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Chapter 1

Executive summary

Deliverable 5.3, led by partner FCHAMPALIMAUD, contains the work performed by the ProCAncer-I
consortium on master models using radiomics and deep learning techniques. ’Master models’ — models
which can act as a foundation for other models — were developed for radiomics for all relevant use cases
(UC2, UC3, UC5, UC6, UC7a, UC7b and UC8) through the development of consistent and robust pipelines,
while deep learning was used only for UC1, UC2 and UC5 due to its more demanding data requirements.
Radiomics master models were developed by three partners (FCHAMPALIMAUD, FORTH and CNR), while
deep learning master models were developed and investigated by six different partners (FCHAMPALIMAUD,
CNR, FORTH, ADVANTIS, FPO, QUIBIM). Through this approach, several aspects of deep learning models
were investigated and consistent approaches and trends were identified. We finally note that the concept of
a ’master model’ is similar to that of a foundation model; in that light, this deliverable reflects that insight.
We describe the work in terms of foundation models and provide an overview of all experiments performed
to arrive at foundation models.
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Chapter 2

Introduction

The development of master models — general models which act as foundations for other models — entails
different prerequisites depending on the task at hand and the methodology. Here, we focus on classification
tasks to develop radiomics master models (chapter 4) and deep learning (DL) master models (chapter 5), as
well as on a segmentation task to develop whole prostate gland, prostate zone and lesion segmentation master
models (also a part of chapter 5). We also show how orphan data — data which has no clinically useful
annotations — can be used to pre-train two-dimensional models which can be deployed in 3D classification
(chapter 6). We also note particular challenges that we came across in terms of data curation due to problems
in the data uploading stage (chapter 3).

Two major differences in terms of methodology are key to understand the difference in approaches
between radiomics and deep-learning models — feature extraction and data requirements. While radiomics
feature extraction pipelines are relatively well defined through several popular packages, the central paradigm
surrounding machine-learning states that the feature extraction process is itself an essential part of the
learning process. This leads to differences in terms of data requirements — given that DL models have
to learn how to characterize images, they typically require much larger volumes of data, making their
application to small use cases unreasonable. The fact that radiomics workflow is to some extent more
standardised motivates a more uniform approach among partners involved in these tasks. in contrast to
the multiple issues investigated in the case of DL models. It is worth noting that various choices might
have an impact on the development of these methods. However, it should be noted that DL models have
an advantage over radiomics models — while the latter requires anatomical or lesion segmentations to be
available (predicted or manually annotated), DL models are able to learn patterns without having access to
this information. The partners worked together to coordinate the activities through regular calls to discuss
and agree on approaches and solutions to common problems. Based on the concept of creating basic models
and evaluating their performance regardless of the data acquisition vendor, no data harmonisation techniques
were applied. Robustness was comprehensively evaluated through precise testing of model performance,
including learning curves and fairness analyses, when possible.

Radiomics models (chapter 4). FCHAMPALIMAUD focused on using a consistent feature extrac-
tion and machine-learning pipeline based on automatic whole prostate gland segmentations to assess its
predictive performance across several different use cases (UC2, UC3, UC5, UC6, UC7b and UC8). To gain a
better understanding of the requirements of different models, fairness, learning curve, and feature importance
analyses were performed. This also helped us understand how different features impact the performance lev-
els exhibited across tasks and use cases. FORTH contributed with a performance analysis using manually
annotated lesion or whole prostate gland segmentation masks, drawing an important comparison between
what each model requires. CNR inspected the performance of radiomics features on UC7a using predicted
whole prostate gland segmentations, identical to those used by FCHAMPALIMAUD (the models used to
develop these masks are detailed in section 5.7).

Deep-learning master models (chapter 5). Given that the amount of data is of paramount impor-
tance when developing models, and that DL models are relatively less well-established when compared with
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radiomics approaches and take longer to train/develop, the development of these models was decentralized,
with more partners participating in the parallel and independent development of models. This results in
more diverse approaches and findings. FCHAMPALIMAUD (section 5.1) performed a comprehensive
study on how the definition of the UC2 target could have an impact on classification performance, while
also studying how different models, the inclusion of clinical features, crop sizes and amounts of training data
can have an impact on performance. Additionally, the impact of conformal prediction on performance was
investigated. CNR (section 5.2) investigated how a generic central crop compares with an adaptive image
cropping technique around the prostate using masks (identical to those used in chapter 4 and developed in
section 5.7) impacted the performance in both UC2 and UC5 classification, while also performing a standard
learning curve analysis. FORTH (section 5.3) compared unsupervised with supervised approaches to
determine how each compares in terms of performance in UC1; additionally a learning curve analysis is also
presented. ADVANTIS (section 5.4) study compare how 2D and 3D data lead to differences in perfor-
mance in prostate and lesion segmentation models. FPO (section 5.5) study how using architectures which
process the input sequences differently impacts lesion segmentation models using mpMRI data. QUIBIM
(section 5.6) validate their automatic prostate segmentation model and present novel developments that
make it more robust. FCHAMPALIMAUD (section 5.7) show how ProstateNet (a larger and more
diverse dataset) can have a positive impact on performance when compared with smaller and less diverse
datasets. Finally, HULAFE (section 5.8) designed a deep learning-based lesion segmentation model in
ProstateNet’s T2-weighted axial images, covering data processing, 2D and 3D model specifics, and strategies
to combat over-fitting.

Self-supervised learning chapter (chapter 6). Finally, FCHAMPALIMAUD trained self-supervised
learning (SSL) models on 2D data and applied them to 3D classification to understand whether this consti-
tuted an improvement over 3D models. The purpose of this analysis was to understand if 2D orphan data
(usually stored in DICOM format) could be used to improve the performance of DL models on deep-learning
tasks by comparing the performance of SSL models with models trained using what was learned during the
development of chapter 5.

Together, we believe these analyses and results constitute an important and considerable volume of
work which not only represents the value of ProstateNet when compared with other data sources, but also
constitutes important building blocks in terms of future DL model developments for prostate cancer MRI
data.
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Chapter 3

Data curation for prostate cancer
mpMRI

Chapter summary

Here, the fundamental aspects of an automatic data curation method for prostate cancer mpMRI is detailed.
Particularly, this protocol provides adequate filtering steps to convert a set of disorganized DICOM studies
into a organized dataset of volumes appropriate for training deep-learning models with correctly identified
mpMRI data for each study (T2-weighted sequences (T2W), apparent diffusion coefficients (ADC), high
b-value sequences in diffusion weighted imaging (DWI)).

We note that this was necessary as the uploaded studies initially in the “staging area” of ProstateNet
exhibited some data quality and organizational issues (e.g. series types were hard to identify), making model
development impossible. At a latter stage, clinical partners provided practically all of the necessary anno-
tations, but these automatic data curation methods (implemented and significant time had been allocated
developing them) were tools for the data quality assessment of ProstateNet. It is worth to note that the
latter represented a significant delay in the development of the AI models, which is why we detail here the
issues which were necessary to overcome prior to the clinical experts reevaluation of the series types.

3.1 Problem statement

While comprehensive, ProstateNet, the largest worldwide PCa-related mpMRI dataset, showed many data
quality issues. Specifically, while three series were expected in each study (”T2W”, ”ADC” and ”DWI”, all
of which should be axial), this was not the case for most studies (Figure 3.1) — only 1,790 studies had the
correct number of series. This made an automatic curation strategy necessary to avoid including irrelevant
information into the following analyses.

11 1790 4022 1578 1188 273 145

0−2 3 4−5 6−10 11−20 21−40 >40
Number of series per individual

Figure 3.1: Number of studies stratified by the number of series on each study.
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Upon an early inspection of ProstateNet data, it was determined that cases where excess series were
identified could be attributed to:

• T1-weighted series
• Synthetic DWI (as opposed to regular DWI)
• Exponential ADC (as opposed to regular ADC)
• T2W-star (as opposed to regular T2W)
• Non-axial orientations in T2W series
• Several b-values in the same DWI series (as opposed to a single, b = 1, 400 DWI series as recommended
in PI-RADS [7])

Finally, in very few instances, non-prostate (i.e. abdominal) studies were also incorrectly included.

3.2 Problems and adopted heuristics

The uploaded data demonstrated a number of quality related issues, although specific and detailed instruc-
tions have been delivered to the clinical centers and repeated training sessions were organised. For simplicity,
we will provide the observed issues as subsection titles and the identified solutions below. In any case they
were consistently based on DICOM tags. We note that most solutions are based on heuristics derived upon
the observation of multiple series in ProstateNet and are, as such, specific to ProstateNet as it currently is.

3.2.1 Problem: sequences were not annotated

While simple heuristics can be used to obtain a relatively satisfactory result, the variability in metadata
information is considerable and can cause specific heuristics to fail. For this reason, we annotated 38,942
series with their corresponding sequence type (i.e. T2W, DWI, DCE, ADC and Others) and trained a
CatBoost model on these data, using only a subset of metadata tags (Table 3.1). Since the DICOM series
metadata is highly redundant (most instances in a given series will have the same metadata value), we keep
only the unique values for each metadata tag for each series. As such, we consider each series to be a sample
and classify it accordingly given its unique metadata values. Finally, we use an additional feature to aid in
classification - the number of instances in each series.

Metadata value preprocessing.

Before concatenating all values for a given metadata key in a series, some minor preprocessing was applied.
Particularly, we replace all recurring non-alphanumeric separators (|, -, ;, ,, ., (, ), , :) with an empty
space. All unique values are then concatenated as a single string using the space character as a separator.

Training and validation of CatBoost model.

We split the training and testing data into two separate training and testing sets (with 80% and 20% of the
data, respectively). Using the training data, CatBoost models were optimised using 5-fold cross-validation
with 250 iterations and the gradient leaf estimation method. Average weighted F1-scores of 98.9% and 98.9%
were observed was for CV (Table 3.2) and testing sets (Table 3.3), respectively. To obtain an average for
the testing set, a consensus prediction (majority vote) using the individual predictions of the 5 models from
cross-validation was obtained given that they all performed remarkably well.

Series-classification heuristics.

