 2 models
were trained with information from the three MRI sequences available (T2W, DWI and ADC). The latter
process resembles in a closer way the clinician’s overall practice when assessing a prostate cancer patient,
since the three volumes provide distinct and relevant information for the clinical decisions made. The final
reason, and the most likely suspect in the differences of generalization power, is the size of the dataset used
for training. While use case 2 models were trained with around 4000 cases, the datasets used in use cases 3
and 5 comprised only around 60 and 700 cases, respectively. Even though, for use case 5, this is a significant
number of cases, it is still five times less than in use case 2, which is likely to later reflect in the generalization
power of the final models.

Additionally, there is also a higher degree of difficulty when trying to predict biochemical recurrence or
metastatic development (both future events) as opposed to the clinical aggressiveness already present in the
image. Not to mention the confounding variables that also highly influence recurrence-free survival after
radical prostatectomy and that we are unable to control for, such as, for example, the surgeon’s expertise.

To conclude, despite the challenges faced, namely prospective dataset size and heterogeneity in the dif-
ferent use cases, this was a successful validation of the master models presented in Deliverable 5.3, especially
for use case 2 where all three models were able to maintain their performance in the prospective cohort.
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Chapter 4

Prospective Validation of Deep
Learning Master Models
(Experiments Set 1)

4.1 Chapter Summary

For this chapter, the evaluation of deep-learning models developed in D5.3 by FCHAMPALIMAUD on
prospective data are presented. Here, a particular aspect becomes evident — there is a non-negligible drop
in performance for most mpMRI models across targets. We demonstrate that the likely driver of this is the
shift in scanner/vendor composition.

In this section we validate the models developed in D5.3 with prospective data. We will not provide a
description of training/data preparation at this stage as it had been previously specified in D5.3. Nonetheless,
a clear methodological description of training and data preparation is provided ahead in chapter 10 as models
were retrained and the reader is referred there if any details on the training are necessary.

4.2 Methods

Data Description

For prospective validation, cases were downloaded from the ProstateNet platform on October 11th 2023.
After excluding all retrospective cases and keeping only cases where all three sequences were available, a
total of 466 cases remained (Table 4.1).

Analysis Description

For the validation in this section, only the FCHAMPALIMAUD VGG models developed in D5.3. Both
T2W and mpMRI (T2W+DWI+ADC) models were tested to understand how using different sequences
affects generalisation. A fairness (subgroup) analysis is also performed in terms of dataset provider, lesion
PI-RADS, manufacturer (vendor), age, PSA, and lesion location. Finally, an enrichment analysis, described
ahead in the results, is also presented to help make sense of differences in performance.

Manufacturer ISUP=1 ISUP=2 ISUP=3 ISUP=4 ISUP=5
GE (ERC) 26 20 10 11 4
GE (no ERC) 19 47 15 2 11
Philips 103 50 30 14 17
Siemens 22 40 13 6 6

Table 4.1: Prospective dataset composition stratified by ISUP and vendor (manufacturer).
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4.3 Results

Prospective Validation

To understand how performance generalises to new, prospective data, the sequence-only VGGmodels detailed
above — which performed the best out of other architectures — were tested on a prospective test set with
466 cases.

Prospective set composition. Firstly, it should be noted that the relative proportions of cases changed
both in terms of data provider (Figure 4.1) and ISUP distribution (Figure 4.2). Of note is the fact that
studies acquired using Siemens were considerably more prevalent in the retrospective cohort, whereas Philips
are now the most prevalent, and the fact that the manufacturer composition also significantly changed.

FCHAMPALIMAUD

FPO

GAONA

HACETTEPE

HULAFE

IDIBGI

IPC

JCC

NCI

QUIRONSALUD

RADBOUDUMC

RMH

UNIPI

0 400 800 1200 1600

Proportion

IS
U

P

ISUP
1
2
3
4
5

FCHAMPALIMAUD

FPO

GAONA

HACETTEPE

HULAFE

IDIBGI

JCC

NCI

QUIRONSALUD

RADBOUDUMC

RMH

UNIPI

0 20 40 60 80

Proportion

IS
U

P

ISUP
1
2
3
4
5

Figure 4.1: Case count stratified by ISUP and data provider for the retrospective (top) and prospective
(bottom) data.

Performance analysis Firstly, it should be noted that poor generalization is observed for mpMRI models
but not for T2W-only models (Figure 4.3; Figure 4.4), with the exception of the intermediate vs. high risk
models where poor generalization is observed for both T2W-only and mpMRI models.

These results are not necessarily unexpected — indeed, as what is presented later in the feature visualiza-
tion and concerning dataset distances (Figure 10.31; Figure 10.32; Figure 10.15; Figure 10.16; Figure 10.47;
Figure 10.48) hints that the differences in composition observable in Figure 4.1 and ?? could have a sig-
nificant impact on performance. In other words, shifts in the prevalence of different data providers and
manufacturers could lead to shifts in performance.

Fairness analysis. To gain a better grasp on the failure of these models a fairness analysis was performed
to better understand in which cases they showed a decrease in performance (Figure 4.5). In general, trends
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Figure 4.2: Case count stratified by ISUP and manufacturer for the retrospective (top) and prospective
(bottom) data.
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Figure 4.3: Performance of sequence-only VGG models trained on all manufacturers on the prospective test
set. Circles represent the mean of the 5-folds and the horizontal lines represent the standard error around
the mean.

are similar to those described in D5.3, with performance being largely determined by dataset size and
manufacturer (data providers using Philips scanners such as FCHAMPALIMAUD, RADBOUD or GAONA
show considerably better performance than other dataset providers). A negative trend is observed for both
the low vs. possibly high and possibly low vs. high when looking at age, which provides a relevant subset
where the application of these models can be of critical importance — indeed, at lower ages the performance
is consistently higher than at higher ages. For the remaining subgroups, no relevant trend was detected.

Model enrichment analysis. To better understand how shifts in scanner prevalence between retrospec-
tive and prospective sets affect AUC, an enrichment metric was defined as the ratio between the prevalence
of a model in the prospective set for a given provider and the prevalence of a model in the retrospective set
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Figure 4.4: Comparison of sequence-only VGG models trained on the all manufacturers on the hold-out and
prospective test set. Circles represent the mean of the 5-folds and the horizontal lines represent the standard
error around the mean.

for the same provider. More formally, let nmodel,data and ndata be the number of studies acquired with a
given scanner model in a given data provider and the number of studies acquired in a given data provider,
respectively, with a r or p superscript denoting retrospective or prospective studies. The enrichment is thus

calculated as enrichment =
np
model,data/n

p
data

nr
model,data/n

r
data

. When enrichment = 1, this implies that a scanner is equally

prevalent for a given data provider. We say that data is ”retrospective biased” when enrichment < 1.2 (the
model/data provider combination was more common in the retrospective set). and ”prospective biased”
otherwise (the model/data provider combination was more common in the prospective dataset).

In Figure 4.6 and Figure 4.7 it is easily observable that there are relatively large shifts in how scan-
ner models are distributed between retrospective and prospective dataset. Considering HACETTEPE as
an example, the most prevalent scanner in the retrospective set (Philips Ingenia; the same happens with
QUIRONSALUD with Philips Achieva) is no longer used for the prospective cases, whereas a GE Signa
Architect becomes the most prevalent in the prospective test set after being only the third most prevalent
during training with retrospective data. An important aspect of this analysis is that models were exposed to
significantly higher amounts of variability during training — most scanners that were used to acquire images
during the retrospective set were no longer used during the prospective data collection.

Using the heuristic classification of retrospective and prospective biased data, the AUC was calculated
separately for both; this showed that a large part of the poor generalisation for the low vs. possibly high
and possibly low vs. high targets can be attributed to shifts to the prevalence of different models across data
providing institutions (Figure 4.8). This is only the case for T2-only models with the intermediate vs. high
target definition — indeed, mpMRI models for this case are no better than random when considering the
retrospective biased data, suggesting that these models are likely to not be applicable in a clinical setting.
Finally, it should be noted that this significantly reduces the number of applicable instances for some data
centres, while also guaranteeing that these models are harder to transfer to new settings Figure 4.9.
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Figure 4.5: Fairness analysis for all binary target definitions for the deep-learning models. Point-and-range
plots represent the performance (mean and standard error of the mean) and the coloured vertical lines
represent the expected performance on the whole dataset. Horizontal bar plots represent the counts in each
target and stratum for the testing set. The lighter fraction of the bars represents the positive cases.

29



Vendor-Specific AI Models
CHAPTER 4. PROSPECTIVE VALIDATION OF DEEP LEARNING MASTER MODELS

(EXPERIMENTS SET 1)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

1.46 (n=4)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

1.72 (n=66)
0.00 (n=0)

1.34 (n=87)

0.12 (n=1)

NA (n=1)

0.28 (n=6)

1.81 (n=17)

0.26 (n=3)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

3.43 (n=33)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

0.91 (n=9)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

1.09 (n=47)

0.00 (n=0)

1.38 (n=9)
0.87 (n=10)

0.93 (n=11)

0.00 (n=0)
0.00 (n=0)
NA (n=1)

0.00 (n=0)

NA (n=1)

0.00 (n=0)

NA (n=1)

0.88 (n=6)

0.00 (n=0)

1.07 (n=78)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

1.87 (n=1)
5.83 (n=16)

0.00 (n=0)
NA (n=27)

4.58 (n=44)
0.21 (n=16)

0.00 (n=0)

0.00 (n=0)

3.15 (n=7)

2.00 (n=4)

0.00 (n=0)

1.53 (n=1)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

0.00 (n=0)

0.51 (n=1)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

1.70 (n=6)

1.21 (n=1)

0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

0.00 (n=0)
0.00 (n=0)

0.00 (n=0)

1.38 (n=3)

0.00 (n=0)

0.00 (n=0)

1.00 (n=9)

FCHAMPALIMAUD

FPO

GAONA

HACETTEPE

HULAFE

IDIBGI

IPC

JCC

NCI

QUIRONSALUD

RADBOUDUMC

RMH

UNIPI

ge

ph
ilip

s

sie
m

en
s

Magnetom Sempra (n=1)
Optima Mr450w (n=1)

Signa Hde (n=1)
Signa Voyager (n=1)

Achieva Dstream (n=2)
Espree (n=2)

Prisma_fit (n=2)
Signa Architect (n=2)

Skyra_fit (n=2)
Signa Hdxt (n=4)

Magnetom_essenza (n=5)
Symphonytim (n=7)

Verio (n=9)
Aera (n=11)

Spectra (n=11)
Avanto (n=15)

Magnetom Vida (n=24)
Skyra (n=28)

Achieva (n=52)
Ingenia (n=400)

Signa Hdxt (n=222)
Optima Mr450w (n=309)

Signa Architect (n=2)
Symphonyvision (n=5)

Ingenia (n=15)
Signa Premier (n=NA)

Amira (n=1)
Avanto (n=1)

Optima Mr360 (n=1)
Signa Voyager (n=1)
Symphonytim (n=1)

Verio (n=1)
Avanto_dot (n=2)

Signa Pioneer (n=2)
Skyra (n=5)

Signa Explorer (n=6)
Achieva Dstream (n=75)

Signa Architect (n=77)
Aera (n=91)

Ingenia (n=160)

Aera (n=1)
Avanto (n=1)

Magnetom_essenza (n=1)
Mr Magnetom Vida (n=1)

Optima Mr450w (n=1)
Optima Mr360 (n=2)

Symphony (n=2)
Achieva (n=6)

Magnetom Vida (n=47)
Signa Hdxt (n=205)

Achieva Dstream (n=52)
Ingenia (n=92)

Signa Hdxt (n=94)

Optima Mr450w (n=91)
Signa Artist (n=210)
Signa Hero (n=NA)

Horos (n=1)
Triotim (n=1)
Osirix (n=2)

Skyra (n=36)
Magnetom Vida (n=NA)
Signa Architect (n=NA)

Optima Mr450w (n=1)
Signa Voyager (n=1)

Magnetom Altea (n=2)
Optima Mr360 (n=2)
Signa Explorer (n=7)

Signa Pioneer (n=22)
Achieva (n=471)

Intera (n=1)
Ingenia (n=7)

Ingenia Elition X (n=36)
Achieva (n=179)

Prisma_fit (n=191)
Skyra (n=1538)

Magnetom Vida (n=NA)

Discovery Mr450 (n=1)
Discovery Mr750 (n=1)

Espree (n=1)
Ingenia Ambition X (n=1)

Magnetom Altea (n=1)
Magnetom Lumina (n=1)

Prisma_fit (n=1)
Signa Architect (n=1)

Verio (n=1)
Ingenia Elition X (n=2)

Achieva Dstream (n=3)
Symphonytim (n=3)

Avanto_dot (n=4)
Signa Voyager (n=5)

Optima Mr360 (n=11)
Achieva (n=12)

Discovery Mr750w (n=12)
Avanto_fit (n=15)

Magnetom Vida (n=19)
Signa Explorer (n=21)

Signa Hdxt (n=23)
Ingenia (n=45)
Avanto (n=46)

Signa Artist (n=47)
Skyra (n=50)
Aera (n=51)

Optima Mr450w (n=67)
Magnetom Sola (n=81)

Discovery Mr750 (n=60)

M
od

el

Enrichment

0

0−1

1−2

3−4

4−5

5+

NA

Figure 4.6: Enrichment values for different model/data provider/manufacturer combinations. The colour
represents the enrichment values, whereas the text specifies the enrichment and the number of cases in the
prospective set. The number after each model name specifies the number of data points in the retrospective
set.
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Figure 4.7: Enrichment values for different model/manufacturer combinations. The colour represents the
enrichment values, whereas the text specifies the enrichment and the number of cases in the prospective set.
The number after each model name specifies the number of data points in the retrospective set.
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Figure 4.9: Change in the number of cases when evaluating on all instances and only in instances which are
retrospective biased. Lines connecting separate points signify that both points belong to same dataset but
have different target definitions.

4.4 Discussion

The results presented here concerning the prospective validation of deep-learning models allow the outline
of some core conclusions which create significant issues with the applicability of these models:

1. Models are likely to require additional finetuning with new data to guarantee that their deployment
does not deteriorate. This entails a framework that not only sustains predictive approaches, but
also implements real-time or continuous evaluation of these models, requiring constant feedback from
medical doctors

2. Generalisation using mpMRI data appears to be significantly harder than with T2W data (even when
considering retrospective data in the prospective evaluation, T2W models are comparable to mpMRI
models). This is possibly associated with a number of issues — while T2W images are relatively stable
at least in qualitative terms (excluding studies acquired with ERC), diffusion or functional imaging
is significantly more variable and the patterns associated with it are harder to learn when using such
cohorts. Indeed, the results outlined for radiomics models point in two concrete directions forward
— in the absence of proper lesion annotations, the best approach forward (which guarantees the best
generalisation) is likely to be a combination of automatic prostate segmentation and radiomics.
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Chapter 5

Prospective Validation of Deep
Learning Master Models
(Experiments Set 2)

5.1 Chapter Summary

In Deliverable 5.3, FORTH presented four different deep learning-based models to help us determine if a
tumor is present or not in a patient’s MRI examination. The VGG model was chosen because it had the
best ACC, AUC, and F1 score results. In this chapter we are testing the generalisation ability of our VGG
model on prospective data. Similarly to Deliverable 5.3, two subsets were used for training the models: i)
entire dataset and ii) data from the left branch only for the negative PCa class, leaving out data that had
positive MRI results but negative biopsy findings.

5.2 Methods

Data Description

We validated our model (trained on retrospective data) using ProstateNET’s 425 prospective cases. This sub-
set included 207 positive PCa cases and 218 negative PCa cases (see Table 8.1). Details on the retrospective
training data and its preparation can be found in D5.3.

Case Type Number of Cases

Positive PCa 207

Negative PCa 218

Table 5.1: Prospective dataset breakdown for Use Case 1.

5.3 Results

Prospective Validation

In this section, we present the outcomes from models trained on retrospective data when tested on prospective
data across two distinct scenarios. Additionally, we showcase the findings from D5.3 to evaluate how these
models generalize to unseen prospective data.

Table 8.2 displays results from the model subjected to two testing scenarios: Initially, it is trained and
evaluated using hold-out retrospective data, and subsequently, the same model, trained on retrospective
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retrospective data prospective data

ACC 0.7479 0.7254

AUC 0.8121 0.8013

F1 score 0.7860 0.7335

Table 5.2: Classification results for Use Case 1 using our best performing VGG model trained on both
branches and tested on hold-out retrospective and prospective data respectively.

retrospective data prospective data

ACC 0.7956 0.6878

AUC 0.8242 0.7812

F1 score 0.8454 0.7215

Table 5.3: Classification results for Use Case 1 using our best performing VGG trained exclusively on left
branch data, and tested on hold-out retrospective and prospective data respectively.

data, is tested on prospective data. The data in both scenarios are derived from both branches (see section
5.3 of Deliverable 5.3). On the other hand, Table 8.3 shows results for the other scenario where training
data has derived from the left branch only.

The confusion matrices showed in Figure 8.1 reveal a tendency of the model to missclassify normal
(negative PCa) cases as cancerous more frequently. This observation was also a driving factor for our
experiments with the UC1-T2w-LeftBranchRaw dataset. Removing cases that were initially labeled as MRI-
positive helps the model make better predictions. The challenging cases, which even confused clinicians,
seem to have features that make classification difficult, leading to more errors.

(a) UC1-T2w dataset (b) UC1-T2w-LeftBranchRaw dataset

Figure 5.1: Confusion matrices for our best performing model trained on both branches and tested on
prospective data (left) and trained on left branch and tested on the same prospective data (right)
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5.4 Discussion

When we tested our models on new unseen data, we notice a decrease in their performance for both scenarios.
The performance dropped by 2% in the first scenario and by a notable 10% in the second. This significant
drop for the second scenario is mainly down to the fact that prospective data originate from the right branch
of the flowchart presented in Deliverable 5.3. Essentially, in our second scenario, we’re training on the left
branch and testing on the right. Results in both deliverables 5.3 and 6.1 indicated that these cases are quite
challenging.
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Chapter 6

Prospective Validation of Deep
Learning Master Models
(Experiments Set 3)

6.1 Chapter Summary

In this chapter, among the three models that FPO presented in Deliverable 5.3 to detect and segment prostate
cancer (PCa) using multiparametric input, FPO selected the one that reached the highest performances in
terms of detection rate (DR) and true negative rate (TNR). The selected model was the one that used a
Unet in which the encoder was replaced with a Resnet50 and that received as input a 3-channel 2D image
in which T2w, ADC map, and DWI images were concatenated. Since no tumoral masks were provided for
prospective data, we were able to assess only detection performances.

6.2 Methods

Prospective Data Description

The dataset consisted of T2W, DWI, and ADC exams labeled as prospective in the multi-center ProstateNet
image archive created under the scope of the ProCAncer-I project. A total of 269 cases were used (169
positive and 100 negative patients). Figure 6.1 shows the distribution of positive and negative patients
across centers and vendors.

Pre-processing

Before feeding the networks, some pre-processing steps were applied. First, in case T2w and hbDWI/ADC
didn’t have the same slice thickness, they were co-registered with the T2w image, using an elastic transforma-
tion and the mutual information as metric. Then, all sequences were cropped and resampled in order to have
the same resolution and field of view (FOV), and the N4 bias correction filter was applied to the T2w image
to correct inhomogeneities due to the coil. Finally, a in-house developed algorithm to automatically segment
the prostate was applied and each sequence was cropped around the automatically segmented prostate area
using a bounding box of 224x224 pixels to ease the network training and reduce the computational cost.
Then, a pixel standardization using the z-score technique was applied at the patient level. Pixel intensities
values were rescaled between 0 and 1, and all voxels outside the prostate area were set to 0. Finally, 2D slices
were transformed into RGB images in which each RGB channel is represented by a different sequence (T2w,
ADC, and hbDWI). Once the output images were generated, a binary threshold filter was applied to the
probability maps returned by the networks to obtain the automatic masks of the tumors. Then, connected
areas smaller than 50 voxels were discarded.
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Figure 6.1: Distribution of positive and negative patients across centers and vendors

6.3 Results

On positive patients, the model reached good performances in detecting PCas, reaching a DR of 76%
(129/169). Viceversa, considering negative patients, the model didn’t reach high accuracy in detecting
negative patients, showing a TNR of 40%, i.e., 40 out of 100 patients were correctly considered as negative.
Table 6.1 and 6.2 show the performances of the master model stratified per vendors, respectively on positive
and negative patients.