While this CatBoost model performs well, we determined that some minimal and reasonable heuristics could
be applied to the final results in order to make them more robust. Particularly, these heuristics are as follows
(here ”word” is used as a string of alphanumeric characters delimited by spaces):

• If a non-zero or non-missing b-value tag is present and the ”adc” substring is not present in either the
lowercase series description or in the lowercase image type we consider this series to be ”DWI”;

• If the ”adc” substring is present in the lower case image type we consider this series to be ”ADC”;
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Tag name Hex code
Image type (0008—0008)
Modality (0008—0060)
Manufacturer (0008—0070)
Manufacturer model name (0008—1090)
Scanning sequence (0018—0020)
Sequence variant (0018—0021)
Scan options (0018—0022)
MR acquisition type (0018—0023)
Slice thickness (0018—0050)
Repetition time (0018—0080)
Echo time (0018—0081)
Inversion time (0018—0082)
Number of echos (0018—0086)
Magnetic field strength (0018—0087)
Number of phase encoding steps (0018—0089)
Echo train length (0018—0091)
Pixel bandwidth (0018—0095)
Software versions (0018—1020)
Reconstruction matrix (0018—1100)
Receive coil name (0018—1250)
Transmit coil name (0018—1251)
Acquisition matrix (0018—1310)
In place phase encoding direction (0018—1312)
Flip angle (0018—1314)
Patient position (0018—5100)
Diffusion b-value (0018—9087)
Image orientation (patient) (0020—0037)
Number of temporal positions (0020—0105)
Temporal resolution (0020—0110)
Photometric interpretation (0028—0004)
Pixel spacing (0028—0030)

Table 3.1: List of metadata tags used in CatBoost model.

Label Mean Minimum Maximum
T2W 98.8% 98.5% 99.2%
DWI 99.3% 98.9% 99.6%
ADC 99.4% 99.2% 99.9%
DCE 98.4% 97.0% 99.2%
Others 98.6% 98.1% 99.0%
Average 98.9% 98.4% 99.3%
Weighted average 98.9% 98.5% 99.3%

Table 3.2: 5-fold cross-validation F1-score for the CatBoost model.

Label Mean Minimum Maximum
T2W 98.5% 98.5% 98.5%
DWI 99.2% 99.2% 99.2%
ADC 99.4% 99.4% 99.4%
DCE 99.2% 99.2% 99.2%
Others 98.6% 98.6% 98.6%
Average 99.0% 99.0% 99.0%
Weighted average 98.9% 98.9% 98.9%

Table 3.3: Test set F1-score for the CatBoost model.

3.2.2 Problem: not all T2W sequences were axial

Several strategies were identified to identify axial T2W sequences as opposed to other sequence types:

• Using the Series Description attribute of the DICOM header (0008,103E), we can exclude series where
the series description contains “cor”, “cor”, “sag” or “sag” and include series containing “ax”, “tra”

9



Deep Learning Master models and Radiomic Signatures
CHAPTER 3. DATA CURATION FOR PROSTATE CANCER MPMRI

and “ptra”;
• Using the Image Orientation attribute of the DICOM header (0020,0037), we can classify images as
being axial. This parameter specifies the cosines of the first row (x) and first column (y); however, to
classify an image as being axial, we need the cosines of the slice (z) direction. This can be calculated
as the cross-product of x and y (i.e. z = abs(cross(x,y))). Taking the index for the maximum
argument (argmax) of the absolute of z we get a simple way of inferring direction:

– If argmax(abs(x)) is 0: “sagital”;
– If argmax(abs(x)) is 1: “coronal”;
– If argmax(abs(x)) is 2: “axial”;

• Another method, also using the Image Orientation attribute, is by rounding the absolute of the matrix
described above and comparing it to the identity matrix - these should be quite similar if the plane is
axial/oblique axial;

3.2.3 Problem: some T2W sequences were fat-suppressed

An additional data quality related issue was the fact that some uploaded T2W sequences were fat-suppressed
??. To ensure that no fat-suppressed (fs) sequences were included, the following steps were taken:

• Exclusion of series with the Series Description (0008,103E; assuming that only characters and spaces
were present) containing: ”fs dixon”, ”spair”, ”spir”;

• Exclusion of series with the following Scan Options (0018,0022): ”FS”;
• It was determined that all FS sequences had low interquartile ranges, but only the first two heuristics
were adopted as they were simpler and faster to implement.

3.2.4 Problem: T2W sequences for other anatomical regions were uploaded

An additional data quality related issue was the fact that in a few cases T2W sequences for other anatomical
regions were uploaded. In order to ensure that only pelvic T2W sequences were included the following
heuristics were adopted, series whose Series Description (0008,103E) contains ”whole pelvis”, ”bh”, ”star”
or ”kidneys” were excluded.

3.2.5 Problem: some ADC sequences were exponential

To exclude exponential, rather than regular, ADC cases, series whose Image Type (0008,0008) contains
“EADC” were excluded.

3.2.6 Problem: some HBV/DWI sequences contained more than one b-value

In some instances, the same series will have multiple acquisitions at multiple b-values. The correct identifi-
cation of high b-value diffusion images is predicated on the existence of b-value information. However, when
this is absent, it is possible to infer which series has the highest b-value:

• If the Diffusion b-value attribute of the DICOM header (0018,9087 for the public attribute, 0043,1039
for the private GE attribute and 0019,100c for the private Siemens attribute) is available:

– The PI-RADS recommends that sequences with b-values closer to 1400 should be kept [7];

If Diffusion b-value is not available (most common in Siemen’s data):

– Each slice has two useful attributes here: the Instance Number (0020,0013) and the Image Position
(Patient) (0020,0032). These correspond to the instance number (IN; for a given sequence, slices
are acquired with a given order) and to the position of the image (PI);

– IN was used to sort the last value PI, which will give us a sequence of slice positions in the z-plane
(i.e. -3, -2, -1, 0). If more than one sequence is present, we will get instead -3, -2, -1, 0, -3, -2, -1,
0, -3, -2, -1, 0, etc.;
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– We can then identify breakpoints in this vector of positions and keep only the first contiguous
sequence of images. Alternatively, it would be possible to compute the median intensity of a region
of interest out of the prostate (e.g., the upper/lower corner) and the different volumes according
to their intensity values. This is made possible by the fact that lower intensities correspond to
higher b-values;

– For information on the exact b-value, it may be possible to determine this from the series descrip-
tion tag as, in some instances, this makes explicit the b-values used during acquisition;

3.2.7 Problem: some HBV/DWI sequences were synthetic

There are few (very few) diffusion weighted sequences which are synthetic, i.e. they have been obtained
artificially from (typically) two b-values. These are quite distinct as the scales will appear to be inverted -
the gland will have a lower intensity than its surroundings. These are clinically valuable but are, in effect,
artifacts for the models presented in this deliverable. To remove them, HBV sequences where the Series
Description (0008,103E) contains “DW Synthetic” were removed.

3.2.8 Problem: DICOM Segmentation to Nifti Conversion Limitations

The conversion of DICOM files to a more manageable format like Nifti, or others such as nrrd and mhd, is a
crucial step that facilitates any subsequent processing. The DICOM series files in the ProstateNet database
can be converted successfully with common tools like ”dcm2niix”. However, the DICOM segmentation
files in ProstateNet pose a challenge as they cannot be converted successfully with standard tools such as
”dcm2niix”, ”segimage2itkimage” (from the ”dcmqi” library), or ”dicomtonifti” (from the ”VTK” library).
Some of these tools appear to rely on the DICOM tag ”Spacing Between Slices (0018,0088)”, which is often
incorrect in many DICOM segmentation files (e.g., in more than 70% of the index lesion segmentations).
However, not all tools rely on this tag, and the root cause of the failure in other tools remains unidentified.

A solution to this issue seems to be the extraction of segmentation data from the DICOM files using
a library like ”pydicom”, followed by the definition of the metadata (e.g., the ”affine” matrix) through
the associated series on which the segmentation was based. This solution, however, implies in general a
limitation: the segmentation DICOM files likely cannot be converted correctly to a more manageable format
independently of the source series.
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Chapter 4

Radiomics Master Models

Chapter summary

In this Chapter, we report on the development of radiomics-based models in seven separate use cases, within
the prostate cancer disease continuum (Table ??): the prediction of disease aggressiveness (UC2), devel-
opment of metastasis within 6 months (UC3), biochemical recurrence risk after prostatectomy or radiation
therapy (UC5 and UC6, respectively), toxicity after radiation therapy (UC7a), quality of life after prostate-
ctomy (UC7b) and early withdrawal from the active surveillance program (UC8). With this goal in mind,
whole gland radiomic features were extracted from three MRI volumes (T2W, DWI and ADC) and combined
with clinical information and/or deep features. All developed models were evaluated according to FutureAI
guidelines for medical AI technology.

Section Partner
Segmentation quality assessment FCHAMPALIMAUD
Use Case 2 - ISUP 1 vs 2345 FCHAMPALIMAUD
Use Case 2 - ISUP 12 vs 345 FCHAMPALIMAUD
Use Case 2 - ISUP 123 vs 45 FCHAMPALIMAUD
Use Case 2 - ISUP 1 vs 23 vs 45 FCHAMPALIMAUD
Use Case 2 - Binary Classification of Clinical Significant Prostate Cancer (Radiomics Analysis) FORTH
Use Case 3 FCHAMPALIMAUD
Use Case 5 - post-surgery FCHAMPALIMAUD
Use Case 5 - pre-surgery FCHAMPALIMAUD
Use Case 6 FCHAMPALIMAUD
Use Case 7a CNR
Use Case 7b FCHAMPALIMAUD
Use Case 8 FCHAMPALIMAUD

Table 4.1: List of sections in this chapter and the responsible partners.

4.1 Methodology

4.1.1 Data description

Our dataset consisted of T2W, DWI and ADC exams from the ProstateNet image archive created under the
scope of the ProCAncer-I project. The exams were acquired in the initial stages of the disease continuum
by 13 different clinical partners, 3 scanner manufacturers and 27 scanner models.

4.1.2 Segmentation

Automatic segmentation of the whole prostate gland was performed on T2W sequences using an in-house
developed segmentation model. The full details of this model are shown in section 5.7.
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The generated masks were post-processed in two stages. Firstly, the largest object was selected. An
object was defined as a group of connected voxels. Here, it was assumed that the largest object would have
the highest probability of covering the actual gland. Secondly, so as to smooth mask borders, a Delaunay
triangulation was calculated on the convex hull of the selected object.

4.1.3 Sequence co-registration

Due to the absence of segmentation masks for the diffusion sequences, T2W sequences (moving image) were
co-registered to the DWI sequences’ space (fixed image), and the calculated transformation matrix was then
applied to the segmentation mask generated previously. The co-registration algorithm was a 3-resolution
pyramid of rigid registrations. The transformed mask was then used for the radiomics extraction of the
diffusion sequences. The co-registration parameters file can be found in Table 4.2. For wide field-of-view
DWI sequences, a center crop was applied to facilitate the co-registration.

// Components
(Registration ”MultiResolutionRegistration”)
(FixedImagePyramid ”FixedRecursiveImagePyramid”)
(MovingImagePyramid ”MovingRecursiveImagePyramid”)
(Interpolator ”LinearInterpolator”)
(Metric ”AdvancedMattesMutualInformation”)
(Optimizer ”AdaptiveStochasticGradientDescent”)
(ResampleInterpolator ”FinalBSplineInterpolator”)
(Resampler ”DefaultResampler”)
(Transform ”EulerTransform”)

// **********Pyramid
(NumberOfResolutions 3)

// **********Transform
(AutomaticTransformInitializationMethod ”GeometricCenter”)
(AutomaticScalesEstimation ”true”)

// **********Optimizer
(MaximumNumberOfIterations 300)
(AutomaticParameterEstimation ”true”)

// **********Several
(WriteTransformParametersEachIteration ”false”)
(WriteTransformParametersEachResolution ”false”)
(WriteIterationInfo ”false”)
(WriteResultImage ”true”)
(ShowExactMetricValue ”false”)
(ResultImageFormat ”nii”)

// **********ImageSampler
(ImageSampler ”RandomCoordinate”)
(CheckNumberOfSamples ”true”)
(NewSamplesEveryIteration ”true”)
(MaximumNumberOfSamplingAttempts 8)
(NumberOfSpatialSamples 2048)
(NumberOfSamplesForExactGradient 4096)

// **********Interpolator and Resampler
// Order of B-Spline interpolation used for applying the final deformation:
(FinalBSplineInterpolationOrder 3)

// Default pixel value for pixels that come from outside the picture:
(DefaultPixelValue 0)

Table 4.2: Co-registration parameter file.
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4.1.4 Segmentation quality assessment

A radiologist was asked to assess the segmentation quality of 125 T2W volumes and respective DWI. A
three level grade was assigned in the following manner: 1 was given to good/decent segmentations; 2 to
masks where minor corrections were needed; and 3 where major corrections were needed (less than 50%
of the gland covered). The radiologist also provided notes/observations about the images and masks that
allowed us to construct a dataframe with 17 variables: small FOV T2, small FOV DWI, big FOV DWI,
poor quality T2, poor quality DWI, erc, previous resection, missed apex, missed posterior, mis-sed anterior,
missed base/superior, missed PZ, included seminal vesicle, lesion difficulties, mismatch apex/base, mis-
match antero/posterior and mismatch la-tero/lateral, where FOV corresponds to field of view, erc corre-
sponds to presence of endorectal coil, lesion difficulties indicates whenever a lesion made it more difficult to
segment the gland and the several mismatches correspond to masks dislocated from the actual gland due to
co-registration errors. This information was used to train logistic regression models to predict mask quality,
and the trained coefficients were analyzed for insights into the causes of low quality.

4.1.5 Radiomic features extraction

Bias field correction was performed on T2W sequences using the N4 Bias Field Correction algorithm [87] and
the Python package Simple ITK (version 2.0.0) [96]. First, each image’s x-, y- and z-spacing were assessed
for discrepancies. Since x- and y-spacings differed from z-spacing, feature extraction was later performed in
2D. Additionally, images’ x- and y-spacings differed within and between patients, so T2W sequences were
resampled to the 95th quantile value of 0.6875, and DWI and ADC were resampled to the 95th quantile
value of 2.0. Image intensities were also normalized. The bin width was selected for each image filter to
produce discretized images with between 30 and 130 bins. The full description of extraction parameters for
each modality can be found in Table 4.3.

Radiomic features were extracted from the whole gland segmentation using the Pyradiomics package
(version 3.0) [89] in Python (version 3.7.9) [90]. All the pre-processing steps mentioned before were performed
as parameters of the extractor function, except for the bias field correction, which was performed prior to the
extraction. All image filters and feature classes were enabled, resulting in a total of 1223 features calculated
per sequence. The mathematical expressions and semantic meanings of the features extracted can be found
at https://pyradiomics.readthedocs.io/en/latest/.

4.1.6 Deep features

To generate deep features for each instance, we used the bottleneck of a U-Net model pre-trained on seg-
menting the whole prostate gland using T2W volumes. To calculate a segmentation prediction, the U-Net
model first encodes the image into a low resolution volume with high semantic information (320 features in
our case) and uses this information to obtain a segmentation map for a given object (whole prostate gland
in our case). We encode each T2W volume and extract the maximum value of each feature, obtaining a
320-sized vector characterizing each image.

4.1.7 Clinical features

The clinical variables included for each use case can be found in Table 4.4. Missing numerical values
were imputed with a KNNImputer. Missing categorical values in the variables perineural invasion, ex-
tra prostatic extension, seminal vesical invasion and resection margin status were set to “Not Assessed”,
while the remaining missing categorical values were imputed to the most frequent category.

For UC5, two contexts were considered: presurgery and postsurgery. For the latter, the clinical variables
included are the ones listed in Table 4.4. While, for the former, all information reported during or immedi-
ately after the surgery was removed, namely the variables prostatectomy method, resection margin status,
extraprostatic extension, perineural invasion, seminal vesicle invasion, previous adenectomy and prostatec-
tomy nerve sparing were excluded.
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T2W extraction parameters DWI extraction parameters ADC extraction parameters
imageType:

Original:
binWidth: 5

Wavelet:
binWidth: 3

Square:
binWidth: 3

SquareRoot:
binWidth: 8

Logarithm:
binWidth: 16

Exponential:
binWidth: 0.5

Gradient:
binWidth: 5

LBP2D:
binWidth: 0.1

LoG: ’sigma’ : [1.0, 3.0]

featureClass:
firstorder:
glcm:
glrlm:
glszm:
gldm:
ngtdm:
shape:

setting:
binWidth: 5
normalize: True
normalizeScale: 100
force2D: True
voxelArrayShift: 300
resampledPixelSpacing:

[0.6875, 0.6875, 0]
geometryTolerance: 0.00001

imageType:
Original:

binWidth: 12
Wavelet:

binWidth: 8
Square:

binWidth: 8
SquareRoot:

binWidth: 16
Logarithm:

binWidth: 25
Exponential:

binWidth: 3
Gradient:

binWidth: 4
LBP2D:

binWidth: 0.1
LoG: ’sigma’ : [1.0, 3.0]

featureClass:
firstorder:
glcm:
glrlm:
glszm:
gldm:
ngtdm:
shape:

setting:
binWidth: 5
normalize: True
normalizeScale: 100
force2D: True
voxelArrayShift: 300
resampledPixelSpacing:

[2, 2, 0]
geometryTolerance: 0.00001

imageType:
Original:

binWidth: 5
Wavelet:

binWidth: 4
Square:

binWidth: 3
SquareRoot:

binWidth: 8
Logarithm:

binWidth: 12
Exponential:

binWidth: 1
Gradient:

binWidth: 3
LBP2D:

binWidth: 0.1
LoG: ’sigma’ : [1.0, 3.0]

featureClass:
firstorder:
glcm:
glrlm:
glszm:
gldm:
ngtdm:
shape:

setting:
binWidth: 5
normalize: True
normalizeScale: 100
force2D: True
voxelArrayShift: 300
resampledPixelSpacing:

[2, 2, 0]
geometryTolerance: 0.00001

Table 4.3: Radiomics Extraction parameters.

4.1.8 Dataset construction

The train/test split was performed for the larger use cases at patient level with the Python scikit-learn
package (version 0.23.2) [25]. The hold-out test sets consisted of 200 randomly selected patients for UC2 and
50 for UCs 5 and 7b. The split was stratified so that both train and test sets have the same label distribution.
The train and test sets label distribution can be found in tables 4.5 and 4.6, for binary and multiclass tasks,
respectively. For the smaller use cases, namely 3, 6 and 8, only the cross-validation performance is reported.

Different data subsets were tested for their training ability. Pure radiomics datasets were appended clini-
cal and/or deep features and their performance was compared. The exclusion of patients where an endorectal
coil had been used was also tested. And, finally, we compared training with the full MRI sequence set to
training with each sequence independently. This resulted in 32 training combinations. The discriminated
data sizes of the training set are shown in Tables 4.7 - 4.11 for each use case. In UC3 (Table 4.8), the settings
ADC All noERC and T2W&DWI&ADC All noERC were discarded, since there were no ERC patients to
remove.

For UC7b, there were no endorectal coil cases, so this setting was removed. Lastly, to minimize training
time, a first initial evaluation of all MRI sequences was done for Radiomics only, as well as Radiomics +
Clinical variables and, given the results consistently showed that DWI features provided the best outcome,
all further models were trained only using DWI data, for a total of 8 models. The discriminated data sizes
of the training set are shown in Table 4.11.
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Use Cases 2, 3 and 8 5 (post-surgery) and 7b 5 (pre-surgery) and 6

Clinical
variables

age at baseline (num)
baseline psa total (num)
index lesion pirads (cat)
lesion location PZ (bool)
lesion location TZ (bool)
lesion location CZ (bool)
lesion location AS (bool)

age at baseline (num)
baseline psa total (num)
index lesion pirads (cat)
lesion location PZ (bool)
lesion location TZ (bool)
lesion location CZ (bool)
lesion location AS (bool)

prostatectomy method (cat)
resection margin status (cat)
extraprostatic extension (cat)

perineural invasion (cat)
seminal vesicle invasion (cat)

gleason1 (num)
gleason2 (num)

ISUP grade (num)
previous adenomectomy (bool)

prostatectomy nerve sparing (bool)

age at baseline (num)
baseline psa total (num)
index lesion pirads (cat)
lesion location PZ (bool)
lesion location TZ (bool)
lesion location CZ (bool)
lesion location AS (bool)

gleason1 (num)
gleason2 (num)

ISUP grade (num)

Table 4.4: Clinical variables included for each use case. “num” indicates a numerical variable; “bool”
indicates a binary variable; “cat” indicates a categorical variable.