Vendor Detection rate (%) Detection rate (rate)

Master model on GE 86 79/91
Master model on Philips 60 27/45
Master model on Siemens 70 23/33

Table 6.1: Results of the master model on positive cases stratified per vendor

Vendor True Negative Rate (%) True Negative Rate (rate)

Master model on GE 29 9/31
Master model on Philips 40 19/48
Master model on Siemens 57 12/21

Table 6.2: Results of the master model on negative cases stratified per vendor
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6.4 Discussion

The prospective validation of the master models developed in Deliverable 5.3 for the detection of PCa gave
us a hint about the performance that could be obtained in clinical practice. Results obtained in terms of
detection rate were promising, however, differences between vendors were observed: results obtained on GE
data were statistically higher than those obtained on both Philips (p≤ 0.001). This might be due to the
fact that most Philips cases did not have the same slice thickness between T2w and ADC/hbDWI images,
therefore image registration might have introduced some biases. On the other side, we observed that negative
patients were often misclassified as positive, meaning that the network is not able to discard suspected areas
mimicking tumoral regions. This can be due either to the fact that no negative patients were used to train
the network or to the low number of patients with a manually segmented mask available for training.
These results prompted us to start developing a post-processing method to discard false positive candidates
and increase TNR (ongoing research).
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Chapter 7

Prospective Validation of Deep
Learning Master Models
(Experiments Set 4)

7.1 Chapter Summary

Within ProCAncer-I, master models are defined as artificial intelligence (AI) algorithms trained on all avail-
able prostate MRI data, regardless of their use cases, vendors, and parent centers. While prospective valida-
tion is defined as testing any AI model on held-out contemporary data. In this chapter, and very early on in
the Procancer-I project, partner Radboudumc explored an alternative strategy for the prospective validation
of deep learning master models, particularly for UC1 and UC2. Partner Radboudumc has been active in the
prostate MRI field for decades and used its infrastructure and data as leverage in the Procancer-i project. As
part of performing its WP6 tasks in the Procancer-i project it hypothesized that state-of-the-art AI models,
trained using thousands of patient cases, are non-inferior to radiologists at clinically significant prostate
cancer (csPCa; ISUP ≥ 2) detection using MRI. To test this extended prospective validation hypothesis,
Radboudumc designed an international comparative study: the PI-CAI (Prostate Imaging—Cancer Artificial
Intelligence) challenge (https://pi-cai.grand-challenge.org/). Partner RADBOUDUMC was ideally
positioned to swiftly start this type of study early in the Procancer-i project, because of their AI exper-
imentation platform (Grand-Challenge) and organized data availability. Radboudumc’s data plus newer
data has now all been contributed to Procancer-I. The AI experimentation platform is now also incorpo-
rated in Procancer-i to help expedite its WP7 Clinical Validation. In the PI-CAI study, we investigated AI
systems (master models) that were independently developed, trained, tuned, and tested at detecting ISUP
≥ 2 cancers using a large multi-center cohort of 10K patient examinations, in comparison to international
radiologists participating in a multi-reader, multi-case observer study. This is inline with the UC1 and UC2
use cases as defined in the Procancer-i project. A key Grand-Challenge concept allowed PI-CAI to use secret,
sequestered test data to validate internationally contributed AI models. The same test data was used to run
reader experiments with radiologists. This setting allows a prospective validation and ranking of AI as well
as a comparison to clinical performance. The PI-CAI challenge is visible as a work that is partly supported
by Procancer-i. The PI-CAI models are contributed to the Procancer-i model repository. PI-CAI will remain
visible and contribute to the sustainability of Procancer-i work. Our preliminary findings from this study have
been published as a peer-reviewed paper at the Medical Imaging in Deep Learning Conference [26] and
have been presented in oral presentations at the 108th Scientific Assembly and Annual Meeting of

the Radiological Society of North America (RSNA 2022), 2023 European Congress of Radiology

(ECR 2023), 38th Annual Congress of the European Association of Urology (EAU 23) and at the
Annual Meeting of the Society for Advanced Body Imaging (SABI 2023).
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7.2 Methods

The PI-CAI study protocol was established with 16 experts across prostate radiology, urology, and AI [29].
This retrospective study included 10207 prostate MRI exams (9129 patients) curated from four European
tertiary care centers based in the Netherlands and Norway between 2012 and 2021. All patients were men
suspected of harboring prostate cancer without a history of treatment or prior csPCa findings. Imaging was
acquired using commercial 1.5 or 3T MRI scanners equipped with surface coils. In the first phase of this
study, algorithm developers worldwide were invited to design AI models for detecting csPCa in biparametric
MRI (bpMRI), using 1500 training cases that were made publicly available. For a given bpMRI exam, AI
models were required to complete two tasks: localize all csPCa lesions (if any) and predict the case-level
likelihood of csPCa diagnosis. To this end, AI models could use imaging data and several variables (PSA,
patient age, prostate volume, scanner model) to inform their predictions. Once developed, these algorithms
were independently tested using a hidden cohort of 1000 patient cases (including external data from an
unseen center) in a fully blinded setting, where histopathology and a follow-up period of ≥ 3 years were used
to establish the reference standard. For more details, please refer to [29].

7.3 Results

Between June and November 2022, >830 AI developers (>50 countries) opted-in and >310 algorithm submis-
sions were made. Parallel to this, 79 radiologists (55 centers, 22 countries) were enlisted in a multi-reader,
multi-case observer study, whose primary objective was to estimate clinicians’ performance at this same
task. The distribution of AI developers and radiologists has been illustrated in Fig. 7.1. When trained
on 1500 cases, the top five most performant prostate-AI models reached 0.88±0.01 AUROC in case-level
diagnosis and 76.38±0.74% sensitivity at 0.5 false positives per case in lesion detection (as shown in Table
7.1), which is comparable to that of radiologists’ performance reported in the literature. When ensembled
with equal weighting, diagnostic performance increased substantially to 0.912 AUROC, indicating notable
diversity among the top five methods.

Model AUROC AP Sens @ 0.5 FP/Patient
Y. Yuan et al. (Australia) 0.881 0.633 77.64%
C. A. Nader et al. (France) 0.889 0.615 76.63%
A. Karagöz et al. (Turkey) 0.889 0.614 75.38%
X. Li, S. Vesal, S. Saunders et al. (USA) 0.871 0.612 76.13%
H. Kan et al. (China) 0.886 0.593 76.13%
Ensemble of Top Five Models (Global) 0.912 – –

Table 7.1: Case-level diagnostic performance, as estimated by the Area Under Receiver Operating Character-
istic (AUROC) metric, and lesion-level detection performance, as estimated by the Average Precision (AP)
and the detection sensitivity at 0.5 false positives per patient metrics, across 1000 testing cases.
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Figure 7.1: Distribution of >830 AI developers (>50 countries) and 79 radiologists (55 centers, 22 countries)
participating in the PI-CAI challenge as of 10 November, 2022. Radiologists’ experience varies between 1
and 23 years (median seven years), where 72% (57) of readers can be categorized as “expert” based on the
2020 ESUR/ESUI consensus statements [5].

7.4 Discussion

We observed that well-engineered deep learning systems, trained using a curated set of 1500 cases with a
strong reference standard, can match or potentially outperform radiologists at detecting ISUP ≥ 2 cancers
in prostate MRI (supported by the fact that five independent teams of developers around the world were
able to reach similar levels of high diagnostic performance as reported in literature). In the next phase
of this study, these AI models will be re-trained using a private dataset of 9107 cases, performance will
be re-evaluated across 1000 testing cases, and the ensembled AI system will be benchmarked against the
radiologists participating in the reader study. The historical reads made during routine practice to conclude
non-inferiority or superiority (if applicable).
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Chapter 8

Vendor Specific Segmentation Models
(Experiments Set 1)

8.1 Chapter Summary

In this chapter, FCHAMPALIMAUD expand the analysis presented in D5.3, by training the same whole
prostate and lesion segmentation nnUNet models on different subsets of data stratified by manufacturer
(vendor) — GE, Philips and Siemens. We perform both a CV and hold-out test set analysis of these models,
and compare the results between manufacturer, and to those obtained by the master models outlier in
deliverable 5.3.

8.2 Methods

Data Description

We used the same set of retrospective data used in deliverable 5.3, which consists of T2W cases downloaded
from the ProstateNet platform on March 13th 2023. An overview of the data, stratified by manufacturer, can
be seen in Tab. 8.1. Since during the development of the D5.3 master models the data was not stratified by
vendor, guaranteeing equal proportions of vendor-specific data throughout the different partitions, we define
new CV folds and hold-out test partitions following the same procedures defined in D5.3. This introduces a
minor caveat since 1 : 1 comparisons between master models and vendor-specific models may not be entirely
comparable.

Target Total Siemens Philips GE
Whole prostate gland 638 152 245 239

Lesions 461 136 184 136

Table 8.1: Stratification of the ProstateNet samples by target (whole prostate gland and lesions) and manu-
facturer for all segmentation tasks. Whole gland masks are generated by merging both Peripheral (PZ) and
Transitional+Center (TZ) masks and share the same data composition.

Deep learning model specification

We train 3D full-resolution nnUNet models [12] (nnUNet) for each vendor (GE, Philips and Siemens). This
framework makes use of stochastic gradient descent with Nesterov momentum (µ = 0.99), a maximum initial
learning rate of 0.01, and polynomial [4] learning rate decay policy which reduces the learning rate by a factor
of (1 − epoch

epochmax
)0.9 on each epoch. The objective function combines a cross-entropy loss and a generalized

Dice loss function.
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Model evaluation

The cross-validation performance of each model was summarised as the average validation Dice score calcu-
lated using the parameters corresponding to the highest Dice score observed during training. The hold-out
test set performance was calculated as the Dice score (DS), Hausdorff Distance (HD), Average Symmetric
Surface distance (ASSD), and Relative Absolute Volume Difference (RAVD) [43] (both distance metrics were
calculated using MedPy [18]).

8.3 Results

Cross-validation results

As shown in Tab. 8.2, two distinct scenarios can be highlighted for the cross-validation results: For whole
gland segmentation, we can see that the performance is very similar across all metrics, between all manufac-
turers, and that these are also similar to the ones obtained by the master models detailed in D5.3; On the
other hand, the lesion segmentation models show large differences between manufacturer, with the Siemens
model clearly outperforming the other two, and being the only model producing results similar to those
obtained by the master models detailed in D5.3. This is particularly interesting as all three vendor-specific
data subsets have similar sizes (as highlighted in Table 8.1).

Dice HD RAVD ASSD Recall
Gland

Siemens 0.9± 0.01 12.37± 1.49 0.04± 0.02 0.52± 0.11 1.0± 0.0
Philips 0.9± 0.01 12.43± 1.13 0.04± 0.02 0.47± 0.07 1.0± 0.0
GE 0.91± 0.01 11.23± 1.33 0.21± 0.21 0.42± 0.03 1.0± 0.0

Lesions
Siemens 0.36± 0.03 74.32± 6.17 0.08± 0.11 15.11± 2.4 0.7± 0.04
Philips 0.24± 0.02 64.66± 5.32 0.82± 0.37 22.62± 3.37 0.5± 0.04
GE 0.29± 0.03 74.39± 6.7 1.17± 0.45 17.92± 2.67 0.58± 0.05

Table 8.2: nnUNet CV results for all segmentation tasks, stratified by manufacturer. For each dataset,
the average Dice, Hausdorf, RAVD, ASSD and Recall performance, along with their respective standard
deviation, are presented.

Hold-out test set results

To analyse the hold-out test set results and assess the generalization across datasets and models, models
trained on specific vendors were tested on data from other manufacturers as this allows us to assess how
feasible is the transference of these models to concrete instances and applications where there may exist
relevant alterations to image acquisition.

For whole gland segmentation models (Tab. 8.3), all manufacturer models show the same generalization
degree to Siemens and Philips data, whilst GE shows a 2/3% improvement over the others on GE data. It
can also be noted that these results match those of the ProstateNet master models detailed in deliverable
5.3, which highlights how this task may be relatively simple from a modelling perspective and unaffected
by shifts to the domain. The consistently high recall (1.0) highlights that these models capture a relevant
portion of the prostate under all scenarios.

Regarding the lesion segmentation models (Tab. 8.4), some interesting aspects can be outlined. Similar
to what was observed during cross-validation, Siemens models are the best performing ones. However, it is
on Philips data that models tend to perform the best on average — this includes GE models, which perform
relatively poorly on GE data but in similar ways to other models on Philips data. When evaluating the
lesion detection capabilities (Recall) of each models, we can see that the Siemens model produces very good
results, in particular when tested on in-distribution data (on Siemens data). It should be highlighted here
that there is a distinctive difference between data acquired using GE scanners and data acquired with Philips
or Siemens scanners — the former has some instances where data was acquired with the use of an endorectal
coil. As shown in chapter 10, this has a significant impact on the performance of classification models and

43



Vendor-Specific AI Models
CHAPTER 8. VENDOR SPECIFIC SEGMENTATION MODELS (EXPERIMENTS SET 1)

it is likely that this equally impacts the performance of models trained for lesion segmentation/detection
tasks.

To compare results with those obtained for the model trained on the entire dataset, assessed how models
compare to one another (Table 8.5 with Table 8.6, the last of which includes results already reported in
D5.3). It becomes relatively clear that Dice scores have a wide overlap between models trained on specific
subsets and those trained on the larger ProstateNet dataset (it should still be highlighted that Dice scores
are consistently lower for vendor-specific models). When considering the recall (i.e. performance as lesion
detection model), performance suffers considerable alterations — indeed, Siemens models appear to retain
their performance when compared with models trained on the entire ProstateNet dataset, but the recall for
GE and Philips models is considerably lower than that of the ProstateNet-trained models.

Tested on

Siemens Philips GE

T
ra
in
ed

o
n

S
ie
m
en

s

0.92± 0.03 0.91± 0.03 0.88± 0.09 Dice

8.81± 5.8 21.59± 43.48 17.87± 45.61 HD

0.02± 0.09 0.01± 0.07 0.01± 0.12 RAVD

0.32± 0.11 0.81± 2.38 0.62± 0.64 ASSD

1.0± 0.0 1.0± 0.0 1.0± 0.0 Recall

P
h
il
ip
s

0.92± 0.03 0.92± 0.02 0.89± 0.1

8.28± 5.38 14.12± 24.47 18.21± 45.59

0.01± 0.08 0.01± 0.07 −0.01± 0.11

0.33± 0.11 0.36± 0.31 0.6± 0.65

1.0± 0.0 1.0± 0.0 1.0± 0.0

G
E

0.92± 0.03 0.92± 0.03 0.91± 0.09

9.08± 5.56 17.39± 27.73 17.12± 46.21

−0.0± 0.08 −0.01± 0.07 0.0± 0.09

0.33± 0.1 0.45± 0.49 0.52± 0.65

1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 8.3: nnUNet whole gland segmentation hold-out test set results. For each pairwise evaluation,
the average Dice, Hausdorf, RAVD, ASSD and Recall performance, along with their respective standard
deviations, are presented.

Tested on

Siemens Philips GE

T
ra
in
ed

o
n

S
ie
m
en

s

0.33± 0.28 0.33± 0.31 0.19± 0.26 Dice

40.84± 50.38 79.66± 69.08 63.53± 71.39 HD

−0.3± 0.42 −0.14± 1.28 0.21± 2.17 RAVD

11.23± 32.49 28.32± 44.85 20.31± 34.75 ASSD

0.7± 0.1 0.63± 0.09 0.4± 0.11 Recall

P
h
il
ip
s

0.15± 0.22 0.34± 0.33 0.23± 0.3

34.68± 51.57 47.94± 51.18 26.72± 49.08

−0.37± 0.4 −0.04± 1.15 0.05± 0.92

5.78± 10.95 12.45± 27.82 3.42± 8.13

0.4± 0.11 0.56± 0.1 0.4± 0.11

G
E

0.22± 0.29 0.29± 0.31 0.21± 0.28

45.14± 65.89 49.02± 53.59 51.54± 59.9

−0.31± 0.36 0.09± 1.97 −0.26± 0.71

8.7± 15.1 12.53± 31.32 7.56± 9.24

0.4± 0.11 0.56± 0.1 0.45± 0.11

Table 8.4: nnUNet lesion segmentation hold-out test set results stratified by vendor. For each pairwise
evaluation, the average Dice, Hausdorf, RAVD, ASSD and Recall performance, along with their respective
standard deviation, are presented.
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Vendor Dice HD RAVD ASSD Recall
GE 0.25± 0.29 48.61± 59.42 −0.14± 1.33 9.90± 22.22 0.48± 0.17

Philips 0.25± 0.30 37.65± 51.47 −0.11± 0.93 7.76± 19.57 0.46± 0.17
Siemens 0.29± 0.30 63.26± 66.79 −0.08± 1.47 20.83± 39.20 0.58± 0.17

Table 8.5: nnUNet lesion segmentation hold-out test set results for models trained on specific vendors and
tested on the entire ProstateNet dataset. For each pairwise evaluation, the average Dice, Hausdorf, RAVD,
ASSD and Recall performance, along with their respective standard deviation, are presented.

Dice HD RAVD ASSD Recall
0.33± 0.3 54.52± 62.22 0.26± 1.59 14.32± 35.78 0.62± 0.06

Table 8.6: nnUNet lesion segmentation hold-out test set results for models trained on the entire ProstateNet
dataset. For each pairwise evaluation, the average Dice, Hausdorf, RAVD, ASSD and Recall performance,
along with their respective standard deviation, are presented.

8.4 Discussion

These results highlight some important trends in model performance which are significantly different for
whole gland segmentation models and for lesion segmentation models.

Whole gland segmentation models. Whole gland segmentation models show no relevant alterations
when models are applied across datasets stratified by the vendor used to acquire each study. This entails a
much easier deployment and ease of transfer to new settings and centres — the relatively high performance of
these models leads to the ideal case scenario where little is necessary to transfer them to new circumstances.

Lesion segmentation models. On the other hand, lesion segmentation models have show significant
drops in performance upon transferral to datasets acquired using scanners from vendors different from those
used during training. This may lead to complications in the deployment of these models which should
make end-users be relatively careful about their transferal — while Siemens models can be transfered to
both Siemens and Philips data, their transferal to GE data can lead to relatively poor performance. This
is particularly true in scenarios where such data has been partly acquired using endorectal coils. For this
reason, the benefit of training these models using a dataset comprising multiple vendors and scenarios (as is
the case of ProstateNet) becomes much more evident.

Limitations. While the comparisons drawn between models trained on specific subsets of data and models
trained on the entire ProstateNet data are relevant, those drawn here can lead to difference estimates which
may not be the most correct — indeed, the subsets used in each case are relatively different as testing sets
are different between both cases as new CV folds and hold-out test sets had to be calculated differently to
ensure equal vendor representation for D6.1.
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Chapter 9

Vendor Specific Radiomics Models
(Experiments Set 1)

9.1 Chapter Summary

Here, FCHAMPALIMAUD extended the radiomics work developed by FCHAMPALIMAUD in D5.3 to
develop models specific to each vendor. More concretely, we apply a consistent machine-learning pipeline
to use cases 2, 3, 5, 7, 7b and 8 after stratifying by vendor/manufacturer considering Siemens, Philips and
GE Healthcare. Furthermore, given that a persistent endorectal coil has been identified, we also stratify by
endorectal coil. We use this work to highlight performance differences between each model and study how
the inclusion/exclusion of different feature types (clinical/radiological, deep features, radiomics features) can
alter performance.

9.2 Methods

Data Description

Our dataset consisted of T2W, DWI and ADC exams from the ProstateNet image archive created under the
scope of the ProCAncer-I project. The exams were acquired in the initial stages of the disease continuum by
13 different clinical partners, 3 scanner manufacturers and 27 scanner models. Ethics committee approval
and patient consent were obtained by each clinical partner.