Use Cases Target (binary)
Train Set Test Set
0 1 0 1

2
ISUP 1 VS 2345 1360 3603 51 148
ISUP 12 VS 345 3288 1675 141 58
ISUP 123 VS 45 4145 818 167 32

3
no metastasis in 6 months
VS metastasis developed

15 63 - -

5
no biochemical recurrence after RP at
follow-up VS biochemical recurrence

612 101 43 7

6
no biochemical recurrence after RT at
follow-up VS biochemical recurrence

120 16 - -

8
stayed in active surveillance
VS left active surveillance

128 10 - -

Table 4.5: Label distribution in the train and test sets for each binary classification problem.

4.1.9 Preprocessing pipeline

All the steps described in this section were performed exclusively on the train set and only on the numerical
variables. Features were scaled to have zero mean and standard deviation equal to 1 (Python package scikit-
learn version 1.0.2). Features with low variance were identified and excluded. Here, a threshold of 0.01
was considered. Finally, feature correlation was assessed. Feature pairs were considered correlated if their
Spearman correlation was higher than 0.8. Out of the two, the feature with the highest average correlation
across all features was eliminated.

4.1.10 Training

For models using radiomics and using radiomics together with deep features, a light gradient boosting
machine (LGBM) [43] was trained, while for radclin or hybrid models, which may include categorical data,
the CatBoost [68] algorithm was used. Regarding the smaller UCs, a support vector machine (SVM) classifier
was selected for UC7b and Stochastic gradient descent algorithm (SGD) was prefered for UCs 3, 6 and 8.
Hyperparameter tuning was performed for each algorithm and each parameter combination was evaluated
through cross-validation (5 folds for UCs 2 and 5; 3 folds for UCs 3, 6 and 8). For UCs 3, 6, 7b and 8 a
random search approach was selected, as less data is available so a less biased optimization is preferred, while
for UCs 2 and 5 tuning was performed with an exhaustive grid search. The overall pipeline can be found in
Fig. 4.1 and the hyperparameter space used can be found in Table 4.13.
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Use Cases Target (multiclass)
Train Set Test Set

0 1 2 0 1 2
2 ISUP 123 VS 45 1360 2785 818 51 116 32
7b epic 26 [0, 71] vs ]71, 84] vs ]84, 100] 71 75 62 14 20 15

Table 4.6: Label distribution in the train and test sets for each multiclass classification problem.

UC2 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

Cases
All 4983 4605 4107 4107

All noERC 4485 4119 3899 3899

Table 4.7: Discriminated data sizes of the training sets for UC2.

UC3 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

Cases
All 62 50 47 47

All noERC 59 47 47 47

Table 4.8: Discriminated data sizes of the training sets for UC3.

UC5 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

Cases
All 716 683 657 657

All noERC 676 643 623 623

Table 4.9: Discriminated data sizes of the training sets for UC5.

UC6 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

Cases
All 116 114 77 77

All noERC 56 54 50 50

Table 4.10: Discriminated data sizes of the training sets for UC6.

UC7b - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

Cases
All 234 232 228 228

All noERC - - - -

Table 4.11: Discriminated data sizes of the training sets for UC7.

UC8 - Train Sets
sequence

T2W DWI ADC T2W&DWI&ADC

Cases
All 118 112 75 75

All noERC 113 108 72 72

Table 4.12: Discriminated data sizes of the training sets for UC8.

4.1.11 Model post-processing

For all models developed, the ROC curve was analyzed and the probability decision threshold that resulted
in the highest youden index was selected for the remaining analysis.

All final models were analyzed in two main areas: explainability and fairness.
Regarding model explainability, a SHapley Additive exPlanations (SHAP) analysis (Python package shap

version 0.41.0) [53] was used to identify the most relevant variables for the prediction in the hold-out test
set. The 20 most relevant variables for the output of each model were displayed. Each dot in the graph
represents a feature’s SHAP value for one observation in the hold- out test set. The SHAP value’s position
on the x-axis expresses whether it is associated with a positive or negative prediction. The red color indicates
higher values of a feature and the blue color means lower value.
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Figure 4.1: Radiomics model development pipeline.

In terms of fairness, model performance was tested for different subgroups of the data with the fairlearn
python package. ROC-AUC, f2-score, precision and recall are reported for each subgroup, as well as subgroup
size on the train and test sets and test set label distribution. For subgroups where only one target label is
present the ROC-AUC metric is replaced with Accuracy.
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GridSearch (UCs 2, 3, 5, 6 and 8)
pipe = CatBoostClassifier(loss function=’Logloss’,

eval metric=’AUC’,
cat features=cat,
random seed=42,
logging level=’Silent’)

param grid = {’n estimators’: [100, 500, 1000], # estimators
’learning rate’: [0.01, 0.03, 0.1], # Learning rate for gradient boosting
’max depth’: [4, 6, 10]}

pipe = Pipeline([(’classifier’, CalibratedClassifierCV(LGBMClassifier(), method=’isotonic’))])
param grid = dict(classifier base estimator n estimators = [100, 500],

classifier base estimator num leaves = [5, 10, 30],
classifier base estimator learning rate = [0.01, 0.1],
classifier base estimator subsample = [0.1, 0.3, 0.5, 0.75],
classifier base estimator colsample bytree = [0.1, 0.3, 0.5, 0.75])

RandomSearch (UC7b)
pipe = Pipeline([(’classifier’, CatBoostClassifier(loss function=’MultiClass’,

eval metric=’AUC’,
cat features=cat,
logging level=’Silent’,
random seed=seed))])

param distributions = {’classifier n estimators’: np.array([1000]),
’classifier bootstrap type’: np.array([’Bayesian’]),
’classifier learning rate’: np.linspace(0.1, 0.9, num=10),
’classifier learning rate’: np.linspace(0.001, 0.01, num=100),
’classifier max depth’: np.array([4, 6, 8, 10]),
’classifier l2 leaf reg’: np.array([1, 3, 5, 7, 9]),
’classifier border count’: np.array([32, 64, 128]),
’classifier bagging temperature’: np.linspace(0.5, 2, num=10),
’classifier random strength’: np.linspace(0.5, 2, num=10)}

pipe = Pipeline([(’classifier’, LGBMClassifier(random state=seed, metric=’auc mu’))])
param distributions = {’classifier n estimators’: np.array([1000]),

’classifier boosting type’: np.array([’goss’]),
’classifier num leaves’: np.linspace(10, 100, num=10, dtype=int),
’classifier learning rate’: np.linspace(0.001, 0.01, num=100),
’classifier max depth’: np.array([4, 6, 8, 10]),
’classifier min child samples’: np.linspace(10, 50, num=5, dtype=int),
’classifier subsample’: np.linspace(0.5, 1.0, num=10),
’classifier colsample bytree’: np.linspace(0.5, 1.0, num=10),
’classifier reg alpha’: np.logspace(-3, 3, num=10),
’classifier reg lambda’: np.logspace(-3, 3, num=10),
’classifier min split gain’: np.random.uniform(low=0, high=1, size=10),
’classifier num boost round’: np.linspace(100, 500, num=5, dtype=int),
’classifier scale pos weight’: np.linspace(1, 5, num=5, dtype=int)}

pipe = Pipeline([(’classifier’, SVC(random state=seed, probability=True))])
param distributions = {’classifier C’: np.logspace(-3, 3, num=10),

’classifier kernel’: np.array([’linear’, ’poly’, ’rbf’, ’sigmoid’]),
’classifier degree’: np.array([2, 3, 4]),
’classifier gamma’: np.logspace(-3, 3, num=10),
’classifier coef0’: np.linspace(0, 1, num=10),
’classifier shrinking’: [True, False],
’classifier tol’: np.logspace(-6, -2, num=10)}

Table 4.13: Hyperparameter space used for optimization.

4.2 Results

4.2.1 Data description

The total dataset is composed of 5474 patients that meet the requirements for use case (UC2), the disease
aggressiveness use case. Of these, 814 patients are also suitable for UC5, the biochemical recurrence use case,
and 272 patients for UC7b, regarding quality of life after prostatectomy. The dataset size changes during
the workflow are described in Table 4.14 for each use case.
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UC2 UC3 UC5 UC6 UC7a UC7b UC8
Initial number of patients 5474 113 814 137 137 272 156
T2 available 5297 107 771 136 136 264 151
T2 segmentation 5295 107 771 136 136 264 151
T2 extraction 5294 107 771 136 136 264 151
Available ground truth 5183 78 771 136 136 260 138
DWI exists 5025 105 760 135 - 260 150
DWI exists and T2 mask available 5025 105 760 135 - 260 150
DWI extraction 4858 95 737 134 - 260 145
Available ground truth 4805 66 737 134 - 256 132
ADC exists 4719 102 744 97 - 260 111
ADC exists and T2 mask available 4718 102 744 97 - 260 111
ADC extraction 4360 90 711 97 - 256 107
Available ground truth 4307 63 711 97 - 252 95

Table 4.14: Data workflow, specifying the number of patients in each use case after each step.

4.2.2 Segmentation quality assessment

The whole gland segmentations generated for T2W volumes proved to be of high quality (93% with quality
level 1), with only 7% (9/125) of masks needing small corrections (quality level 2) and no masks requiring
major corrections (quality level 3). Table 4.15 shows that the major contributors to the low quality were the
presence of lesions that made the gland margins more difficult to identify or the presence of endorectal coil.
This is followed by the absence of parts of the gland (previous resection) and the low quality of the DWI
sequence. Additionally, the evidence of the slight drop in quality seems to be in missed apexes and wrongful
inclusion of seminal vesicles.

Features Coefficient exp(coefficient)
lesion difficulties 1.487972 4.428107

erc 0.753808 2.125077
missed apex 0.703056 2.019917

included seminal vesicle 0.589769 1.803572
previous resection 0.478329 1.613376
poor quality DWI 0.374318 1.453999
poor quality T2 0 1

mismatch apex/base -0.0748 0.927929
missed PZ -0.08214 0.921141

small FOV T2 -0.09743 0.907166
mismatch antero/posterior -0.22899 0.795338
mismatch latero/lateral -0.27934 0.756281

missed anterior -0.33524 0.715168
big FOV DWI -0.41192 0.662381

small FOV DWI -0.46918 0.625514
missed base/superior -0.54922 0.577401

missed posterior -0.71678 0.488323

Table 4.15: Coefficients of logistic regression trained to predict low quality of the whole-gland segmentation
of T2W volumes.