Segmentation

Automatic segmentation of the whole prostate gland was performed on T2W sequences using a segmentation
model developed in-house. The full details of this model are shown in chapter 2.

The generated masks were post-processed in two stages. Firstly, the largest object was selected. An
object was defined as a group of connected voxels. Here, it was assumed that the largest object would have
the highest probability of covering the actual gland. Secondly, so as to smooth mask borders, a Delaunay
triangulation was calculated on the convex hull of the selected object.

Sequence Co-registration

Due to the absence of segmentation masks for the diffusion sequences, T2W sequences (moving image) were
co-registered to the DWI sequences’ space (fixed image), and the calculated transformation matrix was then
applied to the segmentation mask generated previously. The co-registration algorithm was a 3-resolution
pyramid of rigid registrations. The transformed mask was then used for the radiomics extraction of the
diffusion sequences. The co-registration parameters file can be found in Table 9.1. For wide field-of-view
DWI sequences, a center crop was applied to facilitate the co-registration.
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// Components
(Registration ”MultiResolutionRegistration”)
(FixedImagePyramid ”FixedRecursiveImagePyramid”)
(MovingImagePyramid ”MovingRecursiveImagePyramid”)
(Interpolator ”LinearInterpolator”)
(Metric ”AdvancedMattesMutualInformation”)
(Optimizer ”AdaptiveStochasticGradientDescent”)
(ResampleInterpolator ”FinalBSplineInterpolator”)
(Resampler ”DefaultResampler”)
(Transform ”EulerTransform”)

// **********Pyramid
(NumberOfResolutions 3)

// **********Transform
(AutomaticTransformInitializationMethod ”GeometricCenter”)
(AutomaticScalesEstimation ”true”)

// **********Optimizer
(MaximumNumberOfIterations 300)
(AutomaticParameterEstimation ”true”)

// **********Several
(WriteTransformParametersEachIteration ”false”)
(WriteTransformParametersEachResolution ”false”)
(WriteIterationInfo ”false”)
(WriteResultImage ”true”)
(ShowExactMetricValue ”false”)
(ResultImageFormat ”nii”)

// **********ImageSampler
(ImageSampler ”RandomCoordinate”)
(CheckNumberOfSamples ”true”)
(NewSamplesEveryIteration ”true”)
(MaximumNumberOfSamplingAttempts 8)
(NumberOfSpatialSamples 2048)
(NumberOfSamplesForExactGradient 4096)

// **********Interpolator and Resampler
// Order of B-Spline interpolation used for applying the final deformation:
(FinalBSplineInterpolationOrder 3)

// Default pixel value for pixels that come from outside the picture:
(DefaultPixelValue 0)

Table 9.1: Co-registration parameter file.

Radiomic Features Extraction

Bias field correction was performed on T2W sequences using the N4 Bias Field Correction algorithm [36] and
the Python package Simple ITK (version 2.0.0) [42]. First, each image’s x-, y- and z-spacing were checked
for discrepancies. Since x- and y-spacings differed from z-spacing, feature extraction was later performed in
2D. Additionally, images’ x- and y-spacings differed within and between patients, so T2W sequences were
resampled to the 95th quantile value of 0.6875, and DWI and ADC were resampled to the 95th quantile
value of 2.0. Image intensities were normalized. The bin width was selected for each image filter to produce
discretized images with between 30 and 130 bins. The full description of extraction parameters for each
modality can be found in Table 9.2.

Radiomic features were extracted from the whole gland segmentation using the Pyradiomics package
(version 3.0) [38] in Python (version 3.7.9) [39]. All the pre-processing steps mentioned before were performed
as parameters of the extractor function, except for the bias field correction, which was performed prior to the
extraction. All image filters and feature classes were enabled, resulting in a total of 1223 features calculated
per sequence. The mathematical expressions and semantic meanings of the features extracted can be found
at https://pyradiomics.readthedocs.io/en/latest/.
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T2W extraction parameters DWI extraction parameters ADC extraction parameters
imageType:

Original:
binWidth: 5

Wavelet:
binWidth: 3

Square:
binWidth: 3

SquareRoot:
binWidth: 8

Logarithm:
binWidth: 16

Exponential:
binWidth: 0.5

Gradient:
binWidth: 5

LBP2D:
binWidth: 0.1

LoG: ’sigma’ : [1.0, 3.0]

featureClass:
firstorder:
glcm:
glrlm:
glszm:
gldm:
ngtdm:
shape:

setting:
binWidth: 5
normalize: True
normalizeScale: 100
force2D: True
voxelArrayShift: 300
resampledPixelSpacing:

[0.6875, 0.6875, 0]
geometryTolerance: 0.00001

imageType:
Original:

binWidth: 12
Wavelet:

binWidth: 8
Square:

binWidth: 8
SquareRoot:

binWidth: 16
Logarithm:

binWidth: 25
Exponential:

binWidth: 3
Gradient:

binWidth: 4
LBP2D:

binWidth: 0.1
LoG: ’sigma’ : [1.0, 3.0]

featureClass:
firstorder:
glcm:
glrlm:
glszm:
gldm:
ngtdm:
shape:

setting:
binWidth: 5
normalize: True
normalizeScale: 100
force2D: True
voxelArrayShift: 300
resampledPixelSpacing:

[2, 2, 0]
geometryTolerance: 0.00001

imageType:
Original:

binWidth: 5
Wavelet:

binWidth: 4
Square:

binWidth: 3
SquareRoot:

binWidth: 8
Logarithm:

binWidth: 12
Exponential:

binWidth: 1
Gradient:

binWidth: 3
LBP2D:

binWidth: 0.1
LoG: ’sigma’ : [1.0, 3.0]

featureClass:
firstorder:
glcm:
glrlm:
glszm:
gldm:
ngtdm:
shape:

setting:
binWidth: 5
normalize: True
normalizeScale: 100
force2D: True
voxelArrayShift: 300
resampledPixelSpacing:

[2, 2, 0]
geometryTolerance: 0.00001

Table 9.2: Radiomics Extraction parameters.

Deep Features

To generate deep features for each instance, we used the bottleneck of a U-Net model pre-trained on seg-
menting the whole prostate gland using T2W volumes. To calculate a segmentation prediction, the U-Net
model first encodes the image into a low resolution volume with high semantic information (320 features in
our case) and uses this information to obtain a segmentation map for a given object (whole prostate gland
in our case). We encode each T2W volume and extract the maximum value of each feature, obtaining a
320-sized vector characterizing each image.

Clinical Features

The clinical variables included for each use case can be found in Table 9.3. Missing numerical values
were imputed with a KNNImputer. Missing categorical values in the variables perineural invasion, ex-
tra prostatic extension, seminal vesical invasion and resection margin status were set to “Not Assessed”,
while the remaining missing categorical values were imputed to the most frequent category.

For UC 5, two contexts were considered: presurgery and postsurgery. For the latter, the clinical variables
included are the ones listed in Table 9.3. While, for the former, all information reported during or immedi-
ately after the surgery was removed, namely the variables prostatectomy method, resection margin status,
extraprostatic extension, perineural invasion, seminal vesicle invasion, previous adenectomy and prostatec-
tomy nerve sparing were excluded.
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Use Cases 2, 3 and 8 5 (post-surgery) and 7b 5 (pre-surgery) and 6

Clinical
variables

age at baseline (num)
baseline psa total (num)
index lesion pirads (cat)
lesion location PZ (bool)
lesion location TZ (bool)
lesion location CZ (bool)
lesion location AS (bool)

age at baseline (num)
baseline psa total (num)
index lesion pirads (cat)
lesion location PZ (bool)
lesion location TZ (bool)
lesion location CZ (bool)
lesion location AS (bool)

prostatectomy method (cat)
resection margin status (cat)
extraprostatic extension (cat)

perineural invasion (cat)
seminal vesicle invasion (cat)

gleason1 (num)
gleason2 (num)

ISUP grade (num)
previous adenomectomy (bool)

prostatectomy nerve sparing (bool)

age at baseline (num)
baseline psa total (num)
index lesion pirads (cat)
lesion location PZ (bool)
lesion location TZ (bool)
lesion location CZ (bool)
lesion location AS (bool)

gleason1 (num)
gleason2 (num)

ISUP grade (num)

Table 9.3: Clinical variables included for each use case. “num” indicates a numerical variable; “bool”
indicates a binary variable; “cat” indicates a categorical variable.

Dataset Construction

The train/test split was performed for the larger use cases at patient level with the Python scikit-learn
package (version 0.23.2) [7]. The hold-out test sets consisted of 200 randomly selected patients for UC2 and
50 for UCs 5 and 7b. The split was stratified so that both train and test sets have the same label distribution.
The train and test sets label distribution can be found in tables 9.4 and 9.5, for binary and multiclass tasks,
respectively. For the smaller use cases, namely 3, 6 and 8, only the cross-validation performance is reported.

Use Cases Target (binary)
Train Set Test Set
0 1 0 1

2
ISUP 1 VS 2345 1360 3603 51 148
ISUP 12 VS 345 3288 1675 141 58
ISUP 123 VS 45 4145 818 167 32

3
no metastasis in 6 months
VS metastasis developed

15 63 - -

5
no biochemical recurrence after RP at
follow-up VS biochemical recurrence

612 101 43 7

6
no biochemical recurrence after RT at
follow-up VS biochemical recurrence

120 16 - -

8
stayed in active surveillance
VS left active surveillance

128 10 - -

Table 9.4: Label distribution in the train and test sets for each binary classification problem.

Use Cases Target (multiclass)
Train Set Test Set

0 1 2 0 1 2
2 ISUP 123 VS 45 1360 2785 818 51 116 32
7b epic 26 [0, 71] vs ]71, 84] vs ]84, 100] 71 75 62 14 20 15

Table 9.5: Label distribution in the train and test sets for each multiclass classification problem.

Different data subsets were tested for their training ability. Pure radiomics datasets were appended
clinical and/or deep features and their performance was compared. Training with the full dataset was
compared to training with patients whose exams had been taken in each scanner manufacturer independently,
with the exception of TOSHIBA, whose patients were removed due to low representability. The exclusion of
patients where an endorectal coil had been used was also tested. And, finally, we compared training with the
full MRI sequence set to training with each sequence independently. From the final 64 training combinations,
the subsets with less than 30 cases were discarded. The discriminated data sizes of the training set are shown
in Tables 9.6 - 9.11 for each use case.
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UC 2 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

scanner

SIEMENS 2180 2086 2077 2077
PHILIPS 1399 1374 1365 1365

GE 1404 1145 665 665
GE noERC 906 659 457 457

Table 9.6: Discriminated data sizes of the training sets for UC2.

UC 3 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

scanner

SIEMENS 20 18 18 18
PHILIPS 23 22 22 22

GE 19 10 7 7
GE noERC 16 7 7 7

Table 9.7: Discriminated data sizes of the training sets for UC3.

UC 5 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

scanner

SIEMENS 182 173 173 173
PHILIPS 429 425 420 420

GE 105 85 64 64
GE noERC 65 45 30 30

Table 9.8: Discriminated data sizes of the training sets for UC5.

UC 6 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

scanner

SIEMENS - - - -
PHILIPS 48 48 48 48

GE 65 64 27 27
GE noERC - - - -

Table 9.9: Discriminated data sizes of the training sets for UC6.

For UC 7b, there were no endorectal coil cases, so this setting was removed. Lastly, to minimize training
time, a first initial evaluation of all MRI sequences was done for Radiomics only, as well as Radiomics +
Clinical variables and, given the results consistently showed that DWI features provided the best outcome,
all further models were trained only using DWI data, for a total of 8 models. The discriminated data sizes
of the training set are shown in Table 9.10.

UC 7b - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

scanner

SIEMENS 53 51 51 51
PHILIPS 179 179 175 175

GE 2 2 2 2
GE noERC - - - -

Table 9.10: Discriminated data sizes of the training sets for UC7b.

UC 8 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

scanner

SIEMENS 64 64 64 64
PHILIPS 11 9 8 8

GE 43 39 3 3
GE noERC 38 35 0 0

Table 9.11: Discriminated data sizes of the training sets for UC8.
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Preprocessing Pipeline

All the steps described in this section were performed exclusively on the train set and only on the numerical
variables. Features were scaled to have zero mean and standard deviation equal to 1 (Python package scikit-
learn version 1.0.2). Features with low variance were identified and excluded. Here, a threshold of 0.01
was considered. Finally, feature correlation was assessed. Feature pairs were considered correlated if their
Spearman correlation was higher than 0.8. Out of the two, the feature with the highest average correlation
across all features was eliminated.

Figure 9.1: Radiomics model development pipeline.

Training

For radiomics and raddeep models, a light gradient boosting machine (LGBM) [13] was trained, while
for radclin or hybrid models, which may include categorical data, the CatBoost [24] algorithm was used.
Regarding the smaller UCs, a support vector machine (SVM) classifier was selected for UC 7b and Stochastic
gradient descent algorithm (SGD) was prefered for UCs 3, 6 and 8. Hyperparameter tuning was performed
for each algorithm and each parameter combination was evaluated through cross-validation (5 folds for UCs
2 and 5; 3 folds for UCs 3, 6 and 8). For UCs 3, 6, 7b and 8 a random search approach was selected, as less
data is available so a less biased optimization is preferred, while for UCs 2 and 5 tuning was performed with
an exhaustive grid search. The overall pipeline can be found in Fig. 9.1 and the hyperparameter space used
can be found in Table 9.12.

Model Post-processing

For all models developed, the ROC curve was analyzed and the probability decision threshold that resulted
in the highest youden index was selected for the remaining analysis.

All final models were analyzed in two main areas: explainability and fairness.
Regarding model explainability, a SHapley Additive exPlanations (SHAP) analysis (Python package shap

version 0.41.0) [17] was used to identify the most relevant variables for the prediction in the hold-out test
set. The 20 most relevant variables for the output of each model were displayed. Each dot in the graph
represents a feature’s SHAP value for one observation in the hold- out test set. The SHAP value’s position
on the x-axis expresses whether it is associated with a positive or negative prediction. The red color indicates
higher values of a feature and the blue color means lower value.
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GridSearch (UCs 2, 3, 5, 6 and 8)
pipe = CatBoostClassifier(loss function=’Logloss’,

eval metric=’AUC’,
cat features=cat,
random seed=42,
logging level=’Silent’)

param grid = {’n estimators’: [100, 500, 1000], # estimators
’learning rate’: [0.01, 0.03, 0.1], # Learning rate for gradient boosting
’max depth’: [4, 6, 10]}

pipe = Pipeline([(’classifier’, CalibratedClassifierCV(LGBMClassifier(), method=’isotonic’))])
param grid = dict(classifier base estimator n estimators = [100, 500],

classifier base estimator num leaves = [5, 10, 30],
classifier base estimator learning rate = [0.01, 0.1],
classifier base estimator subsample = [0.1, 0.3, 0.5, 0.75],
classifier base estimator colsample bytree = [0.1, 0.3, 0.5, 0.75])

RandomSearch (UC 7b)
pipe = Pipeline([(’classifier’, CatBoostClassifier(loss function=’MultiClass’,

eval metric=’AUC’,
cat features=cat,
logging level=’Silent’,
random seed=seed))])

param distributions = {’classifier n estimators’: np.array([1000]),
’classifier bootstrap type’: np.array([’Bayesian’]),
’classifier learning rate’: np.linspace(0.1, 0.9, num=10),
’classifier learning rate’: np.linspace(0.001, 0.01, num=100),
’classifier max depth’: np.array([4, 6, 8, 10]),
’classifier l2 leaf reg’: np.array([1, 3, 5, 7, 9]),
’classifier border count’: np.array([32, 64, 128]),
’classifier bagging temperature’: np.linspace(0.5, 2, num=10),
’classifier random strength’: np.linspace(0.5, 2, num=10)}

pipe = Pipeline([(’classifier’, LGBMClassifier(random state=seed, metric=’auc mu’))])
param distributions = {’classifier n estimators’: np.array([1000]),

’classifier boosting type’: np.array([’goss’]),
’classifier num leaves’: np.linspace(10, 100, num=10, dtype=int),
’classifier learning rate’: np.linspace(0.001, 0.01, num=100),
’classifier max depth’: np.array([4, 6, 8, 10]),
’classifier min child samples’: np.linspace(10, 50, num=5, dtype=int),
’classifier subsample’: np.linspace(0.5, 1.0, num=10),
’classifier colsample bytree’: np.linspace(0.5, 1.0, num=10),
’classifier reg alpha’: np.logspace(-3, 3, num=10),
’classifier reg lambda’: np.logspace(-3, 3, num=10),
’classifier min split gain’: np.random.uniform(low=0, high=1, size=10),
’classifier num boost round’: np.linspace(100, 500, num=5, dtype=int),
’classifier scale pos weight’: np.linspace(1, 5, num=5, dtype=int)}

pipe = Pipeline([(’classifier’, SVC(random state=seed, probability=True))])
param distributions = {’classifier C’: np.logspace(-3, 3, num=10),

’classifier kernel’: np.array([’linear’, ’poly’, ’rbf’, ’sigmoid’]),
’classifier degree’: np.array([2, 3, 4]),
’classifier gamma’: np.logspace(-3, 3, num=10),
’classifier coef0’: np.linspace(0, 1, num=10),
’classifier shrinking’: [True, False],
’classifier tol’: np.logspace(-6, -2, num=10)}

Table 9.12: Hyperparameter space used for optimization.

In terms of fairness, model performance was tested for different subgroups of the data with the fairlearn
python package. ROC-AUC, f2-score, precision and recall are reported for each subgroup, as well as subgroup
size on the train and test sets and test set label distribution. For subgroups where only one target label is
present the ROC-AUC metric is replaced with Accuracy.
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9.3 Results

Use Case 2 - ISUP 1 vs 2,3,4,5

Model Performance

Fig. 9.2 shows the cross-validation and hold-out test set ROC-AUC model performance for the 64 models
trained for UC2, in four spider plots colored according to MRI volumes included. At first glance, we can see
that training with PHILIPS exams leads to the highest cross-validation and hold-out test set performances
(Fig. 9.2). Furthermore, the inclusion of the three sequences, T2W, DWI and ADC, is beneficial for the model
performance, both in the cross-validation and hold-out test set. The highest performing models for each
manufacturer were the following: radclin uc2 T2&DWI&ADC SIEMENS CatBoost (0.5 on cross-validation,
0.6453 on hold-out test set), radiomics uc2 T2&DWI&ADC PHILIPS LGBM (0.6756 on cross-validation,
0.6894 on hold-out test set) and hybrid uc2 DWI GE CatBoost (0.5019 on cross-validation, 0.6355 on hold-
out test set).

Figure 9.2: Cross-validation ROC-AUC model performance of 64 models trained to predict disease aggres-
siveness in UC 2 (ISUP 1 vs 2345). The observations are color-coded according to MRI volumes used for
training.
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Sub-cohort Analysis of the Best Models

Figure 9.3 shows the subcohort analysis performed on the models selected for each scanner manufacturer in
the previous section. We would expect that the model would achieve the highest performance on data from
the same vendor that was used for training, however, this was not verified. The highest performances overall
were achieved by the PHILIPS model on SIEMENS data (23 negative cases and 85 positive cases) and by
the SIEMENS model on GE data (5 negative cases and 30 positive cases).

Figure 9.3: Performance of the models selected for each scanner on different subsets of the hold-out test set,
divided by scanner manufacturer.

Use Case 2 - ISUP 1,2 vs 3,4,5

Model Performance

Fig. 9.4 shows the cross-validation and hold-out test set ROC-AUC model performance for the 64 mod-
els trained for UC2, in four spider plots colored according to MRI volumes included. At first glance,
we can see that on all subplots, the outer rings represent the hold-out test set performance of mod-
els trained with DWI-only or all sequences. The highest performing models for each manufacturer were
the following: radiomics uc2 T2 SIEMENS LGBM (0.5526 on cross-validation, 0.6716 on hold-out test
set), hybrid uc2 DWI PHILIPS CatBoost (0.6265 on cross-validation, 0.7215 on hold-out test set) and hy-
brid uc2 T2 GE noERC CatBoost (0.6492 on cross-validation, 0.6661 on hold-out test set).

Sub-cohort analysis of the best models

Figure 9.5 shows the subcohort analysis performed on the models selected for each scanner manufacturer
in the previous section. The SIEMENS model consistently showed the highest recall and F2 performance,
across the different sub-cohorts of the test set, with the exception of the SIEMENS subcohort, where it,
surprisingly, ranked in second place, after the model trained with all scanner manufacturers.

Use Case 2 - ISUP 1,2,3 vs 4,5

Model Performance

Fig. 9.6 shows the cross-validation and hold-out test set ROC-AUC model performance for the 64 models
trained for UC2, in four spider plots colored according to the MRI volumes included in the training. At
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Figure 9.4: Cross-validation ROC-AUC model performance of 64 models trained to predict disease aggres-
siveness in UC 2 (ISUP 12 vs 345). The observations are color-coded according to MRI volumes used for
training.

first glance, we can see that on all subplots, the outer rings represent the hold-out test set performance
of models trained with DWI-only or all sequences. The highest performing models for each manufacturer
were the following: hybrid uc2 DWI SIEMENS CatBoost (0.5945 on cross-validation, 0.7827 on hold-out
test set), radiomics uc2 T2&DWI&ADC PHILIPS LGBM (0.5619 on cross-validation, 0.7815 on hold-out
test set) and hybrid uc2 DWI GE CatBoost (0.5437 on cross-validation, 0.7427 on hold-out test set).

Sub-cohort analysis of the best models

Figure 9.7 shows the subcohort analysis performed on the models selected for each scanner manufacturer in
the previous section.
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Figure 9.5: Performance of the models selected for each scanner on different subsets of the hold-out test set,
divided by scanner manufacturer.

Use Case 5 - Post-surgery

Model Performance

Fig. 9.8 shows the cross-validation and hold-out test set ROC-AUC model performance for the 64 models
trained for UC5, in four spider plots colored according to the MRI volumes included in the training. The
highest performing models for each manufacturer were the following: radclin uc5 ADC SIEMENS CatBoost
(0.5383 on cross-validation, 0.8188 on hold-out test set), hybrid uc5 T2 PHILIPS CatBoost (0.5170 on cross-
validation, 0.6655 on hold-out test set) and radclin uc5 DWI GE CatBoost (0.7976 on cross-validation,
0.6899 on hold-out test set).

Use Case 6

Model Performance

Fig. 9.9 shows the cross-validation and hold-out test set ROC-AUC model performance for the 64 models
trained for UC5, in four spider plots colored according to the MRI volumes included in the training. The
highest performing models for each manufacturer were the following: radclin uc6 T2 PHILIPS CatBoost (???
on cross-validation, 0.6275 on hold-out test set) and hybrid uc6 T2 GE CatBoost (0.8 on cross-validation,
0.8824 on hold-out test set).

Use Case 8

Model Performance

Fig. 9.10 shows the cross-validation and hold-out test set ROC-AUC model performance for the 64 models
trained for UC5, in four spider plots colored according to the MRI volumes included in the training. The high-
est performing models for each manufacturer were the following: hybrid uc8 ADC SIEMENS CatBoost (0.5
on cross-validation, 0.9474 on hold-out test set) and hybrid uc8 T2 GE CatBoost (??? on cross-validation,
0.5263 on hold-out test set).
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Figure 9.6: Cross-validation ROC-AUC model performance of 64 models trained to predict disease aggres-
siveness in UC 2 (ISUP 123 vs 45). The observations are color-coded according to MRI volumes used for
training.
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Figure 9.7: Performance of the models selected for each scanner on different subsets of the hold-out test set,
divided by scanner manufacturer.
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Figure 9.8: Cross-validation ROC-AUC model performance of 64 models trained to predict disease aggres-
siveness in UC 5 (post-surgery scenario). The observations are color-coded according to MRI volumes used
for training.
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Figure 9.9: Cross-validation ROC-AUC model performance of 64 models trained to predict disease aggres-
siveness in UC 6. The observations are color-coded according to MRI volumes used for training.
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Figure 9.10: Cross-validation ROC-AUC model performance of 64 models trained to predict disease aggres-
siveness in UC 5 (post-surgery scenario). The observations are color-coded according to MRI volumes used
for training.
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9.4 Discussion

The development of vendor specific master models constitutes the second stage of model development, fol-
lowing the development of master models (first stage), within the ProCAncer-I project’s body of work.
The initial idea was to use the master models developed and fine-tune them for each scanner manufacturer
(SIEMENS, PHILIPS and GE). Although this is possible in the deep learning arm of the project, in ra-
diomics and classical machine learning, it is not as straightforward. For this reason, the vendor specific
radiomics models were trained from scratch utilizing only exams from each vendor. This lead to the first
issue encountered: data scarcity. As we divided the dataset by scanner manufaturer, we found that the
smaller use cases did not have enough data for model development in every subgroup. This was especially
evident in use case 3, where no cohort had 30 cases or more (Table 9.7). Similarly, for use case 6, only
PHILIPS and GE models were trained (Table 9.9), and for use case 8, only SIEMENS and GE (Table 9.11).

Regarding UC 2, the different target definitions showed similar patterns in what type of data was the
most useful to model it. Considering ISUP 1 vs 2345 and ISUP 12 vs 345, the PHILIPS models achieved the
highest performance, both in cross-validation and hold-out test set. For the third label definition (ISUP 123 vs
45), the highest performances were achieved with both SIEMENS and PHILIPS models, showing equivalent
hold-out test set performances and only slightly different cross-validation performances. Overall, despite not
being the most prevalent in the overall dataset, PHILIPS data shows the highest overall generalization power
both internally (in PHILIPS cases) and externally, to cases from other vendors. Furthermore, it is interesting
to find that, for the first and third label distribution, the data type that achieved the highest performance
was the same as in the master models (Table 3.1), radiomics data extracted from all three MRI volumes.
Despite the high performance achieved by the PHILIPS models, it still did not surpass the performance of
the corresponding master models on the same hold-out test set.

In use cases 5, 6 and 8, we see a much higher weight put on clinical variables than we did in use case 2,
given that, for all scanner vendors, the selected models were trained with radclin or hybrid data.
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Chapter 10

Vendor Specific Deep Learning
Models (Experiments Set 1)

10.1 Chapter Summary

For this deliverable (D6.1), FCHAMPALIMAUD expanded the analysis presented in deliverable 5.3 (D5.3)
and trained the same models on subsets of data stratified by manufacturer (vendor) — GE, Philips and
Siemens — and further stratify by endorectal coil (ERC) use. More concretely, we study how training and
testing on different vendors/manufacturers leads to differences in performance which may be problematic
for model performance upon deployment in distinct medical settings. To better understand this, we use
different target definitions (as in D5.3 — ISUP=1,2 vs. ISUP=3,4,5; ISUP=1 vs. ISUP=2,3,4,5; ISUP=2,3
vs. ISUP=4,5), contemplate different ways of including clinical variables, and offer additional visualizations
and analyses in terms of domain shifts associated with manufacturer and endorectal coil use. Finally, we
evaluate these models on prospective data.

10.2 Methods

For the sake of completeness and despite its similarities with D5.3, we detail the training and testing protocol
used for this deliverable. Given that only GE scans from UNIPI and FPO used ERC, we finally define 5
relevant subsets — GE (ERC), GE (no ERC), Philips, Siemens and Full (which uses all data). We further
test all models on the same subsets in the hold-out test set and prospective testing stages. We used the
models trained on all scanners (Full) that were presented in D5.3.

Data Description

We used the retrospective cases available through ProstateNet until March 13th, 2023 (8,891 cases), of
which 5,478 were specific for use case 2. Using an automated DICOM-to-NIFTI conversion pipeline, we
obtained a total of 5,352 PCa studies with any relevant sequence. Of these, 4,975 had T2-weighted sequences
(T2w), whereas 4,574 had all three sequences for multiparametric MRI (mpMRI) – T2w, diffusion weighted
imaging sequences (DWI), and apparent diffusion coefficient sequences (ADC). Given that we are interested
in assessing the impact of clinical data – prostate specific antigen (PSA) and age at baseline – we further
calculate the amount of sequences with clinical data (4,764 studies with T2w and 4,380 complete mpMRI
studies). Using the set of studies with all 4,380 mpMRI studies and clinical data, we constructed 5 non-
overlapping validation folds using 85% of the data (n = [741, 744, 747, 746, 745]) and use the remaining 15%
as a hold-out test set (n=657). Validation folds and the hold-out test set were obtained by considering ISUP
scores (1, 2, 3, 4, 5), scanner manufacturer (GE Medical Systems (GE), Philips, Siemens) and endorectal
coil usage (yes/no) as stratifying variables.

As noted, we consider five relevant subsets in our data (endorectal coils were only used with studies
acquired with GE scanners and as such subsets with/without endorectal coils were not considered for neither
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Siemens or Philips):

• Studies acquired with GE scanners and with endorectal coil (GE ERC)

• Studies acquired with GE scanners and without endorectal coil (GE no ERC)

• Studies acquired with Philips scanners (Philips)

• Studies acquired with Siemens scanners (Siemens)

• Studies acquired with any scanner (Full)

Three different ISUP-based target variables were considered (as noted previously in D5.3):

• Low vs. possibly high — ISUP 1 vs. ISUP 2-5 – a clinical application of this would enable the
stratification of patients considering a low-risk class (ISUP=1) and a possibly high risk class (ISUP=2-
5)

• Possibly low vs. high — ISUP 1-2 vs. ISUP 3-5 – a clinical application of this would enable
the stratification of patients considering a possibly low-risk class (ISUP=1,2) and a high risk class
(ISUP=3-5)

• Intermediate vs. high — ISUP 2-3 vs. ISUP 4-5 – a clinical application of this would enable
the stratification of patients considering an intermediate risk class (ISUP=2,3) and a high risk class
(ISUP=4,5)

The complete training set and hold-out test set composition is provided in Table 10.1. We note once again
here that the data was split in such a way that an approximately equal proportion of all ISUP-manufacturer
intersections is present across training and hold-out test sets.

Manufacturer ISUP=1 ISUP=2 ISUP=3 ISUP=4 ISUP=5 Total

Training set (cross-validation)
GE (ERC) 143 (28.9%) 191 (38.6%) 88 (17.8%) 51 (10.3%) 22 (4.4%) 495
GE (no ERC) 216 (22.7%) 417 (43.9%) 170 (17.9%) 55 (5.8%) 92 (9.7%) 950
Philips 550 (37.0%) 525 (35.3%) 251 (16.9%) 87 (5.8%) 75 (5.0%) 1488
Siemens 515 (24.5%) 804 (38.2%) 342 (16.3%) 185 (8.8%) 256 (12.2%) 2102

Hold-out test set
GE (ERC) 14 (31.8%) 16 (36.4%) 7 (15.9%) 5 (11.4%) 2 (4.5%) 44
GE (no ERC) 17 (19.8%) 37 (43.0%) 17 (19.8%) 6 (7.0%) 9 (10.5%) 86
Philips 84 (37.5%) 81 (36.2%) 36 (16.1%) 13 (5.8%) 10 (4.5%) 224
Siemens 69 (21.8%) 124 (39.2%) 55 (17.4%) 25 (7.9%) 43 (13.6%) 316
Total
GE (ERC) 157 (29.1%) 207 (38.4%) 95 (17.6%) 56 (10.4%) 24 (4.5%) 539
GE (no ERC) 233 (22.5% 454 (43.8%) 187 (18.1%) 61 (5.9%) 101 (9.7%) 1036
Philips 634 (37.0%) 606 (35.4%) 287 (16.8%) 100 (5.8%) 85 (5.0%) 1712
Siemens 584 (24.2%) 928 (38.4%) 397 (16.4%) 210 (8.7%) 299 (12.4%) 2418

Table 10.1: Data distribution across different ISUP scores and manufacturers.

Data Preparation

All sequences were resampled to 0.5x0.5x3.0mm spacing and a 128x128x24 voxel central crop was extracted,
similar to previous studies on PCa aggressiveness prediction using multiparametric MRI data 18. T2w and
DWI were individually normalized to values between 0 and 1, while ADC were first converted to mm2/s (if
necessary) and multiplied by 1

3 . This enables us to keep the dynamic value range for ADC while ensuring
that values are approximately between 0 and 1. In models using more than one sequence all three sequences
are concatenated in the 0-th dimension (the input for a three sequence model is 3x128x128x24 voxels). As
in D5.3, models were trained/tested using a 192x192x24 voxel-size crop to inspect the effect of different crop
sizes on performance.
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Model
Batch size

(per GPU)
Warmup
epochs

Number of
epochs

Learning
rate

Weight
decay

Dropout
rate

VGG 64 (16)

10 100
5 * 10-4 0.005

0.1
ConvNeXt 128 (32)

ViT 64 (32)
5 * 10-5 0.1

F. ViT 64 (32)

Table 10.2: Training hyperparameters for deep learning networks (F. Vit is Factorized ViT).

Deep Learning Model Specification

We trained 4 distinct 3D deep learning architectures – a VGG-based model (consisting only of convolutions,
Gaussian error linear unit activations, batch normalizations and max-pooling operations) [32], a ConvNeXt
model [15], a 3D vision transformer (ViT) model [6] and a variation of the 3D ViT that separates within and
between slice processing (factorized ViT). General training details are provided in Table 10.2. All models
output a probability value between 0 and 1 – 0 if it belongs to the lower risk class, 1 if it belongs to the
higher risk class. Particular details about each architecture are provided below:

• VGG. The VGG model was composed of 3 blocks with depth d following a conv(d)-gelu-batchnorm-
conv(d*2)-gelu-batchnorm structure. In other words, for a given depth d, each element is passed
through a convolution (conv), a Gaussian error linear unit (gelu), a batch normalization (batchnorm)
and this process is repeated with the double of the depth. This is followed by a 2x2x2 max-pooling
operation and repeated three times with depths [64,128,256]. After the last pooling operation, a
global max-pooling operation is applied to the image, yielding a 512-dimension vector. A multilayer
perceptron (with structure [512,512,512,1] and gelu activations and batchnorm) is then applied to this
feature vector, yielding a uni-dimensional prediction.

• ConvNeXt. For the ConvNeXt model, we used the block architecture specified in the original paper
[15] with no modifications. This block is repeated 4 times with depths [32, 64, 128, 256] and the output
vector with size 512 is then used as the input to a multilayer perceptron (with structure [512, 512, 512, 1]
and gelu activations and batchnorm).

• ViT and factorized ViT. For the ViT, we rely on replicating the original implementation [6] with
no modifications. We use an 8 ViT block structure with a convolutional embedding size of 768 and 12
heads. For the multilayer perceptron structure of each block we used a [768, 2048, 768] structure.

Data augmentation. During training, images are randomly augmented in real-time. For this, we used a
wide array of augmentations from MONAI [20], namely:

• Identity (no transform)

• Random contrast adjustment (gamma = [0.5, 1.5])

• Random standard shift in intensity (range = [−0.1, 0.1])

• Random shift in intensity (range = [−0.1, 0.1])

• Random Rician noise (std = 0.02)

• Random bias field (degree = 3; T2W-only)

• Affine transforms (translation range = [4, 4, 1], rotation range = π
16 ,

π
16 ,

π
16 ])

• Horizontal flip

Each study is augmented with one of the above-mentioned transforms, which is picked at random with
uniform probability (as per [22]).
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Optimization. The AdamW optimizer [16], a modification to the Adam optimizer that corrects the appli-
cation of weight decay with a standard cross-entropy loss, was used to train all models. Class weights were
used to account for class imbalance (each positive instance is multiplied by pos/neg, where pos and neg are
the number of positive and negative cases, respectively).

Additional model specification and enumeration. As mentioned above, we trained models consider-
ing 4 distinct deep-learning architectures and using only T2w and using T2w, DWI and ADC. Finally, we
also assessed how clinical/demographic features – PSA, age at baseline – could have an effect on prediction.
This assessment was performed in two different manners:

• Retraining the models and concatenating each normalized feature (minus the mean and divided by the
standard deviation, each calculated for each fold) – we call this approach the “hybrid model” approach

• Extracting the probability scores from each sequence-only deep-learning model and calculating a bi-
nomial linear model which combines this with PSA and age at baseline. We call this approach the
binomial linear model approach. Given that this warrants additional flexibility and reduced computa-
tional costs, we also train models which make use of PI-RADS

In total, we train 4 architectures with 2 distinct sequence inputs and with the inclusion/exclusion of
clinical/demographic features. Each of these 16 combinations is trained using 5 different data subsets,
yielding a total of 80 models, each of which is trained using 5-fold cross validation for a total of 400 training
runs, each with 100 epochs.

Model evaluation. Each model is evaluated with its AUC using 5-fold cross-validation according to the
best observed AUC during training and its generalizability is assessed using the hold-out test set. To assess
how models perform on different subsets, we use the hold-out test set with different data subsets.

Sensitivity analysis and learning curves. As noted earlier, to understand the effect of crop size on
model performance, we train the best performing model using a larger crop size (192×192×24). Additionally,
to understand how the amount of data impacts model performance we train the best performing model using
different fractions of the total amount of data – 0.1, 0.3, 0.5 and 0.7.

Multi-dimensional data visualization and dataset distances. To understand how the multi-dimensional
features of the best performing model are distributed, we use t-SNE [37] on the last convolutional layer of
our models for the complete hold-out test set. This technique allows us to have a two-dimensional represen-
tation of a multi-dimensional space. However, t-SNE is not a quantitative approach to this – indeed, it only
provides a 2D visualization of our data by preserving the local neighborhood of each point. For this reason,
we also calculate optimal transport dataset distances (OTDD) as suggested by Alvarez-Melis and Fusi [1].
In essence, OTDD assumes that features are distributed according to a multivariate normal distribution and
uses the mean and covariance to calculate a generalized Wasserstein distance between each data description.

10.3 Results

We have organized results according to the ISUP-based target, particularly:

• Possibly low vs. high — classifying ISUP scores 1 and 2 vs. ISUP scores 3-5

• Low vs. possibly high — classifying ISUP score 1 vs. ISUP scores 2-5

• Possibly low vs. high — classifying ISUP scores 2 vs. ISUP scores 4 and 5
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Possibly Low vs. High (ISUP 1,2 vs. ISUP 3,4,5)

Cross-validation results. We observe wide variability in performance across different manufacturers and
architectures (Figure 10.1). Particularly, we observe that:

• mpMRI has greater diagnostic value than T2-weighted sequences alone. While T2-weighted
sequences provide greater anatomical resolution, using these alone in prediction leads to lacklus-
ter results; indeed, if ADC/DWI is available, there is no reason not to use them in prediction as
they consistently lead to improved results (6 ∗ 10−13 for a paired rank sum test comparing T2W vs.
T2W+DWI+ADC)

• VGG outperforms more complex models. Across different data subsets, VGG models have a
tendency to outperform more complicated and modern models such as ViT or ConvNext. Indeed,
in all cases, the average AUC for VGG models is higher than that of other models. While there is
no statistical significance when performing direct comparisons between VGG models and the second
best performing model (Table 10.3), this may be associated with a lack of power due to the relatively
small number of folds (k=5). Taking this into consideration, the relationship between AUC and deep-
learning models while controlling for manufacturer and sequence type is analyzed with a multivariate
linear model. VGG models are associated with higher AUC (at least 5% AUC when compared to other
models; Table 10.4). Finally, the use of ViT architectures appears to be detrimental - in most instances,
ViT-based models perform worse than CNN-based models (Table 10.5); this can be explained by their
lack of inductive biases, making them more dependent on high volumes of data. While these models are
trained, to the best knowledge of the authors, on the largest mpMRI dataset available, the original ViT
models were trained on at least 1 million images [6], 200 times more images than those in ProstateNet.
As such, their apparent success in other image-based tasks cannot be easily transferred to most tasks
in biological and biomedical image analysis

• Within-manufacturer performance is distinct across manufacturers. One of the key expected
insights was manufacturer-specific effects on predictive performance. Firstly, the performance trans-
ference from models trained and tested on the same domain (same manufacturer) is analyzed:

– Generally, models trained/tested on GE data with endorectal coils are worse than models trained/tested
on other types of data, whereas models trained/tested on other manufacturers appear to perform
better. This can be due to one of two things: either the relevant signal is weaker in GE scanners,
or the amount of data in GE scanners (GE scanner data is the most underrepresented of the three
in ProstateNet) is not sufficient to create good models

– Models trained on data from Philips scanners with VGG models - nearly half as prevalent as
Siemens studies - seem to perform the best out of all three scanners. This finding is common to
both T2W and T2W+DWI+ADC.