In contrast, the whole gland segmentations generated for DWI volumes did not show as high quality.
Here, 37% (46/125) of masks had quality level 2 and 9% (11/125) showed quality level 3, requiring major
corrections. Table 4.16 shows that the major contributors to the low quality were the absence of parts of
the gland (previous resection), the low quality of the DWI sequence and the small field of view of the T2
sequence. Regarding the middle quality (exp(coef 2)), it seems to be mostly due to several mismatches,
which indicate imperfect coregistrations.
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Features coef 1 coef 2 coef 3 exp(coef 1) exp(coef 2) exp(coef 3)
previous resection -0.64316 -0.79734 1.440495 0.525631 0.450527 4.222786
poor quality DWI -0.12803 -0.62484 0.752878 0.879824 0.535345 2.123101
small FOV T2 0.151386 -0.39528 0.243895 1.163446 0.673491 1.27621
small FOV DWI 0.377822 -0.40817 0.030348 1.459103 0.664866 1.030813
big FOV DWI 0.240165 -0.26686 0.026693 1.271459 0.765781 1.027053
poor quality T2 0 0 0 1 1 1
lesion difficulties -0.17899 0.18172 -0.00273 0.836116 1.199278 0.997272
missed apex 0.394028 -0.37801 -0.01602 1.482942 0.685226 0.984106
missed PZ -0.23069 0.257765 -0.02708 0.793987 1.294034 0.973286
missed base/superior -0.31075 0.369413 -0.05866 0.732897 1.446886 0.943024
mismatch apex/base -0.13709 0.232008 -0.09492 0.871896 1.26113 0.909443
included seminal vesicle -0.09962 0.206007 -0.10638 0.905177 1.228762 0.89908
missed anterior 0.968572 -0.78994 -0.17863 2.634179 0.453871 0.836416
mismatch antero/posterior -0.91905 1.099245 -0.18019 0.398896 3.001898 0.835111
mismatch latero/lateral -0.44828 0.705045 -0.25676 0.638725 2.023937 0.773552
erc -0.3212 0.809423 -0.48823 0.725281 2.246612 0.613713
missed posterior -0.01052 0.517407 -0.50689 0.989534 1.677673 0.602368

Table 4.16: Coefficients of logistic regression trained to predict low quality of whole-gland segmentation of
DWI volumes.

4.2.3 Use Case 2 - ISUP 1 vs 2345

Exploratory Data Analysis of Clinical variables

Fig. 4.2 shows the distribution of each clinical variable used in UC2. There is no variable where the
distinction between the two classes is clear, however we can see that the proportion of clinically significant
cases increases as the PIRADS increases and there is higher proportion of clinically significant cases when
the index lesion is located in the peripheral zone (PZ) or the transitional zone (TZ).

Figure 4.2: Distribution of clinical variables according to clinical significance defined as ISUP 1 vs 2,3,4 and
5.

Model Performance

Fig. 4.3 shows the cross-validation and hold-out test set ROC-AUC model performance for the 32 models
trained for UC2, in four spider plots colored according to inclusion/exclusion of endorectal coil patients. At
first glance, we can see that the inclusion of the three sequences, T2W, DWI and ADC, is beneficial for
the model performance, both in the cross-validation and hold-out test set. The exclusion of endorectal coil
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patients doesn’t seem to have much impact on the models’ generalizability. Overall, the highest hold-out
test set performance reached was 0.765 AUC with a model trained with radiomics data.

Figure 4.3: Cross-validation and hold-out test set ROC-AUC model performance of 32 models trained to
predict disease aggressiveness in UC2 (ISUP 1 vs 2, 3, 4 & 5). The observations are color coded according
to the inclusion/exclusion of endorectal coil patients: all patients in green; excluding ERC cases in pink.

Model Selection

Given the results of the previous section, we decided to move forward analyzing a radiomics model using
all sequences and all patients. Upon inspection of the ROC curve for a subset of 50 patients from the
hold-out test set (Fig. 4.4), we decided the appropriate probability decision threshold would be 0.7477,
above which the model gives an output of clinical significance. The model’s performance at this probability
decision threshold is shown in Table 4.17 and its confusion matrix, learning curve, precision-recall curve and
calibration plot are displayed in Fig. 4.5.

Explainability analysis

Fig. 4.6 shows the SHAP analysis performed on the radiomics uc2 T2&DWI& ADC LGBM model. The
plot shows the features ordered by their impact on model output. It is worth pointing out the shape feature
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Figure 4.4: Hold-out test set receiver op-
erator characteristics curve of the ra-
diomics uc2 T2&DWI&ADC LGBM model.

radiomics uc2 T2&DWI&ADC LGBM
AUC 0.7648
Sensitivity/Recall/TPR 0.6510
Specificity/TNR 0.7647
Precision/PPV 0.8899
F1 0.7519
F2 0.6879
Cohen’s Kappa 0.3305

Table 4.17: Multi-metric
performance of the ra-
diomics uc2 T2&DWI&ADC LGBM
model at 0.7477 probability thresh-
old.

Figure 4.5: Analysis of the radiomics uc2 T2&DWI&ADC LGBM model in terms of confusion matrix,
learning curve, precision-recall curve and calibration plot.

Maximum2DDiameter Slice, which is negatively associated with the aggressive output.

Fairness and sub-cohort analysis

Tables 4.18 through Table 4.25 show the UC2 model’s performance on different subsets of the hold-out
test set. All tables are sorted by the number of cases on the train set, “Train counts”. Regarding scanner
manufacturer (Table 4.18) or usage of endorectal coil (Table 4.19), the model seems to perform relatively
fairly.

Regarding lesion location, the model seems fair when it comes to peripheral zone (Table 4.20), however,
for the transitional (Table 4.21) or central zones (Table 4.22), the model performs better when there is no
lesion in these areas. The opposite relationship is true for anterior stroma (Table 4.23), where the model
performs higher when a lesion is located here.
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Figure 4.6: SHAP values contribution of features for radiomics uc2 T2&DWI&ADC LGBM model.

manufacturer ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

SIEMENS 0.639642 0.70197 0.863636 0.670588 108 23 85 2077
PHILIPS 0.759552 0.649351 0.909091 0.606061 56 23 33 1365

GE MEDICAL
SYSTEMS

0.73871 0.719178 0.954545 0.677419 36 5 31 665

Table 4.18: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by scanner manufacturer.

Regarding country of origin (Table 4.24), we would expect the countries with the most data in the train
set to achieve the best performance, but this is not the case. For Portugal and Spain the model performs
the highest, while it shows the lowest performance for the UK and Lithuania.

Regarding ISUP grade (Table 4.25), we can see that as the ISUP grade increases so does the model’s
performance. With the lowest performance residing in ISUP 2 cases.

4.2.4 Use Case 2 - ISUP 12 vs 345

Model Performance

Fig. 4.7 shows the cross-validation and hold-out test set ROC-AUC model performance for the 32 models
trained for UC2 (ISUP 1 and 2 vs 3, 4 and 5), in four spider plots colored according to the inclusion/exclusion
of endorectal coil patients. At first glance, we can see that, the inclusion of clinical variables (radclin and
hybrid) leads to a higher cross-validation performance, though that is no setting that particularly stands
out. However, in terms of generalizability, we can see that training with all sequences leads to the highest
test set performance. Overall, the highest hold-out test set performance reached was 0.7347 AUC with a
model trained with all sequences and radclin data.

Model Selection

Given the results of the previous section, we decided to move forward analyzing a radclin model using all
sequences and excluding patients with endorectal coil from the training. Upon inspection of the ROC curve
for a subset of 50 patients from the hold-out test set (Fig. 4.8), we decided the appropriate probability
decision threshold would be 0.2158, above which the model gives an output of clinical significance. The
model’s performance at this probability decision threshold is shown in Table 4.26 and its confusion matrix,
learning curve, precision-recall curve and calibration plot are displayed in Fig. 4.9.
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Endorectal coil ROC-AUC Fbeta 2 Precision Recall
Test
counts

Test counts
target 0

Test counts
target 1

Train
counts

Patients without ERC 0.716352 0.698027 0.893204 0.661871 187 48 139 3899
Patients with ERC 0.633333 0.638298 0.857143 0.6 13 3 10 208

Table 4.19: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of endorectal coil.

index lesion
location PZ

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.714774 0.696203 0.905882 0.65812 152 35 117 3258
0 0.703125 0.686275 0.84 0.65625 48 16 32 849

Table 4.20: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.736066 0.709343 0.911111 0.67213 162 40 122 3284
1 0.614478 0.625 0.8 0.59259 38 11 27 823

Table 4.21: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the transitional zone.

index lesion
location CZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.688776 0.697674 0.888889 0.66207 196 51 145 3919
1 0.5 0.555556 1 0.5 4 0 4 188

Table 4.22: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the central zone.

index lesion
location AS

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7 0.686275 0.883495 0.65 188 48 140 3859
1 0.888889 0.813953 1 0.77778 12 3 9 248

Table 4.23: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the anterior stroma.

country ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Netherlands 0.641176 0.667702 0.86 0.632353 88 20 68 1622
Portugal 0.928571 0.882353 1 0.857143 22 1 21 576
Lithuania 0.5 0 0 0 23 14 9 466

UK 0.546667 0.785124 0.904762 0.76 28 3 25 447
Turkey 0.733333 0.689655 0.8 0.666667 11 5 6 359
Italy 0.654762 0.681818 0.9 0.642857 17 3 14 281
Spain 0.816667 0.833333 0.833333 0.833333 11 5 6 243
France 0 0 0 0 0 0 0 95
Greece 0 0 0 0 0 0 0 18

Table 4.24: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by country of origin of the data.

Explainability analysis

Fig. 4.10 shows the SHAP analysis performed on the radclin uc2 T2&DWI&ADC noERC CatBoost model.
The plot shows the features ordered by their impact on model output. The four most relevant features for

25



Deep Learning Master models and Radiomic Signatures
CHAPTER 4. RADIOMICS MASTER MODELS

ISUP grade accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

2 0.615385 0.666667 1 0.615385 91 0 91 1593
1 0.764706 0 0 0 51 51 0 1113
3 0.653846 0.702479 1 0.653846 26 0 26 712
5 0.875 0.897436 1 0.875 16 0 16 391
4 0.6875 0.733333 1 0.6875 16 0 16 298

Table 4.25: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by ISUP grade.