Manufacturer Model (other)
Mean VGG

AUC
Mean other

AUC
Sequences p-value

GE (ERC) Regular ViT 0.6643 0.6793 T2W 0.8125
GE (no ERC) Regular ViT 0.6725 0.6309 T2W 0.3125

Philips ConvNeXt 0.7255 0.6709 T2W 0.0625
Siemens ConvNeXt 0.662 0.6026 T2W 0.0625
Full ConvNeXt 0.6377 0.6032 T2W 0.0625

GE (ERC) Regular ViT 0.6094 0.6836 T2W+DWI+ADC 0.625
GE (no ERC) Regular ViT 0.7295 0.6409 T2W+DWI+ADC 0.0625

Philips ConvNeXt 0.793 0.7258 T2W+DWI+ADC 0.0625
Siemens Regular ViT 0.7047 0.6723 T2W+DWI+ADC 0.125
Full ConvNeXt 0.6873 0.6589 T2W+DWI+ADC 0.1875

Table 10.3: p-values for paired Wilcoxon rank sum tests comparing VGG models with the second best model
for each manufacturer for the possibly low vs. high target definition.
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Figure 10.1: Cross validation area under the curve (AUC) of different models on different manufacturer
datasets.

Variable Estimate Std. Error t-value p-value
Intercept 0.5934 0.0111 53.293 2.10E-131

Sequences used (vs. T2)
T2W+DWI+ADC 0.0363 0.007 5.1606 5.30E-07

Manufacturer (vs. all manufacturers)
GE (ERC) 0.0183 0.0122 1.4987 1.40E-01

GE (no ERC) 0.0154 0.0122 1.2628 2.10E-01
Philips 0.076 0.0122 6.2276 2.20E-09
Siemens 0.006 0.0122 0.488 6.30E-01

Deep-learning models (vs. ConvNext)
Factorized ViT -0.002 0.01 -0.1984 8.40E-01
Regular ViT 0.0107 0.01 1.079 2.80E-01

VGG 0.0517 0.01 5.1873 4.70E-07

Table 10.4: Coefficients for a linear model where AUC is the dependent variable and sequence type, manu-
facturer and deep-learning model are independent variables for the possibly low vs. high target definition.

Manufacturer Mean CNN AUC Mean ViT AUC Sequences p-value
GE (ERC) 0.6644 0.6442 T2W 5.57E-01

GE (no ERC) 0.6505 0.6215 T2W 0.2324
Philips 0.6982 0.6402 T2W 9.80E-03
Siemens 0.6323 0.5702 T2W 0.002
Full 0.6204 0.566 T2W 2.00E-03

GE (ERC) 0.5935 0.6779 T2W+DWI+ADC 8.40E-02
GE (no ERC) 0.6584 0.6381 T2W+DWI+ADC 4.32E-01

Philips 0.7594 0.713 T2W+DWI+ADC 2.73E-02
Siemens 0.6633 0.6648 T2W+DWI+ADC 0.8457
Full 0.6731 0.6473 T2W+DWI+ADC 3.71E-02

Table 10.5: Paired Wilcoxon rank sum test comparing convolutional models with transformer-based (ViT)
models for the possibly low vs. high target definition.

Hold-out test results. After analyzing the performance of our models across different training and vali-
dation subsets, we now seek to assess how transferable these models are to a hold-out test set. We arrive at
some key conclusions:

• Different models show distinct generalizability. There is a clear, albeit inconsistent, drop in perfor-
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mance, as shown in Figure 10.2 and Figure 10.3. This drop in performance, however, appears to be
more evident in the VGG (especially for Philips) and regular ViT models. For other models (ConvNeXt
and factorized ViT) this drop in performance is specific to only a few of the manufacturer models and
follows a relatively consistent linear trend

• Diverse training data leads to better generalization. Having such a dataset with plentiful cases of
different manufacturers enables a more substantial analysis - particularly, it is possible to assess how
models trained on data from specific manufacturers are affected when applied to data obtained using
other manufacturers. As shown in Figure 10.4 and Figure 10.5 and as expected, models trained
on specific scanners generally perform better when tested on data obtained using the same scanner.
However, a few interesting aspects should be highlighted:

– Models trained on all manufacturers (Full) perform similarly across different scanners. This is
less so the case for data obtained using GE scanners

– There appears to be some evidence showing that training (and possibly fine-tuning) scanner-
specific models is highly useful, but it is evident that training models on large collections of
images from different scanners leads to similar performance

– Hold-out test performance is not independent of DL architecture - once again, VGG outper-
forms other models (p = 0.0002 considering performance across all scanners). Looking at model
performance on individual scanners, however, shows a different picture - while the average VGG
performance is consistently better in T2W+DWI+ADC models, this is not statistically significant
except for models trained on Siemens data.

On the inclusion of clinical data. Age at baseline and PSA are two useful clinical variables which
can be helpful in early detection programs. Here, ”hybrid models” - deep-learning models combining both
sequence and clinical information - are compared with ”sequence-only models” - models using only sequence
information - to determine whether these clinical covariates can be beneficial for prediction.

Analyzing the CV performance for transformer-based models reveals that there is little to be gained
from including these specific clinical variables when all three mpMRI sequences are used (Figure 10.6 and
Figure 10.7). Further considering the results for the hold-out test set shows that including clinical variables
is unlikely to be useful in both T2W and T2W+DWI+ADC models. Indeed, as visible in Figure 10.8 and
Figure 10.9, it is evident that the inclusion of clinical variables in T2W models does not lead to improvements
in most instances. Finally, we note that training linear classification models and even including PI-RADS
scores does not lead to any changes in these conclusions — by combining sequence-only probabilities, age
and PSA, we show that performance does not improve by combining sequence only probabilities (or deep
probabilities) with age, PSA or PI-RADS (Figure 10.10). This would suggest that our sequence-only models
are already capturing the relevant information that would be provided by PI-RADS.

Learning curve analysis. To better understand the relationship between the amount of data and perfor-
mance, sequence-only VGG models with all sequences were trained with different amounts of training data.
In terms of cross-validated performance, there is an expected relation between the amount of training data
(the fraction of available training data) and performance for all manufacturers (Figure 10.11). This trend,
however, is not as clear for the hold-out test set - while for most cases one sees an upwards trend when
training and testing on the same data, this is unpredictable when testing on data from other manufacturers
(Figure 10.12). For instance, increasing the amount of Siemens data when training VGG models leads to
improved performance on GE data but is detrimental when testing on Philips data; on the other hand, when
training with data from all manufacturers, performance plateaus at approximately half (0.5) except for GE
ERC, where it generally remains poor regardless of the amount of training data used.

Sensitivity analysis to crop size. While the crop size used in this work (128×128×24) is not uncommon
[23], a better understanding on whether this could lead to a loss of signal was needed. Hence, the effect of a
larger crop size (192× 192× 24) on performance was tested, showing that the performance in both CV and
hold-out test set does not improve (Figure 10.13 and Figure 10.14), with models trained on GE data with
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Figure 10.2: Comparison of cross-validated (CV) and test area under the curve (AUC). Each point represents
the average AUC, whereas the vertical and horizontal error bars represent the mean with the addition and
subtraction of the standard error, respectively. The diagonal dashed line represents equality between both
axes.

larger crops appearing to perform worse than models trained on smaller crops (this difference is, however,
not statistically significant; Table 10.6).

Manufacturer Mean 128x128 AUC Mean 192x192 AUC p-value

GE (ERC) 0.4547 0.4486 0.8119
GE (no ERC) 0.5987 0.6042 0.4908

Philips 0.637 0.6328 0.8949
Siemens 0.5959 0.5949 0.7915
Full 0.653 0.6635 0.7112

Table 10.6: p-values for paired Wilcoxon rank sum tests comparing performance on different crop sizes
(128× 128× 24 and 192× 192× 24) for the possibly low vs. high target definition.

Multi-dimensional data visualization and dataset distances. While DL methods can perform rel-
atively well, the associations between deep features, learned by these models, and aggressiveness or man-
ufacturer can further illuminate which features are being learned. For this, deep features are first visually
inspected using t-SNE on the features obtained in the best performing sequence-only T2W+DWI+ADC VGG
fold, showing how the local neighborhood structure in this representation shows how samples from the same
manufacturer cluster together. Particularly, samples from GE scanners — mostly stemming from dataset
provider pseudonym B — share very few neighbors with samples from other manufacturers (Figure 10.15),
hinting that performance may be tied not only with scanner manufacturers but also with center-specific
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Figure 10.3: Test area under the curve (AUC) of different models on different manufacturer testing datasets.

protocols. Indeed, as notable in the same figure, the application of an endorectal coil during examination is
present in 96.8% of the studies (31/32 studies), possibly explaining the predictive underperformance in GE
ERC examinations — features appear to be different when comparing studies with and without endorectal
coils.

Since t-SNE is qualitative, quantitative dataset comparisons were performed using the dataset distance
proposed in 26 and stratifying by aggressiveness and by manufacturer. Using this, the qualitative findings
in Figure 10.15 are recapitulated (Figure 10.16): data hailing from the same manufacturer (and protocol) is,
in general, more similar than data with the same classification (aggressiveness).

Low vs. Possibly High (ISUP 1 vs. ISUP 2,3,4,5)

In general, we observe that the same conclusions regarding manufacturer performance hold for this target
definition, with some notable exceptions; however, possibly due to reasons which will be discussed ahead,
performance is in general better than that observed for the previous target definition. In the following
discussion we offer brief discussions using the same sections to facilitate comparison between both targets.

We note here that comparing the performance between targets is not sensible as we are effectively
comparing two distinct tasks. Instead, we focus on observing changes in differences between manufacturer,
clinical preparation, model and other conditions.

Cross-validation results. Compared with the previous target definition, we note here that the same
conclusions can be drawn. Particularly, mpMRI models outperform T2w-only models, VGG outperforming
other, more complex models and within-scanner performance shows wide variability Figure 10.17. For
this task, however, Siemens underperforms when compared with other models, whereas for the previous
task it was comparable with Philips models. On the other hand, Philips and Full models show improved
performance, with the Philips T2W-only model showing good performance (73% average AUC). Given that
data was stratified based on ISUP grades and scanners, we do not believe these discrepancies — Siemens
underperforming for this target — is due to shifts in manufacturer distribution. Other trends — performance
differences between VGG and the best performing model (Table 10.7; Table 10.8) and between CNN-based
and ViT-based models (Table 10.9) — are also recapitulated here.
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Manufacturer Model (other)
Mean VGG

AUC
Mean other

AUC
Sequences p-value

GE (ERC) ConvNeXt 0.6808 0.68 T2W 1
GE (no ERC) ConvNeXt 0.7387 0.732 T2W 1

Philips ConvNeXt 0.7295 0.6495 T2W 0.0625
Siemens Factorized ViT 0.6118 0.5668 T2W 0.0625
Full ConvNeXt 0.6532 0.5922 T2W 0.0625

GE (ERC) Regular ViT 0.607 0.6339 T2W+DWI+ADC 0.625
GE (no ERC) ConvNeXt 0.7632 0.7142 T2W+DWI+ADC 0.3125

Philips Regular ViT 0.7786 0.72 T2W+DWI+ADC 0.0625
Siemens Regular ViT 0.6515 0.617 T2W+DWI+ADC 0.0625
Full ConvNeXt 0.7109 0.6813 T2W+DWI+ADC 0.125

Table 10.7: p-values for paired Wilcoxon rank sum tests comparing VGG models with the second best model
for each manufacturer for the low vs. possibly high target definition.

Hold-out test results. The main difference is that, excluding GE data, drops in performance are not as
striking — this holds for both Siemens and Philips models, with GE (no ERC) models suffering a considerable
drop in performance (for mpMRI VGG models, the performance drops from 76% on CV to 67% on the hold-
out test set; Figure 10.18 and Figure 10.19). Full models are still the ones showing the smallest variability
and drop in performance. An interesting finding is that Full models outperform Siemens models on Siemens
data, whereas Philips VGG and Regular ViT models outperform GE (no ERC) models on GE (no ERC) data
(this effect was already somewhat visible in the possibly low vs. high target but here it becomes even more
apparent; Figure 10.20 and Figure 10.21). Together with the cross-validation results for this target and the
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Figure 10.5: Test AUC of models trained and tested on different scanners. The text corresponds to the
average, minimum and maximum AUC values (minimum and maximum values are between brackets) and
the colour corresponds to the average AUC value.

results for the previous target, we suggest that there may be some transferability with Philips models to GE
studies obtained without endorectal coils. However, it still holds that training models on data from multiple
different scanners is the best approach in terms of transferability of performance to different models.

On the inclusion of clinical data. We obtain results similar to those presented using the possibly low
vs. high target — indeed, no noteworthy gains are observed when including clinical or demographic data in
our DL models (Figure 10.22; Figure 10.23; Figure 10.24; Figure 10.25).
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Figure 10.6: Cross validation area under the curve (AUC) of different hybrid models (mpMRI + clinical) on
different manufacturer datasets.
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Figure 10.7: Comparison of AUC for sequence-only and hybrid models. Each point represents the average
AUC, whereas the vertical and horizontal error bars represent the mean with the addition and subtraction
of the standard error, respectively. The diagonal dashed line represents equality between both axes.

Learning curve analysis. Similarly to what was observed for the previous target, we note that there is
no clear saturation effect (despite the clear observation of a “deceleration”; Figure 10.27). This suggests that

74



Vendor-Specific AI Models
CHAPTER 10. VENDOR SPECIFIC DEEP LEARNING MODELS (EXPERIMENTS SET 1)

Variable Estimate Std. Error t-value p-value
Intercept 0.6213 0.0113 55.1213 1.50E-134

Sequences used (vs. T2)
T2W+DWI+ADC 0.034 0.0071 4.7715 3.30E-06

Manufacturer (vs. all manufacturers)
GE (ERC) -0.0018 0.0123 -0.1475 8.80E-01

GE (no ERC) 0.0685 0.0123 5.5493 7.90E-08
Philips 0.0605 0.0123 4.8961 1.80E-06
Siemens -0.0444 0.0123 -3.5949 4.00E-04

Deep-learning models (vs. ConvNext)
Factorized ViT -0.0224 0.0101 -2.218 2.80E-02
Regular ViT -0.014 0.0101 -1.3903 1.70E-01

VGG 0.0361 0.0101 3.5777 4.20E-04

Table 10.8: Coefficients for a linear model where AUC is the dependent variable and sequence type, manu-
facturer and deep-learning model are independent variables for the low vs. possibly high target definition.

Manufacturer Mean CNN AUC Mean ViT AUC Sequences p-value
GE (ERC) 0.6804 0.6384 T2W 2.75E-01

GE (no ERC) 0.7353 0.6506 T2W 0.0098
Philips 0.6895 0.6389 T2W 9.80E-03
Siemens 0.5859 0.5594 T2W 0.1309
Full 0.6227 0.5743 T2W 2.00E-03

GE (ERC) 0.6074 0.6196 T2W+DWI+ADC 6.95E-01
GE (no ERC) 0.7387 0.7025 T2W+DWI+ADC 1.31E-01

Philips 0.7478 0.7187 T2W+DWI+ADC 4.88E-02
Siemens 0.6179 0.6123 T2W+DWI+ADC 0.6953
Full 0.6961 0.6598 T2W+DWI+ADC 2.00E-03

Table 10.9: Paired Wilcoxon rank sum test comparing convolutional models with transformer-based (ViT)
models for the low vs. possible high target definition.

the inclusion of more data can add further benefit to our models. As before, the performance of GE (ERC)
models remains poor, further suggesting that endorectal coil use during scan acquisition, while beneficial
for contrast, is detrimental for deep learning models. When observing the hold-out test set learning curves
this non-saturating effect is only evident for GE (no ERC), Philips and Full models (Figure 10.27). Indeed,
for Siemens models, there appears to be no relevant improvement in hold-out test set performance that is
associated with increasing the volume of training data.

Sensitivity analysis to crop size. As shown earlier, crop size does not appear to have a predominant
effect on the performance of our models (Figure 10.29 and Figure 10.30), suggesting that the relevant signal
is contained within the 128 × 128 × 24 central crop. It should be noted, however, two exceptions from
this otherwise clear trend in the hold-out test set (Figure 10.30; Table 10.10) — when training on all
manufacturers (Full models), using a larger crop size (192 × 192 × 24) leads to better performance with
GE (no ERC) data. However, and interestingly this does not hold when analyzing GE (no ERC) models.
Secondly, a drop in performance happens in Full models when considering Philips data. Considering that,
in general, performance does not drop when considering the performance for all manufacturers, we suggest
here that there may be an added benefit to using a larger crop size for specific manufacturers (i.e. on GE (no
ERC) data), and that this added benefit should be carefully weighed against potential detrimental effects
(i.e. on Philips data).

Multi-dimensional data visualization and dataset distances. Finally, we note that observing the
multi-dimensional distribution of features in two dimensions leads to similar results as before (Figure 10.31
and Figure 10.32). However, we note here that there appears to be a clearer separation of both classes
(ISUP=1 vs. ISUP=2,3,4,5). Nonetheless, neighbors in feature space appear to be mostly determined by
manufacturer/protocol rather than by classification.
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Manufacturer Mean 128x128 AUC Mean 192x192 AUC p-value
GE (ERC) 0.5060 0.5055 0.8949

GE (no ERC) 0.5878 0.5785 0.8119
Philips 0.6382 0.6281 0.7112
Siemens 0.5263 0.5304 0.9158
Full 0.6609 0.6665 0.6721

Table 10.10: p-values for paired Wilcoxon rank sum tests comparing performance on different crop sizes
(128x128x24 and 192x192x24) for the low vs. possibly high target definition.

Intermediate vs. High (ISUP 2,3 vs. ISUP 4,5)

In general, we know that the conclusions regarding manufacturer performance are follow from those observed
in the previous section. However, we note that models demonstrate worse generalizability, possibly due to
the relatively smaller amounts of available data for training (no ISUP=1 cases were used).

Cross-validation results As before, mpMRI models outperform T2W-only models (Figure 10.33), and
other similar trends, particularly performance differences between VGG and the best performing model
(Table 10.11; Table 10.12) and between CNN-based and ViT-based models (Table 10.13) are also observable
here.

Manufacturer Model (other)
Mean VGG

AUC
Mean other

AUC
Sequences p-value

GE (ERC) ConvNeXt 0.6808 0.6800 T2W 1.0000
GE (no ERC) ConvNeXt 0.7387 0.7320 T2W 1.0000

Philips ConvNeXt 0.7295 0.6495 T2W 0.0625
Siemens Factorized ViT 0.6118 0.5668 T2W 0.0625
Full ConvNeXt 0.6532 0.5922 T2W 0.0625

GE (ERC) Regular ViT 0.6070 0.6339 T2W+DWI+ADC 0.6250
GE (no ERC) ConvNeXt 0.7632 0.7142 T2W+DWI+ADC 0.3125

Philips Regular ViT 0.7786 0.7200 T2W+DWI+ADC 0.0625
Siemens Regular ViT 0.6515 0.6170 T2W+DWI+ADC 0.0625
Full ConvNeXt 0.7109 0.6813 T2W+DWI+ADC 0.1250

Table 10.11: p-values for paired Wilcoxon rank sum tests comparing VGG models with the second best
model for each manufacturer for the low vs. possibly high target definition.

Variable Estimate Std. Error t-value p-value
Intercept 0.6213 0.0113 55.1213 0.0000

Sequences used (vs. T2)
T2W+DWI+ADC 0.0340 0.0071 4.7715 0.0000033

Manufacturer (vs. all manufacturers)
GE (ERC) -0.0018 0.0123 -0.1475 0.8829

GE (no ERC) 0.0685 0.0123 5.5493 0.0000001
Philips 0.0605 0.0123 4.8961 0.0000018
Siemens -0.0444 0.0123 -3.5949 0.0003970

Deep-learning models (vs. ConvNext)
Factorized ViT -0.0224 0.0101 -2.2180 0.0275
Regular ViT -0.0140 0.0101 -1.3903 0.1658

VGG 0.0361 0.0101 3.5777 0.0004

Table 10.12: Coefficients for a linear model where AUC is the dependent variable and sequence type, man-
ufacturer and deep-learning model are independent variables for the low vs. possibly high target definition.

Hold-out test results A considerably larger drop in performance is observed for this target when con-
sidering the hold-out test set. This is more evident for mpMRI models, whose performance deteriorates
considerably (in particular for GE (ERC) and Philips models; Figure 10.34 and Figure 10.35). As before,
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Manufacturer Mean CNN AUC Mean ViT AUC Sequences p-value
GE (ERC) 0.6804 0.6384 T2W 0.2754

GE (no ERC) 0.7353 0.6506 T2W 0.0098
Philips 0.6895 0.6389 T2W 0.0098
Siemens 0.5859 0.5594 T2W 0.1309
Full 0.6227 0.5743 T2W 0.0020

GE (ERC) 0.6074 0.6196 T2W+DWI+ADC 0.6953
GE (no ERC) 0.7387 0.7025 T2W+DWI+ADC 0.1309

Philips 0.7478 0.7187 T2W+DWI+ADC 0.0488
Siemens 0.6179 0.6123 T2W+DWI+ADC 0.6953
Full 0.6961 0.6598 T2W+DWI+ADC 0.0020

Table 10.13: Paired Wilcoxon rank sum test comparing convolutional models with transformer-based (ViT)
models for the low vs. possible high target definition.

Full models show a smaller amount of variability, but even for this case there is a larger drop in mpMRI
models when compared with T2w models (Figure 10.36; Figure 10.37).

On the inclusion of clinical data We observe little improvements for DL models incorporating a hybrid
setup (Figure 10.38; Figure 10.39; Figure 10.40; Figure 10.41); Figure 10.42).

Learning curve analysis Considering the CV learning curves, there is no clear evidence of a saturation
effect (Figure 10.43). However, it is fairly evident that in the test-set this is not as clear, particularly when
considering tests from GE machines (Figure 10.44).

Sensitivity analysis to crop size The small crop size used does not appear to have a deleterious effect
on performance, with most instances of changes in performance being a decrease in performance when larger
crop sizes are used. This holds for both CV and hold-out test set performance (Figure 10.45 and Figure 10.46;
Table 10.14).

Manufacturer Mean 128x128 AUC Mean 192x192 AUC p-value
GE (ERC) 0.5060 0.5055 0.8949

GE (no ERC) 0.5878 0.5785 0.8119
Philips 0.6382 0.6281 0.7112
Siemens 0.5263 0.5304 0.9158
Full 0.6609 0.6665 0.6721

Table 10.14: p-values for paired Wilcoxon rank sum tests comparing performance on different crop sizes
(128x128x24 and 192x192x24) for the low vs. possibly high target definition.

Multi-dimensional data visualization and dataset distances Finally, we note that observing the
multi-dimensional distribution of features in two dimensions leads to similar results as before (Figure 10.47
and Figure 10.48). However, the separation between GE (ERC) and other manufacturers is not as evident
as was observed for the previous targets.

Prospective Validation

The aforementioned models were also tested on different subsets. When analysing this (Figure 10.49), it is
observable that, while this failure is relatively widespread, some meaningful trends can be observed:

• While generalization is poor, models trained on data from all manufacturers are still capable of gener-
alising as well as models trained on specific subsets of data, suggesting that this is still a good strategy
to maximise the transferability of models;

• Siemens models appear to offer relatively good generalisation with the exception of T2W low vs.
possibly high models;
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• GE models with and without ERC are relatively poor at generalising even when being tested in the
same data.
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Figure 10.8: Comparison of hold-out test set AUC for sequence-only and hybrid models. Each point repre-
sents the average AUC, whereas the vertical and horizontal error bars represent the mean with the addition
and subtraction of the standard error, respectively. The diagonal dashed line represents equality between
both axes.
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model performed best. The y-axis refers to the data used to train each model and the y-facet (text on the
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80



Vendor-Specific AI Models
CHAPTER 10. VENDOR SPECIFIC DEEP LEARNING MODELS (EXPERIMENTS SET 1)

p(CV) = 0.1508

p(test) = 0.0556

p(CV) = 0.0952

p(test) = 0.0952

Deep prob. with PSA+Age Deep prob. with PSA+Age+PI−RADS

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

0.00

0.02

0.04

0.06

Hybrid CV AUC − Sequence−only CV AUC

H
yb

rid
 te

st
 A

U
C

 −
 S

eq
ue

nc
e−

on
ly

 te
st

 A
U

C

Features Deep prob. with PSA+Age Deep prob. with PSA+Age+PI−RADS
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Figure 10.19: Test area under the curve (AUC) of different models on different manufacturer testing datasets.
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Figure 10.20: Test AUC of models trained and tested on different scanners. The y-axis refers to the data
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87



Vendor-Specific AI Models
CHAPTER 10. VENDOR SPECIFIC DEEP LEARNING MODELS (EXPERIMENTS SET 1)

0.56
[0.46,0.65]

0.49
[0.38,0.60]

0.58
[0.46,0.65]

0.54
[0.50,0.59]

0.53
[0.49,0.56]

0.52
[0.49,0.56]

0.50
[0.38,0.61]

0.43
[0.34,0.57]

0.53
[0.42,0.61]

0.57
[0.49,0.63]

0.47
[0.45,0.49]

0.51
[0.47,0.54]

0.53
[0.49,0.58]

0.36
[0.28,0.39]

0.62
[0.55,0.70]

0.55
[0.49,0.58]

0.53
[0.49,0.56]

0.52
[0.49,0.55]

0.53
[0.45,0.61]

0.52
[0.45,0.60]

0.56
[0.48,0.60]

0.72
[0.71,0.75]

0.48
[0.41,0.55]

0.60
[0.57,0.63]

0.53
[0.44,0.58]

0.48
[0.42,0.58]

0.50
[0.36,0.61]

0.53
[0.46,0.61]

0.54
[0.52,0.56]

0.53
[0.49,0.58]

0.56
[0.46,0.63]

0.46
[0.35,0.54]

0.61
[0.55,0.70]

0.70
[0.65,0.72]

0.53
[0.47,0.58]

0.62
[0.59,0.64]

0.56
[0.51,0.58]

0.44
[0.34,0.51]

0.57
[0.48,0.61]

0.44
[0.37,0.57]

0.50
[0.47,0.54]

0.47
[0.42,0.52]

0.44
[0.41,0.49]

0.47
[0.41,0.55]

0.51
[0.48,0.55]

0.51
[0.41,0.57]

0.52
[0.50,0.54]

0.52
[0.48,0.54]

0.58
[0.55,0.62]

0.50
[0.38,0.60]

0.56
[0.47,0.61]

0.43
[0.40,0.47]

0.51
[0.49,0.52]

0.47
[0.46,0.49]

0.53
[0.48,0.55]

0.56
[0.53,0.58]

0.47
[0.43,0.50]

0.61
[0.57,0.64]

0.51
[0.47,0.54]

0.55
[0.50,0.58]

0.55
[0.48,0.62]

0.57
[0.42,0.65]

0.50
[0.39,0.57]

0.52
[0.47,0.57]

0.49
[0.44,0.54]

0.50
[0.47,0.52]

0.59
[0.55,0.63]

0.53
[0.45,0.65]

0.58
[0.54,0.60]

0.64
[0.57,0.68]

0.52
[0.50,0.54]

0.59
[0.57,0.61]

0.56
[0.52,0.59]

0.44
[0.36,0.58]

0.57
[0.52,0.61]

0.49
[0.43,0.60]

0.49
[0.48,0.49]

0.48
[0.44,0.51]

0.41
[0.37,0.49]

0.42
[0.35,0.56]

0.45
[0.41,0.51]

0.52
[0.37,0.60]

0.50
[0.49,0.53]

0.49
[0.42,0.52]

0.60
[0.54,0.65]

0.54
[0.36,0.63]

0.58
[0.52,0.64]

0.47
[0.38,0.55]

0.50
[0.49,0.54]

0.49
[0.45,0.54]

0.52
[0.46,0.58]

0.54
[0.44,0.64]

0.46
[0.41,0.51]

0.60
[0.56,0.64]

0.50
[0.46,0.52]

0.55
[0.53,0.58]

0.56
[0.54,0.60]

0.57
[0.54,0.60]

0.47
[0.43,0.57]

0.48
[0.42,0.55]

0.50
[0.47,0.53]

0.48
[0.43,0.54]

0.54
[0.53,0.55]

0.45
[0.39,0.48]

0.50
[0.46,0.54]

0.58
[0.54,0.63]

0.50
[0.49,0.52]

0.55
[0.52,0.58]

0.59
[0.55,0.64]

0.50
[0.44,0.59]

0.60
[0.56,0.70]

0.52
[0.49,0.55]

0.51
[0.45,0.56]

0.51
[0.50,0.54]

0.48
[0.44,0.51]

0.49
[0.39,0.54]

0.47
[0.42,0.53]

0.55
[0.52,0.57]

0.50
[0.44,0.55]

0.51
[0.49,0.52]

0.66
[0.65,0.68]

0.61
[0.52,0.70]

0.68
[0.66,0.71]

0.47
[0.40,0.51]

0.50
[0.45,0.53]

0.51
[0.46,0.53]

0.54
[0.45,0.64]

0.63
[0.58,0.66]

0.50
[0.38,0.64]

0.59
[0.54,0.63]

0.51
[0.49,0.52]

0.54
[0.53,0.56]

0.48
[0.42,0.55]

0.45
[0.36,0.58]

0.46
[0.36,0.60]

0.47
[0.44,0.50]

0.48
[0.45,0.51]

0.47
[0.44,0.49]

0.50
[0.38,0.56]

0.52
[0.34,0.70]

0.48
[0.38,0.55]

0.56
[0.48,0.61]

0.48
[0.45,0.51]

0.51
[0.47,0.55]

0.60
[0.55,0.65]

0.38
[0.35,0.45]

0.69
[0.63,0.76]

0.59
[0.46,0.69]

0.58
[0.55,0.62]

0.59
[0.52,0.67]

0.49
[0.42,0.56]

0.52
[0.44,0.61]

0.51
[0.42,0.58]

0.47
[0.34,0.63]

0.54
[0.49,0.59]

0.50
[0.43,0.60]

0.61
[0.53,0.65]

0.55
[0.42,0.60]

0.67
[0.64,0.68]

0.53
[0.44,0.63]

0.59
[0.56,0.64]

0.56
[0.50,0.61]

0.64
[0.59,0.67]

0.52
[0.47,0.59]

0.69
[0.67,0.72]

0.78
[0.76,0.80]

0.55
[0.50,0.60]

0.66
[0.64,0.69]

0.52
[0.41,0.61]

0.53
[0.41,0.61]

0.51
[0.36,0.67]

0.43
[0.39,0.47]

0.64
[0.58,0.69]

0.53
[0.47,0.57]

0.64
[0.62,0.66]

0.48
[0.45,0.55]

0.70
[0.68,0.73]

0.78
[0.76,0.80]

0.70
[0.65,0.73]

0.73
[0.71,0.74]

0.57
[0.55,0.58]

0.42
[0.31,0.51]

0.62
[0.59,0.70]

0.50
[0.41,0.58]

0.51
[0.48,0.56]

0.52
[0.47,0.56]

0.48
[0.43,0.54]

0.41
[0.34,0.52]

0.55
[0.50,0.61]

0.51
[0.40,0.65]

0.48
[0.41,0.55]

0.48
[0.43,0.58]

0.59
[0.51,0.66]

0.52
[0.40,0.59]

0.62
[0.57,0.70]

0.55
[0.47,0.59]

0.49
[0.45,0.52]

0.54
[0.51,0.57]

0.54
[0.49,0.57]

0.51
[0.48,0.54]

0.57
[0.52,0.64]

0.69
[0.68,0.71]

0.49
[0.46,0.55]

0.59
[0.57,0.63]

0.56
[0.49,0.63]

0.55
[0.45,0.65]

0.58
[0.49,0.71]

0.50
[0.37,0.69]

0.59
[0.54,0.65]

0.56
[0.49,0.68]

0.65
[0.61,0.69]

0.55
[0.47,0.68]

0.69
[0.66,0.74]

0.70
[0.63,0.75]

0.65
[0.60,0.69]

0.68
[0.63,0.72]

0.61
[0.59,0.65]

0.44
[0.38,0.52]

0.66
[0.61,0.71]

0.56
[0.48,0.70]

0.54
[0.52,0.56]

0.58
[0.52,0.64]

0.37
[0.34,0.42]

0.34
[0.32,0.37]

0.38
[0.33,0.49]

0.43
[0.33,0.61]

0.47
[0.46,0.49]

0.44
[0.38,0.53]

0.62
[0.61,0.63]

0.62
[0.60,0.64]

0.64
[0.62,0.65]

0.59
[0.46,0.64]

0.54
[0.53,0.56]

0.60
[0.53,0.62]

0.67
[0.63,0.70]

0.44
[0.41,0.45]

0.75
[0.69,0.77]

0.72
[0.70,0.74]

0.51
[0.49,0.56]

0.62
[0.60,0.65]

0.62
[0.60,0.65]

0.55
[0.46,0.63]

0.61
[0.60,0.65]

0.42
[0.38,0.47]

0.56
[0.52,0.58]

0.50
[0.46,0.54]

0.68
[0.66,0.70]

0.44
[0.39,0.56]

0.75
[0.71,0.77]

0.72
[0.67,0.75]

0.60
[0.55,0.64]

0.67
[0.63,0.69]

0.60
[0.54,0.66]

0.38
[0.32,0.48]

0.65
[0.56,0.76]

0.53
[0.45,0.66]

0.57
[0.50,0.62]

0.56
[0.50,0.63]

0.39
[0.36,0.41]

0.41
[0.34,0.52]

0.41
[0.40,0.42]

0.51
[0.40,0.62]

0.47
[0.45,0.48]

0.47
[0.41,0.54]

0.59
[0.58,0.62]

0.56
[0.51,0.61]

0.59
[0.56,0.64]

0.65
[0.54,0.68]

0.54
[0.51,0.57]

0.61
[0.58,0.64]

0.62
[0.57,0.67]

0.55
[0.47,0.67]

0.61
[0.57,0.64]

0.70
[0.69,0.72]

0.52
[0.50,0.54]

0.61
[0.60,0.62]

0.66
[0.64,0.69]

0.60
[0.53,0.67]

0.66
[0.63,0.69]

0.47
[0.41,0.55]

0.57
[0.51,0.60]

0.54
[0.50,0.57]

0.67
[0.63,0.73]

0.52
[0.44,0.58]

0.72
[0.65,0.81]

0.67
[0.65,0.70]

0.59
[0.57,0.60]

0.65
[0.63,0.66]

T2W T2W+DWI+ADC

V
G

G
C

onvN
eX

t
R

egular V
iT

Factorized V
iT

GE GE (ERC)GE (no ERC) Philips Siemens Full GE GE (ERC)GE (no ERC) Philips Siemens Full

Full

Siemens

Philips

GE (no ERC)

GE (ERC)

GE

Full

Siemens

Philips

GE (no ERC)

GE (ERC)

GE

Full

Siemens

Philips

GE (no ERC)

GE (ERC)

GE

Full

Siemens

Philips

GE (no ERC)

GE (ERC)

GE

Trained on

Te
st

ed
 o

n

0.4 0.5 0.6 0.7

Average AUC for
hold−out test set

Figure 10.21: Test AUC of models trained and tested on different scanners. The text corresponds to the
average, minimum and maximum AUC values (minimum and maximum values are between brackets) and
the colour corresponds to the average AUC value.
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Figure 10.22: Cross validation area under the curve (AUC) of different hybrid models (mpMRI + clinical)
on different manufacturer datasets.
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Figure 10.23: Comparison of AUC for sequence-only and hybrid models. Each point represents the average
AUC, whereas the vertical and horizontal error bars represent the mean with the addition and subtraction
of the standard error, respectively. The diagonal dashed line represents equality between both axes.
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Figure 10.24: Comparison of hold-out test set AUC for sequence-only and hybrid models. Each point
represents the average AUC, whereas the vertical and horizontal error bars represent the mean with the
addition and subtraction of the standard error, respectively. The diagonal dashed line represents equality
between both axes.
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Figure 10.25: Test AUC of models trained and tested on different scanners. The arrow represents sequence-
only and hybrid model performance (base and tip, respectively) and the colour of the arrow represents which
model performed best. The y-axis refers to the data used to train each model and the y-facet (text on the
right side of the image) refers to the data used to test each model.
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Figure 10.26: Difference between sequence-only and elastic net-regularized linear classification model AUC.
Both CV (x axis) and test (y axis) AUC are represented, with the average value noted as a circle at the
intersection of the dashed lines. The p-values shown in the figure were obtained using a one-sample Wilcoxon
rank sum test.
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Figure 10.27: Learning curve for cross-validation AUC.
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Figure 10.28: Learning curve for hold-out test set AUC.
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Figure 10.29: Impact of crop size on cross-validation AUC.
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Figure 10.30: Impact of crop size on hold-out test set AUC.
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Figure 10.31: t-distributed stochastic neighbor embedding (t-SNE) visualization of all data (n=560 studies;
first panel) and stratified by manufacturer (second panel) and by aggressiveness. The embedding is the same
across panels and t-SNE1 and t-SNE2 represent the t-SNE dimensions.
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Figure 10.32: Optimal transport dataset distance between different data subsets. The colours correspond
to different aggressiveness comparisons and the transparency of each grid cell corresponds to the distance
between data subsets (higher values imply greater dissimilarity).
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Figure 10.33: Cross validation area under the curve (AUC) of different models on different manufacturer
datasets.
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Figure 10.34: Comparison of cross-validated (CV) and test area under the curve (AUC). Each point represents
the average AUC, whereas the vertical and horizontal error bars represent the mean with the addition and
subtraction of the standard error, respectively. The diagonal dashed line represents equality between both
axes.
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Figure 10.35: Test area under the curve (AUC) of different models on different manufacturer testing datasets.
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Figure 10.36: Test AUC of models trained and tested on different scanners. The y-axis refers to the data
used to train each model and the y-facet (text on the right side of the image) refers to the data used to test
each model.
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Figure 10.37: Test AUC of models trained and tested on different scanners. The text corresponds to the
average, minimum and maximum AUC values (minimum and maximum values are between brackets) and
the colour corresponds to the average AUC value.
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Figure 10.38: Cross validation area under the curve (AUC) of different hybrid models (mpMRI + clinical)
on different manufacturer datasets.
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Figure 10.39: Comparison of AUC for sequence-only and hybrid models. Each point represents the average
AUC, whereas the vertical and horizontal error bars represent the mean with the addition and subtraction
of the standard error, respectively. The diagonal dashed line represents equality between both axes.
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Figure 10.40: Comparison of hold-out test set AUC for sequence-only and hybrid models. Each point
represents the average AUC, whereas the vertical and horizontal error bars represent the mean with the
addition and subtraction of the standard error, respectively. The diagonal dashed line represents equality
between both axes.
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Figure 10.41: Test AUC of models trained and tested on different scanners. The arrow represents sequence-
only and hybrid model performance (base and tip, respectively) and the colour of the arrow represents which
model performed best. The y-axis refers to the data used to train each model and the y-facet (text on the
right side of the image) refers to the data used to test each model.
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Figure 10.42: Difference between sequence-only and elastic net-regularized linear classification model AUC.
Both CV (x axis) and test (y axis) AUC are represented, with the average value noted as a circle at the
intersection of the dashed lines. The p-values shown in the figure were obtained using a one-sample Wilcoxon
rank sum test.
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Figure 10.43: Learning curve for cross-validation AUC.
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Figure 10.44: Learning curve for hold-out test set AUC.
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Figure 10.45: Impact of crop size on cross-validation AUC.