Figure 4.7: Cross-validation and hold-out test set ROC-AUC model performance of 32 models trained to
predict disease aggressiveness in UC2 (ISUP 1 & 2 vs 3, 4 & 5). The observations are color coded according
to the inclusion/exclusion of endorectal coil patients: all patients in green; excluding ERC cases in pink.

the model output are clinical variables, namely baseline PSA, patient age, PZ lesion location and PIRADS
(Fig. 4.11), which are all positively associated with an aggressive output.
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Figure 4.8: Hold-out test set receiver op-
erator characteristics curve of the rad-
clin uc2 T2&DWI&ADC noERC Cat-Boost model.

radclin uc2 T2&DWI&ADC noERC CatBoost
AUC 0.7347
Sensitivity/Recall/TPR 0.7931
Specificity/TNR 0.4859
Precision/PPV 0.3866
F1 0.5198
F2 0.6553
Cohen’s Kappa 0.2128

Table 4.26: Multi-metric performance of the
radclin uc2 T2&DWI&ADC noERC Cat-
Boost model at 0.2158 probability threshold.

Figure 4.9: Analysis of the radclin uc2 T2&DWI&ADC noERC CatBoost model in terms of confusion ma-
trix, learning curve, precision-recall curve and calibration plot.

Fairness and sub-cohort analysis

Tables 16 through Table 23 show the radclin uc2 T2&DWI&ADC noERC CatBoost model’s performance
on different subsets of the hold-out test set. All tables are sorted by the number of cases on the train set,
“Train counts”. In terms of scanner manufacturer (Table 16), the model performs higher on SIEMENS data
(F-score of 0.6982).

Regarding lesion location, the model seems to perform better when there is no lesion in the peripheral
zone (Table 4.29), however, for the remaining anatomical zones, the opposite relationship is observed, though
for the CZ (Table 4.31) and AS (Table 4.32) there are not enough samples in the minority sub-cohort to
make fair conclusions.

Regarding country of origin (Table 4.33), most sub-cohorts do not have enough samples for fair conclusions
to be made about the performance of the model in these countries.

Regarding ISUP grade (Table 4.34), we can see that as the ISUP grade increases so does the model’s
performance. With the lowest performance residing in ISUP 2 cases.
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Figure 4.10: SHAP values contribution of features for radclin uc2 T2&DWI&ADC noERC CatBoost model.

Figure 4.11: SHAP summary plot of the categorical variable index lesion pirads within model rad-
clin uc2 T2&DWI&ADC noERC CatBoost

4.2.5 Use Case 2 - ISUP 123 vs 45

Model Performance

Fig. 4.12 shows the cross-validation and hold-out test set ROC-AUC model performance for the 32 models
trained for UC2 (ISUP 1, 2 and 3 vs 4 and 5), in four spider plots colored according to the inclusion/exclusion
of endorectal coil patients. At first glance, we can see that, overall, the inclusion of clinical variables (radclin
and hybrid) leads to a higher cross-validation performance. However, in terms of generalizability, we can
see that training with radiomics data and all sequences leads to the highest hold-out test set performance of
0.8427 AUC.

Model Selection

Given the results of the previous section, we decided to move forward analyzing a radiomics model using
all sequences and all patients. Upon inspection of the ROC curve for a subset of 50 patients from the
hold-out test set (Fig. 4.13), we decided the appropriate probability decision threshold would be 0.2552,
above which the model gives an output of clinical significance. The model’s performance at this probability
decision threshold is shown in Table 4.35 and its confusion matrix, learning curve, precision-recall curve and
calibration plot are displayed in Fig. 4.14.

Explainability analysis

Fig. 4.15 shows the SHAP analysis performed on the radiomics uc2 T2&DWI&ADC LGBM model. The
plot shows the features ordered by their impact on model output.
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manufacturer ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

SIEMENS 0.6042 0.6982 0.3974 0.8611 108 72 36 2077
PHILIPS 0.7041 0.5208 0.25 0.7143 56 49 7 1365

GE MEDICAL
SYSTEMS

0.5714 0.6173 0.4762 0.6667 36 21 15 457

Table 4.27: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by scanner manufacturer.

Endorectal coil ROC-AUC Fbeta 2 Precision Recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Patients without ERC 0.6360 0.6290 0.3679 0.7647 187 136 51 3899
Patients with ERC 0.5 0.8537 0.5385 1 13 6 7 0

Table 4.28: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by presence/absence of endorectal coil.

index lesion
location PZ

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.6154 0.6446 0.4066 0.7551 152 103 49 3077
0 0.7564 0.7031 0.3214 1 48 39 9 822

Table 4.29: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by presence/absence of lesion in the peripheral zone.

Index lesion
location TZ

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.6118 0.6494 0.4 0.7692 162 110 52 3113
1 0.7969 0.6977 0.3158 1 38 32 6 786

Table 4.30: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by presence/absence of lesion in the transitional zone.

Index lesion
location CZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.5663 0.6399 0.3707 0.7818 196 141 55 3716
1 1 1 1 1 4 1 3 183

Table 4.31: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by presence/absence of lesion in the central zone.

Index lesion
location AS

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.6353 0.6495 0.3874 0.7818 188 133 55 3653
1 0.7222 0.75 0.375 1 12 9 3 246

Table 4.32: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by presence/absence of lesion in the anterior stroma.

Fairness and sub-cohort analysis

Tables 4.36 - 4.43 show the radiomics uc2 T2&DWI&ADC LGBM model’s performance on different subsets
of the hold-out test set. All tables are sorted by the number of cases on the train set, “Train counts”. In
terms of scanner manufacturer (Table 4.36), there is a drop in performance for GE cases, which can be
explained by the drop in performance for endorectal coil cases 4.37, since most GE exams were taken with
endorectal coil.

Regarding lesion location, the model seems to be relatively robust to the different index lesion locations
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country accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Netherlands 0.5455 0.725 0.4531 0.8529 88 54 34 1622
Portugal 0.5 0.6452 0.2667 1 22 18 4 576
Lithuania 0.9130 0 0 0 23 23 0 466

UK 0.5 0.1471 0.1 0.1667 28 22 6 447
Turkey 0.6364 0.7143 0.3333 1 11 9 2 359
Spain 0.4545 0.5263 0.2857 0.6667 11 8 3 243
France 0 0 0 0 0 0 0 95
Italy 0.5294 0.7843 0.5333 0.8889 17 8 9 73
Greece 0 0 0 0 0 0 0 18

Table 4.33: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by country of origin of the data.

ISUP grade accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

2 0.4505 0 0 0 91 91 0 1501
1 0.5490 0 0 0 51 51 0 1061
3 0.6923 0.7377 1 0.6923 26 0 26 671
5 1 1 1 1 16 0 16 383
4 0.75 0.7895 1 0.75 16 0 16 283

Table 4.34: radclin uc2 T2&DWI&ADC noERC CatBoost model performance on sub cohorts of the hold-
out test set, divided by ISUP grade.

(Tables 4.38 - 4.40), with the exception of anterior stroma (Table 4.41), where the performance drops when
the index lesion is located here.

Regarding country of origin (Table 4.42), the performance is relatively high across the table. However,
for example in the case of UK and Turkey, the F-score of 0 indicates that the model classified everything
into the non-aggressive class.

Regarding ISUP grade (Table 4.43), the values closest to the binary cutoff (ISUP 3 and 4) are expected
to be the hardest for the model to classify, however, even though the model was very successful classifying
ISUP 3, this was not the case for ISUP 4.

4.2.6 Use Case 2 - ISUP 1 vs 23 vs 45

Model Performance

Two of the previously described models (ISUP 1 vs 2345 and ISUP 123 vs 45) were combined to produce a
multiclass classifier: ISUP 1 vs 2&3 vs 4&5. It’s performance and confusion matrix are in Table 4.44 and
Figure 4.16, respectively.

4.2.7 Use Case 2 - Binary Classification of Clinical Significance Prostate Cancer
presence (Radiomics Analysis)

Population Dataset

For the specific UC2 model development and internal validation (FORTH contributor), the ProstateNET
dataset was used consisting of 465 patients without endorectal coil with mpMRI sequences from Siemens,
Philips and GE vendors. Manual lesion segmentations were available while the prostate gland was segmented
automatically using the nn-Unet algorithm [40]. Additionally, for external model validation the Prostatex-2
dataset[20] was used which consists of 204 patient mpMRI acquired on two types of Siemens 3T scanners.
The corresponding prostate gland and lesion segmentations were generated manually[50].
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Figure 4.12: Cross-validation and hold-out test set ROC-AUC model performance of 32 models trained to
predict disease aggressiveness in UC2 (ISUP 1, 2 & 3 vs 4 & 5). The observations are color coded according
to the inclusion/exclusion of endorectal coil patients: all patients in green; excluding ERC cases in pink.

Image processing

Image cropping was performed in order to bring all the sequences at the same starting and ending points, in
all three directions. Same process was performed also on lesion and whole gland segmentations. The reason
cropping was selected instead of resampling, was to keep the original intensities intact. Bias field correction
was performed using the N4 Bias Field Correction algorithm and the Python package Simple ITK (version
2.2.12.0.0) . Normalization was performed using the Pyradiomics (version 2.2.0). All images were resampled
by pyradiomics at [1, 1, 1] mm pixel spacing. For histogram discretization, the absolute discretization (fixed
bin size) approach was adopted as it has been found to preserve a higher number of reproducible features
for MRI compared to relative discretization (fixed bin number)[22]. The optimal bin width was defined so
that the number of bins in each image histogram would range from 16 to 128 bins. Detailed description of
the extraction parameters is provided in Table 4.45.
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Figure 4.13: Hold-out test set receiver
operator characteristics curve of the ra-
diomics uc2 T2&DWI&ADC LGBM model.

radiomics uc2 T2&DWI&ADC LGBM
AUC 0.8427
Sensitivity/Recall/TPR 0.5313
Specificity/TNR 0.8802
Precision/PPV 0.4595
F1 0.4928
F2 0.5152
Cohen’s Kappa 0.3870

Table 4.35: Multi-metric per-
formance of the radiomics
uc2 T2&DWI&ADC LGBM model
at 0.2552 probability threshold.

Figure 4.14: Analysis of the radiomics uc2 T2&DWI&ADC LGBM model in terms of confusion matrix,
learning curve, precision-recall curve and calibration plot.