Trained on Siemens Trained on all manufacturers

Trained on GE (ERC) Trained on GE (no ERC) Trained on Philips

0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

0.4 0.5 0.6 0.7

Full

GE (ERC)

GE (no ERC)

Philips

Siemens

Full

GE (ERC)

GE (no ERC)

Philips

Siemens

Hold−out test set AUC

M
an

uf
ac

tu
re

r

Size 128x128 192x192

Figure 10.46: Impact of crop size on hold-out test set AUC.
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Figure 10.47: t-distributed stochastic neighbor embedding (t-SNE) visualization of all data (n=560 studies;
first panel) and stratified by manufacturer (second panel) and by aggressiveness. The embedding is the same
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10.4 Discussion

As we noted, direct comparisons of performance between targets is unwise and should be avoided. Nonethe-
less, we attempt here to summarize trends which are common to both target definitions.

Relevant Commonalities and Differences

In general, we observe the following to be applicable to all target types (we note exceptions, particularly for
the intermediate vs. high risk target, whenever relevant):

1. VGG models outperform other, more recent models. This may be a consequence of more
recent models requiring larger amounts of data as they have been developed with modern natural image
datasets, typically comprising of hundreds of thousands or millions of images. This is particularly the
case for ViT models

2. mpMRI outperforms T2w-only models. In general this is sensible — PI-RADS, the protocol used
to evaluate prostate MRI studies recommends the use of both high b-value DWI and ADC to ensure
the best possible results [2]. Interestingly, mpMRI models in the intermediate vs. high risk target
suffered a considerable drop in performance when tested on a hold-out test set, oftentimes making
them perform comparably to T2W-only models. This entails that there may be little information to
be gained in functional sequences (ADC, DWI) when classifying between intermediate and high risk
cases, or that this information is more complicated to learn for DL models

3. Performance can drop when using a hold-out test set but training with multiple scanners
overcomes this. In general, we observe that generalizability — the ability of models to perform as well
on a hold-out test set — is not perfect for models trained on data hailing from specific manufacturers
(as noted earlier). The extent of this is quite variable and may be target dependent — low vs. possibly
high Philips models suffer a minimal drop in performance when tested on Philips data, but this drop in
performance is approximately 10% when evaluating possibly low vs. high Philips models on the hold-
out test set. Nonetheless, by using data from multiple scanners during training, this can be overcome
— indeed, no drop in performance is observed for Full models in the possibly low vs. high and low vs.
possibly high targets. However and as noted, mpMRI models suffer a considerable drop in performance
in intermediate vs. high risk cases. We posit that this may be due to the relatively smaller amounts
of data which can lead to more dramatic cases of overfitting [21]

4. Clinical data (age, PSA, PI-RADS) fails to improve the performance of DL models. While
multiple different models were assessed, we failed to see any improvement gains by using PSA, age or
PI-RADS as additional predictors in a model. While this complicates future additions to this model as
other clinical data is relatively more complicated to obtain, we note that this also shows that our DL
models are learning the information that otherwise would require additional mpMRI interpretation to
derive a PI-RADS score

5. More data is likely to be beneficial. Our learning curve analyses show that there is a general
association between data volume and performance. This, however, is not always the case — for Siemens
data using the low vs. possibly high target definition this dependence is not strict, particularly for
the hold-out test set. The upstream causes of this difference is, to the best of our knowledge, hard
to assess — indeed this is not the case when evaluating these models with the Full models, perhaps
further highlighting the necessity of data variability when training these models

6. A central crop is sufficient to contain the relevant signal. One of the main concerns for this
project was the definition of a crop that would not require additional input from clinical practitioners
regarding the location of the prostate. Here, we show that using a central and relatively small crop
is sufficient, validating an approach used in earlier studies with smaller datasets [23]. This indicates
that, generally, we can expect the prediction-relevant signal to be centered around the prostate and in
the middle of the image
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7. Manufacturer and protocol overpowers the feature landscape. Finally, we note an important
aspect of this analysis — while training on the complete set of manufacturers leads to models which
are relatively performant, generalisable and transferable, the effect that manufacturer and protocol
(or even data provider) have on the distribution of features at high dimensions is predominant when
compared with classification. This highlights an important aspect that is likely to be crucial to the
applicability of these models in new clinical settings and centers — a minimal amount of finetuning is
a likely necessity for the incorporation of possible deviations in the feature space.

Considerations on the Utility of Models with Different Targets

Different objectives can be accomplished with each models trained on different targets using the first two
targets:

1. Low vs. possibly high. Having a model capable of separating low risk cases from those that can
potentially be high risk reduces patient discomfort and clinician burden — considering that ISUP=1
accounts for approximately one third of all cases, a well-performing model could potentially reduce the
number of biopsies required and allow clinicians to focus on cases representing a higher risk for the
patient

2. Possibly low vs. high. This case represents a different application — indeed, while it would be
irresponsible to skip biopsy for patients with ISUP=1,2, it would be safer to make a clear statement
about the necessity of more aggressive treatments. More concretely, in a scenario where the predicted
target is possibly low, clinicians could advise patients to undergo a less aggressive form of treatment.

As such, low vs. possibly high is a target to reduce the necessary biopsies, whereas possibly low vs.
high is a target to reduce the chance of overtreatment. Considering the relative performance of each model,
we suggest that low vs. possibly high is likely to be the most impactful as it still allows for relevant
patient stratification.

Considerations on Target Definition through ISUP Grading

In general, we tendentially observe better performance for the Low vs. possibly high (ISUP=1 vs. ISUP=2,3,4,5)
when compared with the Possibly low vs. high (ISUP=1,2 vs. ISUP=3,4,5). This is reasonable — from
a histopathological perspective, ISUP=1 is characterized as having no clear indications of pathogenicity,
whereas ISUP¿2 should have some clear signs. On the other hand, ISUP=2 is characterized by some indica-
tive signs that the lesion is growing, whereas ISUP¿3 has clear indications of abnormal prostate cells.

However, it should be noted that from a prognostic point of view this relationship is not as clear cut —
while ISUP=1 and ISUP=2 are generally considered to stratify patients in terms of overall survival [34], the
evidence for stratification in recurrence-free survival is mixed [34, 33, 19]. Additionally, there may be missing
information in ISUP scores and relevant differences in grading between experts — a 2015 study has shown
that ISUP=2 without cribriform structures may be similar to ISUP=1 [14], whereas another showed that
reevaluation of Gleason scores leads to a different grading in approximately 20% of instances [40]. Indeed,
ISUP is a useful, albeit noisy, grading and we believe this is consequential in terms of defining a target
variable for prediction.

Considerations on Prospective Validation of Vendor-Specific Models

The prospective validation of vendor-specific models shows that the generalisation of some models can be
improved by training models on specific subsets — this is particularly the case for Siemens models (excluding
low vs. possibly high T2W+DWI+ADC models) and in some cases for Philips. In any case no particular
trend is detectable, making the generic deployment of these models complicated and careful evaluation should
be afforded to deployed models.
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Chapter 11

Vendor Specific Deep Learning
Models (Experiments Set 2)

11.1 Chapter Summary

For this task of deliverable 6.1, FPO expanded the analysis presented in deliverable 5.3 and trained the
model that reached the highest performances in terms of detection rate (DR) and true negative rate (TNR)
on subsets of data stratified by vendors, i.e., GE Medical System (GE), Philips, and Siemens. The selected
model was the one that used an Unet in which the encoder was replaced with a Resnet50 and that received
as input a 3-channel 2D image in which T2w, ADC map, and DWI images were concatenated. We tested
both detection and segmentation on a set of retrospective data used as a test set, while we only evaluated
detection on prospective data since no manual masks were provided for these patients. Training and test
sets are detailed in the following section.

11.2 Methods

Data Description

We used the same subset of patients used for the master model to fine tune and test the networks. The
dataset was composed of 371 retrospective patients who were splitted into a training set (n=312, 85% of
cases of each vendor) and a test set (n=59, 15% of cases of each vendor). All patients had the manual
segmentation of the tumor. The construction set was further divided into training set (80%) and validation
set (20%), resulting in the following numbers:

• for GE: 100 for training (80 train + 20 validation) and 14 for testing

• for Philips: 125 for training (100 train + 25 validation) and 27 for testing

• for Siemens: 87 for training (70 train + 17 validation) and 18 for testing

Figure 11.1 shows the distribution of patients in the training and test set across centers and vendors.

Data Preprocessing

Before feeding the networks, some pre-processing steps were applied. First, in case T2w and hbDWI/ADC
didn’t have the same slice thickness, they were co-registered with the T2w image, using an elastic transforma-
tion and the mutual information as metric. Then, all sequences were cropped and resampled in order to have
the same resolution and field of view (FOV), and the N4 bias correction filter was applied to the T2w image
to correct inhomogeneities due to the coil. Finally, a in-house developed algorithm to automatically segment
the prostate was applied and each sequence was cropped around the automatically segmented prostate area
using a bounding box of 224x224 pixels to ease the network training and reduce the computational cost.
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Figure 11.1: Distribution of patients in the training and test set across centers and vendors

Then, a pixel standardization using the z-score technique was applied at the patient level. Pixel intensities
values were rescaled between 0 and 1, and all voxels outside the prostate area were set to 0. Finally, 2D slices
were transformed into RGB images in which each RGB channel is represented by a different sequence (T2w,
ADC, and hbDWI). Once the output images were generated, a binary threshold filter was applied to the
probability maps returned by the networks to obtain the automatic masks of the tumors. Then, connected
areas smaller than 50 voxels were discarded.

11.3 Results

Table 11.1 shows results obtained by the three models on the validation set.

Manufacturer
per-patient DR

(%[rate])
Per-lesion DR

(%[rate])
DSC N FP/N Voxel

GE 80[16/20] 75[15/20] 0.72 0/1010
Philips 76[19/25] 76[19/25] 0.73 0/580
Siemens 88[15/17] 76[13/17] 0.64 0/473

DR = detection rate; DSC = Dice Similarity Score (DSC); N FP/N Voxel = Average Number of false
positive lesions per patient/Median Number of false positive Voxel

Table 11.1: Results of vendor specific models on the validation set

Table 11.2 shows the performance obtained by the three Vendor Specific models (GE, Philips, and
Siemens) on the retrospective test set compared to the results obtained by the master model stratified
according to vendors.

Table 11.3 and 11.4 show the performances of the vendor specific models on prospective cases stratified
per vendors, respectively on positive and negative patients. For each vendor specific model, we also reported
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Manufacturer
per-patient DR

(%[rate])
Per-lesion DR

(%[rate])
DSC N FP/N Voxel

Master Model on GE 79[11/14] 71[10/14] 0.62 1/1250
GE 79[11/14] 71[10/14] 0.60 1/472

Master Model on
Philips

81[22/27] 70[19/27] 0.56 1/921

Philips 81[22/27] 70[19/27] 0.46 0/773

Master Model on
Siemens

61[11/18] 50[9/18] 0.61 0/70

Siemens 67[12/18] 56[10/18] 0.48 0/168

DR = detection rate; DSC = Dice Similarity Score (DSC); N FP/N Voxel = Average Number of false
positive lesions per patient/Median Number of false positive Voxel

Table 11.2: Results of vendor specific models on the test set

the performances obtained by the master model stratified per vendor, on the same subset of patients.

Vendor Detection rate (%) Detection rate (rate)
Master model on GE 86 79/91

GE 89 80/91
Master model on Philips 60 27/45

Philips 53 24/45
Master model on Siemens 70 23/33

Siemens 64 21/33

Table 11.3: Results obtained using vendor specific and master models on positive prospective patients

Vendor True Negative Rate (%) True Negative Rate (rate)
Master model on GE 29 9/31

GE 32 10/31
Master model on Philips 40 19/48

Philips 44 21/48
Master model on Siemens 57 12/21

Siemens 38 8/21

Table 11.4: Results obtained using vendor specific and master models on negative prospective patients

11.4 Discussion

Results obtained on GE model were statistically higher than those obtained on both Philips and Siemens
(p≤ 0.001). This might be due to two different reasons: a) Siemens dataset is very small, and could not be
sufficient to train a robust network, and b) most of Philips cases did not have the same slice thickness between
T2w and ADC/hbDWI images, therefore image registration might have introduced some biases. Despite the
challenges faced, i.e., prospective dataset size and heterogeneity in the different use cases, performances
were similar between validation and test set, meaning that the networks were able to generalize to a different
cohort. However, further research is needed to increase the sample size and optimize the registration between
T2w and ADC/hbDWI images.
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Chapter 12

Vendor Specific Deep Learning
Models (Experiments Set 3)

12.1 Chapter Summary

Within the scope of deliverable 6.1, and T6.3, Radboudumc investigated the viability and efficacy of vendor-
specific deep learning models for UC1 and UC2 in multiple parts. This section presents our study on
harmonizing several state-of-the-art techniques from recent literature to develop a novel vendor-specific end-
to-end 3D deep learning system. We trained, tuned, and tested this system at autonomously generating
voxel-level detections of clinically significant ISUP ≥ 2 prostate cancers (i.e., UC1, UC2) in 2.7K patient
examinations from clinical routine at two tertiary care centers based in the Netherlands. All images across
both centers were acquired using MRI scanners from Siemens Healthineers. We investigated whether vendor-
specific deep learning models trained using vendor-specific data from one center can generalize to data
obtained using the same vendor at another center. We also determined the minimum number of training
cases required to achieve expert radiologist performance in such a setting. Next, we expanded our dataset to
7.7K patient examinations by including non-annotated cases from the same distribution (same centers, same
vendor). We investigated semi-supervised learning strategies and rule-based systems (using automated sparse
information from diagnostic reports) to automatically create pseudo-labels for non-annotated cases. Such a
method allows us to employ vastly larger training datasets for supervised models (within ProstateNET and in
general) while reducing the manual workload for radiologists and the overall annotation budget. Our findings
from these studies have been published as peer-reviewed papers at the Medical Imaging Meets NeurIPS

Workshops of the 34th and 35th Conference on Neural Information Processing Systems [25, 27],
and as full journal articles in Medical Image Analysis [28], European Radiology [9] and Radiology:

Artificial Intelligence [3].

12.2 Methods

Single-Vendor, Multi-Center ISUP≥2 Detection

Dataset The primary dataset was a cohort of 2436 consecutive prostate MRI studies (2317 patients) from
Radboud University Medical Center (RUMC), acquired over the period January 2016–January 2018. All
cases were paired with radiologically-estimated annotations of csPCa derived via PI-RADS v2. From here,
1584 (65%), 366 (15%), and 486 (20%) scans were split into training, validation, and testing (TS1) sets,
respectively, via double-stratified sampling –preserving the same class balance (benign or malignant) while
ensuring non-overlapping patients, between each subset of data. Additionally, 296 prostate MRI scans (296
patients) from Ziekenhuisgroep Twente (ZGT), acquired over the period March 2015–January 2017, were used
to curate an external testing set (TS2). TS2 annotations included biopsy-confirmed histological ISUP grades.
Patients were biopsy-naive men (RUMC: {median age: 66 yrs, IQR: 61–70}, ZGT: {median age: 65 yrs, IQR:
59–68}) with elevated levels of PSA (RUMC: {median level: 8 ng/mL, IQR: 5–11}, ZGT: {median level:
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Figure 12.1: (top) Proposed end-to-end framework for computing voxel-level detections of csPCa in valida-
tion/test samples of prostate bpMRI. The model center crops two ROIs from the multi-channel concatenation
of the patient’s T2W, DWI, and ADC scans for inputting its detection and classification 3D CNN sub-models
(M1, M2). M1 leverages an anatomical prior P in its input x1 to synthesize spatial priori and generate a
preliminary detection y1. M2 infers on a set of overlapping patches x2 and maps them to a set of prob-
abilistic malignancy scores y2. Decision fusion node NDF aggregates y1, y2 to produce the model output
yDF in the form of a post-processed csPCa detection map with high sensitivity and reduced false positives.
(bottom) Architecture schematic for the Dual-Attention U-Net (M1). M1 is a modified adaptation of the
UNet++ architecture [44], utilizing a pre-activation residual backbone [8] with Squeeze-and-Excitation (SE)
channel-wise attention mechanism [10] and grid-attention gates [30]. All convolutional layers in the encoder
and decoder stages are activated by ReLU and LeakyReLU, respectively, and use kernels of size 3×3×3 with
L2 regularization (β = 0.001). Both downsampling and upsampling operations throughout the network are
performed via anisotropic strides. Dropout nodes (rate = 0.50) are connected at each scale of the decoder
to alleviate train-time overfitting.

6.6 ng/mL, IQR: 5.1–8.7}). Imaging was performed on 3T MR scanners with surface coils (RUMC: {89.9%
on Magnetom Trio/Skyra, 10.1% on Prisma}, ZGT: {100% on Skyra}; Siemens Healthineers, Erlangen).
In this study, we used bpMRI sequences only, which included T2-weighted (T2W) and diffusion-weighted
imaging (DWI). Apparent diffusion coefficient (ADC) maps, and high b-value DWI (b≥1400 s/mm2) were
computed from the raw DWI scans. All patient cases were read during regular clinical routine via PI-
RADS v2. At RUMC, all cases were read by at least one of six radiologists (4- 25 years of experience), and
difficult cases were jointly examined with an expert radiologist (25 years of experience with prostate MRI).
At ZGT, all cases were read by two radiologists (6, 24 years of experience) and independently reviewed by
two expert radiologists (5, 25 years of experience with prostate MRI) in consensus. In this study, we flagged
any detected lesions marked PI-RADS 4 or 5 as csPCa(PR). All patients at ZGT underwent TRUS-guided
biopsies performed by a urologist, blinded to the imaging results. In the presence of any suspicious lesions
(PI-RADS> 2), patients underwent in-bore MRI-guided biopsies. All tissue samples were graded by general
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pathologists and independently reviewed by an experienced uropathologist (25 years of experience), where
cores containing cancer were assigned ISUP grades. Any lesion graded ISUP ≥ 2 was marked as csPCa(GS).
All instances of csPCa(PR) and csPCa(GS) were carefully delineated on a voxel-level basis by trained students
(6–18 months of expertise), under the supervision of an experienced radiologist (7 years of experience). Upon
complete annotation, the RUMC and ZGT datasets contained 1527 and 210 benign cases, along with 909 and
86 malignant cases (≥ 1 csPCa lesion), respectively. Moreover, on a lesion-level basis, the RUMC dataset
contained 1092 csPCa(PR) lesions (mean frequency: 1.21 lesions per malignant scan; median size: 1.05 cm3,
range: 0.01–61.49 cm3), while the ZGT dataset contained 97 csPCa(GS) lesions (mean frequency: 1.05 lesions
per malignant scan; median size: 1.69 cm3, range: 0.23–22.61 cm3).

For a secondary experiment on investigating semi-supervised learning strategies to leverage non-annotated
training cases, the dataset above was expanded to 7756 examinations (6380 patients) from 9275 consecutive
examinations (7430 patients) performed between January 2014 and December 2020 at Radboud University
Medical Center. Within this overall set, the manually labeled development dataset (Ddev,labeled) comprised
3050 examinations performed between January 2016 and August 2018.

Model Architecture for Evaluating State-of-the-Art Deep Learning Methods Multi-class seg-
mentation of prostatic transitional zones (TZ) and peripheral zones (PZ) were generated for each scan using
a multi-planar, anisotropic 3D U-Net. Trained using a subset of 40 patient scans from the RUMC train-
ing cohort, this network achieved an average Dice Similarity Coefficient (DSC) of 0.90±0.01, 0.85±0.02 and
0.63±0.03 for whole-gland, TZ and PZ segmentation, respectively, over 5×5 nested cross-validation. We used
these zonal segmentations to construct and apply an anatomical prior, as detailed in [27]. For this study,
the goal of the zonal segmentations was to establish object-level, prior-to-image correspondence rather than
voxel-level matching. Thus, high-quality segmentations with precise contour definitions were not mandatory.
The architecture of our proposed end-to-end 3D deep learning system comprised of two parallel 3D CNNs
(detection network, M1; classification network for false positive reduction, M2) followed by a decision fusion
node NDF , as shown in Fig. 12.1. We opted for anisotropically-strided 3D convolutions in both M1 and
M2 to process the bpMRI data, which resembled multi-channel stacks of 2D images rather than full 3D
volumes. Prior to usage, all acquisitions were spatially resampled to a common axial in-plane resolution of
0.5 mm2 and slice thickness of 3.6 mm via B-spline interpolation. T2W and DWI channels were normalized
to zero mean and unit standard deviation, while ADC channels were linearly normalized from [0,3000] to
[0,1] in order to retain their clinically relevant numerical significance. Anatomical prior P , constructed using
the prostate zonal segmentations and csPCa(PR) annotations in the training dataset, was encoded in M1 to
infuse spatial priori (as detailed in [27]). At train-time, M1 and M2 were independently optimized using
different loss functions and target labels. At test-time, NDF was used to aggregate their predictions (y1, y2)
into a single output detection map yDF . For more details on the model architecture, please refer to [28].