Feature Reduction and Feature Selection

In total 1246 radiomic features were extracted from each MRI sequence, namely the T2-weighed (T2w) images
and the Apparent Diffusion Coefficient (ADC) maps and each 3D region of interest (ROI), namely the whole
gland and the tumor. Given the vast number of features extracted, feature reduction was required prior to
modelling to improve algorithms’ performance. This process aims to find the minimally sized feature subset
that is necessary and sufficient to describe the target concept. First, highly correlated features and variables
irrelevant to the outcome of interest were removed. Features with low variance were excluded using a variance
threshold of 0.01 and multicollinear features were eliminated using a threshold of 0.85. If two variables had
a correlation higher than the threshold, the one with the largest mean absolute correlation was removed.
Then, supervised feature selection was applied only to the training data to avoid data leakage to the test set.
To retain only the features correlated with the outcome variable, a Wilcoxon rank sum test was performed
with a significance threshold of 0.1 as the main goal is to prioritize a subset of features for further feature
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Figure 4.15: SHAP values contribution of features for radiomics uc2 T2&DWI&ADC LGBM model.

manufacturer ROC-AUC fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

SIEMENS 0.7113 0.5859 0.4688 0.6250 108 84 24 2077
PHILIPS 0.7407 0.5000 0.5000 0.5000 56 54 2 1364

GE MEDICAL SYSTEMS 0.6323 0.3571 0.5000 0.3333 35 29 6 650

Table 4.36: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by scanner manufacturer.

Figure 4.16: Confusion matrix.

low medium high
Balanced
Accuracy

0.5327 0.5327 0.5327

CohensKappa 0.2538 0.2538 0.2538
Precision/PPV 0.4222 0.6875 0.4483
Sensitivity/
Recall/TPR

0.7451 0.4741 0.4062

F1 0.5390 0.5612 0.4262
F2 0.6463 0.5055 0.4140

Table 4.44: Multi-metric performance.

selection. This process led to a significant reduction to the number of features in each dataset (¡150 variables)
allowing a more exhaustive feature selection to be performed. For comparison, 10 state-of-the-art feature
selection techniques were implemented: Minimum Redundancy Maximum Relevance (mRMR)[70] , Boruta
algorithm[46] , Relief algorithm[44] , Recursive Feature Elimination (RFE)[28] , Statistically equivalent
multiple feature subsets (SES)[48] , Fast Correlation-Based Filter (FCBF)[65] , Correlation-based Feature
Selection (CFS) with forward selection strategy [92], Random Forest (RF) variable importance, LASSO[64]
, and AUC-based feature selection.
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ERC ROC-AUC fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

0 0.7329 0.5592 0.4722 0.5862 187 158 29 3897
1 0.6111 0.3571 0.5000 0.3333 12 9 3 194

Table 4.37: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of endorectal coil.

index lesion location PZ ROC-AUC fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

1 0.7124 0.5200 0.5200 0.5200 151 126 25 3245
0 0.7596 0.6098 0.3846 0.7143 48 41 7 846

Table 4.38: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the peripheral zone.

index lesion location TZ ROC-AUC fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

0 0.7266 0.5517 0.5517 0.5517 161 132 29 3271
1 0.7333 0.4762 0.2222 0.6667 38 35 3 820

Table 4.39: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the transitional zone.

index lesion location CZ ROC-AUC fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

0 0.7227 0.5414 0.4595 0.5667 195 165 30 3903
1 0.75 0.5556 1.0 0.5 4 2 2 188

Table 4.40: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the central zone.

index lesion location AS ROC-AUC fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

0 0.7329 0.5592 0.4722 0.5862 187 158 29 3844
1 0.6111 0.3571 0.5 0.3333 12 9 3 247

Table 4.41: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by presence/absence of lesion in the anterior stroma.

country accuracy fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

Netherlands 0.7273 0.5952 0.5 0.625 88 64.0 24.0 1622
Portugal 1.0 0.0 0.0 0.0 22 22.0 0.0 575
Lithuania 1.0 0.0 0.0 0.0 23 23.0 0.0 466

UK 0.8571 0.0 0.0 0.0 28 27.0 1.0 447
Turkey 0.8182 0.0 0.0 0.0 11 9.0 2.0 362
Italy 0.8125 0.5263 0.6667 0.5 16 12.0 4.0 266
Spain 0.9091 0.8333 0.5 1.0 11 10.0 1.0 243
France 0.0 0.0 0.0 0.0 0 0.0 0.0 95
Greece 0.0 0.0 0.0 0.0 0 0.0 0.0 15

Table 4.42: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by country of origin of the data.

Model Training

Two training schemes were considered: 1) The ProstateNET dataset was split into training (80%) and test
(20%) sets so that both datasets have the same label distribution, and 2) The entire ProstateNET was
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ISUP grade accuracy fbeta 2 precision recall
test

counts
test counts
target 0

test counts
target 1

train
counts

2.0 0.8111 0.0 0.0 0.0 90.0 90 0 1591
1.0 0.9412 0.0 0.0 0.0 51.0 51 0 1105
3.0 1.0 0.0 0.0 0.0 26.0 26 0 707
5.0 0.6875 0.7333 1.0 0.6875 16.0 0 16 391
4.0 0.4375 0.4929 1.0 0.4375 16.0 0 16 297

Table 4.43: radiomics uc2 T2&DWI&ADC LGBM model performance on sub cohorts of the hold-out test
set, divided by ISUP grade.

Image Type Feature Class Setting
Original: {} first order Normalize: True
Wavelet: {} glcm normalizeScale: 1
Gradient: {} glrlm interpolator: sitkBSpline
LoG: {
sigma: [1.0, 2.0, 3.0, 4.0]
}

glszm
resampledPixelSpacing:
[1, 1, 1]

- gldm padDistance:5
- shape -

Table 4.45: Parameters for Radiomic Feature Extraction.

Dataset T2 radiomics ADC Radiomics T2+ADC Radiomics
ProstateNET 465 (74% ISUP≥2) 419 (75% ISUP≥2) 419 (75% ISUP≥2)
ProstateX-2 Gland : 186 (37% ISUP≥2) ; Tumor : 299 (25% ISUP≥2)

Table 4.46: Number of patients and proportion of the target class (ISUP score ≥ 2).

used to train the models and for external validation the Prostate X dataset was used. The total number of
patients available and the proportion belonging to the target class (ISUP score ≤ 2) for each classification
scenario are shown in Table 4.46. In total 8 classification algorithms were implemented, namely, Random
Forest (RF), Support Vector Machines (SVM) with kernel function, Extreme Gradient Boosting (XGB),
Adaptive Boosting (AdaBoost), Boosted Generalized Linear Models (GLM), Bayesian GLM, and LASSO
Regularization. All the models were implemented in R using the ‘caret’ function. Considering that radiomic
features were extracted from the different ROIs (2) and MR sequences (3) and several feature selection
methods (10) and ML algorithms (8) were used, the analysis resulted to a total of 480 models.

Statistical Analysis

A receiver operating characteristic (ROC) curve was generated to determine model accuracy and discrimi-
native performance. ROC AUC, Precision, Recall, Precision-Recall (PR) AUC, and the F1 score were used
to estimate model performance. Calibration curves based on the Hosmer-Lemeshow test. All statistical
analyses were performed using R (version 4.1.0; R Foundation for Statistical Computing, Vienna, Austria).

Results

Table 4.47 shows optimal performance obtained for each classification task, encompassing the tumor and
whole gland ROIs and three sets of input radiomic features (T2 only, ADC only, T2 and ADC combined). For
each classification task, the combination of the feature selection method and the ML algorithm that resulted
to the higher ROC AUC is shown along with the other performance metrics. The highest performance, both
in internal (AUC=0.86) and external (AUC=0.75) validation, was noticed for the radiomic features extracted
from both the T2 and ADC sequenced of the tumor, although marginally better than the ADC-only tumor
model. Conversely, all the radiomic models of the whole gland exhibited inferior performarce, especially in
the external validation (AUC≤0.61).

Figure 4.17 (a) highlights the calibration plots for WG models for internal and external validation while
Figure 4.17 (b) highlights the calibration plots for Tumor models for internal and external validation. The
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Model Characteristics Performance
Roi Sequence Best Feature Selection Method N# of features selected Best Model Validation ROC AUC PR AUC Precision Recall F1

Tumor

T2 Boruta 24 SVM
Internal 0.75 0.9 0.85 0.68 0.75
External 0.64 0.41 0.27 0.78 0.4

ADC RF vh 8 SVM
Internal 0.84 0.94 0.94 0.78 0.85
External 0.75 0.5 0.36 0.87 0.51

T2+ADC Relief 9 LASSO
Internal 0.86 0.95 0.92 0.77 0.84
External 0.75 0.52 0.33 0.86 0.48

WG

T2 Relief 7 AdaBoost
Internal 0.77 0.91 0.84 0.75 0.79
External 0.59 0.41 0.46 0.49 0.47

ADC AUC 4 SVM
Internal 0.69 0.87 0.83 0.67 0.74
External 0.54 0.42 0.37 0.59 0.45

T2+ADC Relief 11 LASSO
Internal 0.78 0.91 0.83 0.79 0.81
External 0.61 0.45 0.41 0.72 0.42

Table 4.47: The characteristics and the performance of the best models for each classification task.

selected radiomic features and the corresponding variable importance for the best models of the tumor and
WG radiomics are shown in Figure 4.17.

4.2.8 Use Case 3

Exploratory Data Analysis of Clinical variables

Fig. 4.18 shows the distribution of each clinical variable used in UC3. We can see that the PSA histogram
of the non-metastatic cases is skewed to the lower PSA values. Additionally, the proportion of metastatic
cases is much higher for PIRADS 5 when compared to PIRADS 4.

Model Performance

Fig. 4.19 shows the cross-validation ROC-AUC model performance for the 32 models trained for UC3. Even
though the differences are not extensive, the highest performance is achieved with a hybrid DWI dataset.

Model Selection

Given the results of the last section, we decided to move forward analyzing a hybrid model using DWI
sequences and excluding ERC patients. The model’s performance at a 0.5 probability decision threshold is
shown in Table 4.48 and its confusion matrix, learning curve, precision-recall curve and calibration plot are
displayed in Fig. 4.20.

hybrid uc3 DWI noERC SGD
AUC 0.8077
Sensitivity/Recall/TPR 0.6155
Specificity/TNR 1.0
Precision/PPV 1.0
F1 0.7595
F2 0.6657
Cohen’s Kappa 0.3466

Table 4.48: Multi-metric cross-validation performance of the hybrid uc3 DWI noERC SGD model at 0.5
probability threshold.