Model Architecture for Evaluating Pseudo Labels Our novel semi-supervised learning method lever-
ages diagnostic reports to guide the generation of pseudo labels for semi-supervised prostate cancer detection.
At a high level, our method consists of the four steps listed below (and as shown in Fig. 12.2). For more
details, please refer to [3].

1. Train a supervised model with manually labeled cases, the Teacher Model.

2. Automatically parse the diagnostic reports using a natural language processing (NLP) algorithm to
assess the number of clinically significant findings in unlabeled cases, nsig.

3. Predict the cancer likelihood heatmap for unlabeled cases with the Teacher Model. Generate pseudo
labels by iteratively extracting the nsig most likely lesion candidate from the heatmap.

4. Train a semi-supervised model on the full dataset with manually and automatically labeled cases, the
Student Model.
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Figure 12.2: Overview of our novel semi-supervised learning method for malignancy detection. 1) Train the
Teacher Model with manual labels. 2) Count the number of clinically significant lesions described in the
report, . 3) Localize and segment the lesions, by keeping the most confident lesion candidates of the Teacher
Model. 4) Train the Student Model with manual and pseudo labels.

12.3 Results

Single-Vendor, Multi-Center ISUP≥2 Detection

Effects of Architecture and Label Noise on Classification To determine the effect of selecting a
specific classification architecture for M2, five different 3D CNNs (ResNet-v2, Inception-ResNet-v2, Residual
Attention Network, SEResNet, SEResNeXt) were implemented and tuned across their respective hyper-
parameters to maximize patient-based AUROC over 5-fold cross-validation. Furthermore, each candidate
CNN was trained using whole-images and patches, in separate turns, to draw out a comparative analysis
surrounding the merits of spatial context versus localized labels. In the latter case, we studied the effect of τ
(i.e. an ad-hoc hyperparameter to regular the decision fusion of predictions from M1 and M2) on patch-wise
label assignment. We investigated four different values of τ : 0.0%, 0.1%, 0.5%, 1.0%; which correspond to
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Figure 12.3: Model interpretability of the candidate CNN architectures for classifier M2 at τ =0.1%.
Gradient-weighted class activation maps (GradCAM) and their corresponding T2W, DWI and ADC scans
for three patient cases from the validation set are shown above. Each case included a single instance of
csPCa(PR) located in the prostatic TZ (center row) or PZ (top, bottom rows), as indicated by the yel-
low contours. Whole-image GradCAMs were generated by restitching and normalizing (min-max ) the eight
patch-level GradCAMs generated per case. Maximum voxel-level activation was observed in close proximity
of csPCa(PR), despite training each network using patch-level binary labels only.

minimum csPCa volumes of 9, 297, 594 and 1188 mm3, respectively. Each classifier was assessed qualita-
tively via 3D GradCAMs [31] to ensure adequate interpretability for clinical usage (as shown in Fig. 12.3).
From the results noted in Table 12.1, we observed that the SEResNet architecture consistently scored the
highest AUROC across every training scheme. However, in each case, its performance remained statistically
similar (p ≥ 0.01) to the other candidate models. We observed that a higher degree of supervision from
patch-wise training proved more useful than the near 8× additional spatial context provided per sample
during whole-image training. Increasing the value of τ consistently improved performance for all candidate
classifiers (up to 10% in patch-level AUROC). While we attribute this improvement to lower label noise at
train-time, it is important to note that the total csPCa volume per patient is typically small. If τ is set too
large, not only are patch labels regulated, as intended, but multiple patch-level label swaps can compound
to the point where entire patient cases can swap labels –resulting in an inaccurate evaluation.

Model Params AUROC
AUROC (Patches)

(Whole-Image) τ = 0.0% τ = 0.1% τ = 0.5% τ = 1.0%

ResNet-v2 [8] 0.089 M 0.819±0.018 0.830±0.010 0.844±0.011 0.868±0.013 0.897±0.008

Inception-ResNet-v2 [35] 6.121 M 0.823±0.017 0.822±0.014 0.860±0.015 0.883±0.009 0.905±0.008

Res. Attention Network [41] 1.233 M 0.826±0.024 0.837±0.012 0.850±0.007 0.876±0.008 0.901±0.008

SEResNet [10] 0.095 M 0.836±0.014 0.842±0.019 0.861±0.005 0.886±0.008 0.912±0.008

SEResNeXt [10] 0.128 M 0.820±0.022 0.833±0.013 0.843±0.005 0.875±0.009 0.896±0.012

Table 12.1: Patient-based diagnosis performance of the candidate CNN architectures and training schemes
(whole-image versus patch-wise training with four different values of τ to regulate label noise) for classifierM2.
Performance scores indicate mean of 5-fold cross-validation, followed by 95% confidence intervals estimated
as twice the standard deviation.

Effects of Architecture and Clinical Priori on Detection We analyzed the effect of the M1 archi-
tecture, in comparison to the four baseline 3D CNNs (U-SEResNet, UNet++, nnU-Net, Attention U-Net)
that inspired its design. We evaluated the end-to-end 3D deep learning system, along with the individual
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Model Params VRAM Inference
Maximum Sensitivity {FP/Patient}

TS1 – csPCa(PR) TS2 – csPCa(GS)

U-SEResNet [10] 1.615 M 0.94 GB 1.77±0.20 s 85.63%±4.70 {2.44} 84.42%±7.36 {2.26}
UNet++ [44] 14.933 M 2.97 GB 1.79±0.19 s 86.41%±4.54 {1.74} 82.28%±7.62 {2.25}
nnU-Net [11] 30.599 M 4.69 GB 2.09±0.03 s 84.34%±4.40 {1.44} 77.23%±8.14 {1.12}
Attention U-Net [30] 2.235 M 1.96 GB 1.77±0.19 s 90.46%±3.63 {2.07} 82.43%±7.79 {2.32}
Dual-Attention U-Net – M1 15.250 M 3.01 GB 1.79±0.19 s 92.29%±3.24 {1.94} 84.60%±7.45 {2.31}
M1 ⊗M2 15.335 M 3.75 GB 1.89±0.23 s 92.29%±3.24 {1.69} 84.60%±7.45 {2.22}
M1 ⊗M2 with Prior 15.335 M 3.98 GB 1.90±0.23 s 93.19%±2.96 {1.46} 90.03%±5.80 {1.67}
CAD∗ 40.069 M 9.85 GB 2.41±0.42 s 93.69%±3.13 {2.36} 91.05%±5.24 {1.29}

Table 12.2: Computational requirements (in terms of the number of trainable parameters, VRAM usage and
the average time taken per patient scan during inference on a single NVIDIA RTX 2080 Ti) against the lo-
calization performance (in terms of the maximum csPCa detection sensitivity achieved and its corresponding
false positive (FP) rate across both testing datasets) for each candidate detection system.

contributions of its constituent components (M1, M2, P ), to examine the effects of false positive reduction
and clinical priori. Additionally, we applied the ensembling heuristic of the nnU-Net framework [11] to create
CAD∗, i.e. an ensemble model comprising of multiple CAD instances, and we studied its impact on overall
performance. Each candidate setup was tuned over 5-fold cross-validation and benchmarked on the testing
datasets (TS1, TS2). Fig. 12.4 and Table 12.2 show the patient-level performance, lesion-level performance
and the computation requirements of the models. Fig. 12.5 shows the spatial congruence analysis of the
predictions from our proposed deep learning system. Fig. 12.6 highlights six example successful and failure
cases encountered by our proposed deep learning system in the external testing dataset TS2.

Effect of Training Dataset Size We observe that models trained with larger training datasets performed
better than models trained using smaller training datasets (ranging from 50 to 1586 cases), as shown in Fig.
12.7. Notably, we observed that exponentially larger datasets are required to continue improving diagnostic
performance –indicating the need for international consortium initiatives to curate datasets at scale and
reach expert-level performance.

Viability of Pseudo Labels Our NLP score extraction algorithm identified the correct number of PI-
RADS ≥ 4 lesions for 3024 out of the 3044 (99.3%) radiology reports in Ddev,labeled (as shown in Fig. 12.8).
Negative cases (PI-RADS ≤ 3) were identified with 99.7% accuracy. Report-guided semi-supervised learning
(iteration 2) with 300 manual labels exceeded case-based AUROC performance of supervised learning with
2440 manually labeled exams (as shown in Fig. 12.9). Performance with 100 manual labels came close to
supervised learning. Interpolation suggests that supervised performance is matched with 169 manual labels
(annotation burden reduction of 14×). Report-guided semi-supervised learning (iteration 2) with 1000
manual labels exams exceeded lesion-based pAUC performance of supervised learning with 2440 manually
labeled exams. Performance with 300 manual labels came close to supervised learning. Interpolation suggests
the supervised performance is matched with 431 manual labels (annotation burden reduction of 6×).
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Figure 12.4: Lesion-level FROC (left) and patient-based ROC (right) analyses of csPCa(PR) (top row) /
csPCa(GS) (bottom row) detection sensitivity against the number of false positives generated per patient
scan using the baseline, ablated and proposed detection models on the institutional testing set TS1 (top
row) and the external testing set TS2 (bottom row). Transparent areas indicate the 95% confidence
intervals. Mean performance for the consensus of expert radiologists and their 95% confidence intervals are
indicated by the centerpoint and length of the green markers, respectively, where all observations marked
PI-RADS 4 or 5 are considered positive detections.
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Figure 12.5: Distribution of per-lesion Dice Similarity Coefficient (DSC) (relative to csPCa lesion volume)
for CAD∗ detections against the ground-truth annotations of csPCa(PR) in the institutional testing TS1
(left) and csPCa(GS) in the external testing set TS2 (right). All DSC values were computed in 3D for the
model-specific operating point with maximum detection sensitivity (91.05±5.24%). Encoded color for each
marker indicates its corresponding likelihood of malignancy, as predicted by CAD∗. Triangular markers for
TS2 (right) indicate csPCa(GS) lesions missed by the radiologists.
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Figure 12.6: Six patient cases from the external testing set TS2 and their corresponding csPCa detection
maps, as predicted by the proposed CAD∗ system. Yellow contours indicate csPCa(GS) lesions, if present.
While CAD∗ was able to successfully localize large, multifocal and apical/basal instances of csPCa(GS)

(left), in the presence of severe inflammation/fibrosis induced by other non-malignant conditions (eg. BPH,
prostatitis), CAD∗ misidentified smaller lesions, resulting in false positive/negative predictions (right).
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Figure 12.7: (left) Effect of training set size on patient-based performance on the institutional test set
TS1. (right) Effect of training set size on lesion-based performance on the institutional testing set TS1.
Sensitivities are at on average 1 FP lesion prediction per patient.
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Figure 12.8: Accuracy of our NLP score extraction algorithm, as depicted by the confusion matrix for number
of clinically significant findings in a radiology report. Evaluated on Ddev,labeled.
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Figure 12.9: Model performance for (semi-)supervised learning. (top row) Supervised models are trained
with 5-fold cross-validation on 3050 manually labeled exams, and semi-supervised learning (SSL) also includes
4706 unlabeled exams. Report-guided SSL significantly outperforms supervised learning as well as the
baseline SSL methods. (bottom row) Model performance for 100, 300, 1000 or 3050 manually labeled exams,
combined with 7656, 7456, 6756 or 4706 unlabeled exams, respectively. Report-guided SSL significantly
outperforms the baseline SSL methods as well as supervised learning at each annotation budget, except for
case-based AUROC of Uncertainty-Aware Mean Teacher trained with 1000 labeled exams. The (left) panels
show ROC performance for case-based diagnosis of exams with at least one ISUP ≥ 2 lesion, and the (right)
panels show FROC performance for lesion-based diagnosis of ISUP ≥ 2 lesions. All models are trained with
radiology-based PI-RADS ≥ 4 labels and evaluated on the external test set with histopathology-confirmed
ground truth. Shaded areas indicate the 95% confidence intervals from 15 or 5 independent training runs.
Error bars indicate standard deviation across 15 or 5 independent training runs.
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12.4 Discussion

From our experiments, we observe that within the context of UC1 and UC2, where ample data is available
with an adequate reference standard, vendor-specific deep learning models incorporating state-of-the-art
methods approach human expert-level diagnostic performance (as shown by the moderate agreement ob-
served between the AI system and both expert radiologists and pathologists [28]). We also observe that deep
learning models continue to scale up in performance, but only with exponentially larger datasets. Finally,
we demonstrate that AI-generated pseudo labels are of sufficient quality to train fully supervised diagnostic
models, thereby vastly reducing the annotation budget and manual workload required for training such sys-
tems. We plan to use and investigate the viability of such AI-generated annotations across the ProstateNET
dataset, for training different models in future studies.
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Chapter 13

Vendor Specific Deep Learning
Models (Experiments Set 4)

13.1 Chapter Summary

In this chapter, FORTH expands upon the analysis presented in Deliverable 5.3, focusing specifically on
the task of lesion segmentation. It details the implementation and training of two deep learning models:
nnU-Net, as described by Isensee et al. [12], and our custom-developed ProLesA-Net. Each model was
independently trained on datasets from Siemens, GE, and Philips vendors and subsequently validated on
data from the non-training vendors to ensure robust cross-vendor generalization but also on a validation set
for the same vendor to assess whether the models learn vendor-specific features.

13.2 Methods

Data Description

Table 13.1 presents the distribution of cases across each vendor. Philips constitutes the majority with 182
cases, followed by Siemens with 127, and GE with 110. Toshiba contributes the least, with only 1 case.
Prior to analysis, the dataset underwent preprocessing, during which cases deemed as extreme outliers were
identified and subsequently excluded to ensure the quality and consistency of the data.

Cases Siemens Philips GE Toshiba
419 127 181 110 1

Table 13.1: Number of cases per vendor

Deep learning model specification

This analysis employs two deep learning models: nnU-Net [12] and ProLesA-Net. Each model was trained
over 1000 epochs, utilizing checkpoint strategies to facilitate effective learning progression. We adopted
a hybrid loss function that integrates binary cross-entropy loss with Dice Loss to optimize segmentation
performance. Additionally, in order to maintain the integrity of vendor-specific results, validation splits for
each vendor were stratified by lesion size, ensuring a balanced representation and minimizing size-induced
bias.

Model evaluation

In order to assess the performance of the deep learning models, Dice Score (DS), Hausdorff Distance(HD),
Recall, Precision, and Average Surface Distance (ADC) were employed. DS is a well-known segmentation
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metric that measures the proportion of overlap between the prediction and the GT image, while HD and
ASD are distance-based metrics measuring the furthest and average distance between predicted and GT
voxels.

13.3 Results

The ProLesA-Net model’s vendor-specific results, outlined in Table 13.2, depict its performance across
different vendors. When trained and tested with the same vendor, the model reaches its peak DS 52.80%
for Siemens, significantly higher than GE and Philips. It indicates a strong vendor bias, particularly for
Siemens, where the model also attains its lowest HD and ASD at 7.64 mm and 1.44 mm respectively.
Notably, the model’s Recall is exceptionally high at 60.47% for Siemens, indicating a high true positive rate.
For Philips, the highest DS achieved is 42.77% when trained on Philips data, reflecting a better generalization
on Philips than on GE, where the highest DS is evidently lower at 24.65%. These outcomes demonstrate
that the ProLesA-Net model exhibits substantial variability in generalization performance across vendors,
with the best results obtained for vendor-specific settings, particularly for Siemens, and a significant drop
when applied to data from other vendors.

Tested

Trained

GE Siemens Philips
DS (%)

GE

24.65 21.89 25.34
HD (mm) 20.18 24.45 20.59
ASD (mm) 11.02 8.71 5.22
Recall (%) 28.05 28.22 35.79

Precision (%) 35.04 30.00 29.21

Siemens

16.18 52.80 25.83
27.01 7.64 23.15
11.34 1.44 6.21
16.21 60.47 30.18
28.67 55.59 33.17

Philips

20.69 23.66 42.77
25.98 23.77 13.00
12.83 7.54 2.17
30.16 29.4 51.89
22.82 32.22 41.79

Table 13.2: Vendor-specific results for ProLesA-Net model

The nnU-Net model’s performance, shown in Table 13.3, reveals distinct variations in generalization
across different vendors. The model demonstrates the highest DS, 33.28%, when both trained and tested
on GE data. Notably, cross-vendor evaluation typically results in decreased performance, with the model
trained on GE and tested on Siemens and Philips, showcasing a significant drop in DS. The lowest HD is
observed when the model is trained on GE and it is tested on Philips, suggesting better boundary delineation
in that particular setup. Precision and Recall are highest when the model is trained and tested on Siemens,
scoring 53.53% and 35.27%, respectively.
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Tested

Trained

GE Siemens Philips
DS (%)

GE

33.28 31.90 29.62
HD (mm) 18.74 17.02 15.73
ASD (mm) 3.72 3.73 4.49
Recall (%) 30.48 31.43 27.79

Precision (%) 46.39 42.34 40.77

Siemens

22.39 35.51 29.21
26.07 12.04 17.55
9.77 2.83 5.09
20.66 35.27 27.90
36.65 53.53 40.16

Philips

24.75 31.31 30.91
21.65 15.97 15.06
9.92 3.91 4.20
22.00 29.60 28.19
39.47 33.70 38.69

Table 13.3: Vendor-specific results for nnU-Net model

13.4 Discussion

The nnU-Net model seems to have a more stable performance across vendors. It shows the least variability
in DS when trained and tested on different vendors, which suggests a higher level of robustness and general-
ization in its segmentation capability. The best DS for nnU-Net comes when trained and tested on GE, but
the performance does not significantly drop when tested on other vendors’ data.

On the contrary, ProLesA-Net shows a much higher DS when trained and tested on data from the
same vendor, especially for Siemens, with the DS reaching 52.80%, which is a significant improvement
over the best DS of nnU-Net at 33.28%. That said, ProLesA-Net has a high degree of specialization and
performs exceptionally well when the training and testing distributions are consistent. However, ProLesA-
Net’s performance appears to decline significantly than nnU-Net’s when tested on data from vendors not
seen during training, suggesting that ProLesA-Net is more sensitive to vendor-specific features.

Concluding, the nnU-Net model seems to be more domain-agnostic, maintaining more consistent per-
formance across different vendors, but with a generally lower performance for vendor-specific tasks. In
contrast, ProLesA-Net can achieve higher scores but seems to be more domain-specific, showing a decline in
performance when dealing with cases from vendors not included in its training data.
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Rooij, and H. Huisman. Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI -
The PI-CAI Challenge. In Medical Imaging in Deep Learning (MIDL 2023), 2023.

[27] A. Saha, M. Hosseinzadeh, and H. Huisman. Encoding Clinical Priori in 3D Convolutional Neural
Networks for Prostate Cancer Detection in bpMRI. In Medical Imaging Meets NeurIPS Workshop–34th
Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.

[28] Anindo Saha, Matin Hosseinzadeh, and Henkjan Huisman. End-to-end prostate cancer detection in
bpmri via 3d cnns: Effects of attention mechanisms, clinical priori and decoupled false positive reduction.
Medical Image Analysis, 73:102155, 2021.

127



Vendor-Specific AI Models
BIBLIOGRAPHY

[29] Anindo Saha, Jasper Jonathan Twilt, Joeran Sander Bosma, Bram van Ginneken, Derya Yakar, Mattijs
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