Explainability analysis

Fig. 4.21 shows the SHAP analysis performed on the hybrid uc3 DWI noERC SGD. There are no clinical
variables among the 20 with the most impact on model output.

Fairness and sub-cohort analysis

Tables 4.49 through Table 4.54 show the fairness analysis for model hybrid uc3 DWI noERC SGD. Regarding
scanner manufacturer (Table 4.49), there is a significant drop in performance for SIEMENS cases (dropped
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around 15% in accuracy and F2-score), despite being well represented in the training set. Regarding index
lesion location (Tables 4.88 to 4.90), we see significant drops in performance (up to 25% accuracy and F2-
score) from the largest cohorts seen in training to the least represented ones, this is specially significant
for the PZ, however the small cohort size (6 cases) doesn’t allow fair conclusions to be drawn. Regarding
country of origin (Table 4.91), the lowest performances are found for cases from Turkey and the Netherlands,
despite being the second and third largest cohort seen in training.

manufacturer accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

PHILIPS 0.7537 0.7573 1 0.7175 31 5 26 31
SIEMENS 0.5899 0.5892 1 0.5381 22 2 20 22

GE MEDICAL
SYSTEMS

0.7222 0.6467 1 0.6111 9 3 6 9

Table 4.49: hybrid uc3 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by scanner manufacturer.

index lesion
location PZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.6963 0.6909 1 0.6443 56 9 47 56
0 0.4444 0.4615 0.6667 0.4444 6 1 5 6

Table 4.50: hybrid uc3 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7312 0.6952 1 0.6473 42 10 32 42
1 0.5333 0.5837 1 0.5333 20 0 20 20

Table 4.51: hybrid uc3 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the transitional zone.

index lesion
location CZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7037 0.6768 1 0.6269 48 10 38 48
1 0.5778 0.6277 1 0.5778 14 0 14 14

Table 4.52: hybrid uc3 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the central zone.

index lesion
location AS

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.6839 0.6665 1 0.6167 49 9 40 49
1 0.5278 0.5659 1 0.5159 13 1 12 13

Table 4.53: hybrid uc3 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the anterior stroma.

4.2.9 Use Case 5 - post-surgery

Exploratory Data Analysis of Clinical variables

Fig. 4.22 shows the distribution of each clinical variable used in UC5. There is no variable where the
distinction between the two classes is clear, however we can see that the proportion of biochemical recurrence
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country accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Portugal 0.7955 0.8252 1 0.7955 21 0 21 21
Netherlands 0.5381 0.5020 1 0.4548 18 2 16 18

Turkey 0.6984 0.3456 0.6667 0.3111 17 8 9 17
Spain 0.8750 0.8947 1 0.8750 5 0 5 5
Italy 1 1 1 1 1 0 1 1

Table 4.54: hybrid uc3 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by country of origin of the data.

cases increases as the PIRADS increases. This proportion is also higher for the central ISUP grades, namely
ISUP 2 and 3, and, as expected, it is also higher when there is perineural invasion, seminal vesicle invasion,
extraprostatic extension or when the resection margins are positive after prostatectomy. A much higher
proportion of recurrence was also found after laparoscopic prostatectomies compared with robotic-assisted
or retro-pubic.

Model Performance

Fig. 4.23 shows the cross-validation and hold-out test set ROC-AUC model performance for the 32 models
trained for UC5 (post-surgery context). At first glance, we can see that training with clinical data (radclin
and hybrid models) significantly improves generalizability.

Model Selection

Given the results of the last section, we decided to move forward to analyzing a hybrid model using T2W
sequences and excluding ERC patients. Due to the smaller size of the hold-out test set for this use case, we
chose the decision threshold using the whole test set. Upon inspection of the respective ROC curve (Fig.
4.24), we decided the appropriate probability decision threshold would be 0.0528, above which the model
outputs a high risk of biochemical recurrence. The model’s performance at this probability decision threshold
is shown in Table 4.55 and its confusion matrix, learning curve, precision-recall curve and calibration plot
are displayed in Fig. 4.25.

Explainability analysis

Fig. 4.26 shows the SHAP analysis performed on the hybrid uc5 T2 noERC CatBoost model. Several clini-
cal variables are displayed among the top most influential to the model output: gleason1 (the most prominent
histological pattern), baseline PSA and ISUP grade, which are positively associated with biochemical re-
currence. The impact of the 2 categorical variables, extraprostatic extension and resection margin status,
is shown in figures 4.27 and 4.28, respectively. Both the presence of extraprostatic extension and positive
resection margins are associated with the biochemical recurrence output.

Fairness and sub-cohort analysis

Tables 4.56 through 4.60 show the fairness analysis for model hybrid uc5 T2 noERC CatBoost. Since there
were no ERC cases or patients with index lesion located in the CZ, these two settings were removed from
the subcohort analysis. In terms of scanner manufacturer (Table 4.56), the model generalizes well to philips
data, but there are not enough samples on the hold-out test set to extract conclusions for GE.

Similarly, regarding lesion location (Table 4.57-4.59) and country of origin (Table 4.60), it is very difficult
to conclude about the model’s overall performance on the minority sub-cohorts, due to the low representation
of these cases in the hold-out test set.
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manufacturer accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

PHILIPS 0.6111 0.4688 0.1875 0.75 36 32 4 429
SIEMENS 0.8750 0.9375 0.7500 1 8 5 3 182

GE MEDICAL
SYSTEMS

0.3333 0 0 0 3 3 0 65

Table 4.56: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the hold-out test set,
divided by scanner manufacturer.

index lesion
location PZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.6667 0.625 0.3 0.8571 45 38 7 602
0 0 0 0 0 2 2 0 74

Table 4.57: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the hold-out test set,
divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7361 0.5952 0.2778 0.8333 42 36 6 561
1 0.6250 0.6250 0.2500 1 5 4 1 115

Table 4.58: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the hold-out test set,
divided by presence/absence of lesion in the transitional zone.

index lesion
location AS

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7193 0.5682 0.25 0.8333 44 38 6 616
1 0.7500 0.8333 0.50 1 3 2 1 60

Table 4.59: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the hold-out test set,
divided by presence/absence of lesion in the anterior stroma.

country accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Portugal 0.6216 0.5952 0.2778 0.8333 37 31 6 340
Spain 1 1 1 1 4 3 1 96

Lithuania 0 0 0 0 0 0 0 88
Turkey 0.6 0 0 0 5 5 0 82

Netherlands 0 0 0 0 0 0 0 68
Italy 0 0 0 0 1 1 0 2

Table 4.60: hybrid uc5 T2 noERC CatBoost model performance on sub cohorts of the hold-out test set,
divided by country of origin of the data.

4.2.10 Use Case 5 - pre-surgery

Model Performance

Fig. 4.29 shows the cross-validation and hold-out test set ROC-AUC model performance for the 32 models
trained for UC5 (pre-surgery context). Overall, in terms of cross-validation, it seems that the inclusion of
clinical variables is detrimental to the performance. However, the highest generalizability is consistently
found with hybrid models.

Model Selection

Given the results of the last section, we decided to move forward to analyzing a hybrid model using T2W
sequences and all patients. Due to the smaller size of the hold-out test set for this use case, we chose the
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decision threshold using the whole test set. Upon inspection of the respective ROC curve (Fig. 4.30), we
decided the appropriate probability decision threshold would be 0.0038, above which the model outputs
a high risk of biochemical recurrence. The model’s performance at this probability decision threshold is
shown in Table 4.61 and its confusion matrix, learning curve, precision-recall curve and calibration plot are
displayed in Fig. 4.31.

Explainability analysis

Fig. 4.32 shows the SHAP analysis performed on the hybrid uc5 T2 CatBoost model. Three clinical vari-
ables are displayed among the top 20 most influential to the model output: gleason1 (the most prominent
histological pattern), baseline PSA and ISUP grade, which are positively associated with biochemical recur-
rence. Additionally, several radiomic features extracted from the log-sigma transformation of the T2 volume
show predictive power.

Fairness and sub-cohort analysis

Tables 4.62 through 4.66 show the fairness analysis for model hybrid uc5 T2 CatBoost. Since there was only
one ERC case and no patients with index lesion located in the CZ, these two settings were removed from
the subcohort analysis. In concordance with the post-surgery context, the model generalizes well to philips
data (Table 4.62), but there are not enough samples on the hold-out test set to extract conclusions for GE.

manufacturer accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

PHILIPS 0.6111 0.4688 0.1875 0.75 36 32 4 429
SIEMENS 0.7500 0.8824 0.6000 1 8 5 3 182

GE MEDICAL
SYSTEMS

0 0 0 0 3 3 0 98

Table 4.62: hybrid uc5 T2 CatBoost model performance on sub cohorts of the hold-out test set, divided by
scanner manufacturer.

Similarly, regarding lesion location (Table 4.63-4.65) and country of origin (Table 4.66), it is very difficult
to conclude about the model’s overall performance on the minority sub-cohorts, due to the low representation
of these cases in the hold-out test set.

index lesion
location PZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.6222 0.6000 0.2727 0.8571 45 38 7 633
0 0 0 0 0 2 2 0 76

Table 4.63: hybrid uc5 T2 CatBoost model performance on sub cohorts of the hold-out test set, divided by
presence/absence of lesion in the peripheral zone.

index lesion
location TZ

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7222 0.5814 0.2632 0.8333 42 36 6 592
1 0.5000 0.5556 0.2000 1 5 4 1 117

Table 4.64: hybrid uc5 T2 CatBoost model performance on sub cohorts of the hold-out test set, divided by
presence/absence of lesion in the transitional zone.

4.2.11 Use Case 6

Exploratory Data Analysis of Clinical variables

Fig. 4.33 shows the distribution of each clinical variable used in UC6. There is no variable where the
distinction between the two classes is clear, however we can see that the proportion of biochemical recurrence
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index lesion
location AS

ROC-AUC fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.6930 0.5435 0.2273 0.8333 44 38 6 649
1 0.7500 0.8333 0.50 1 3 2 1 60

Table 4.65: hybrid uc5 T2 CatBoost model performance on sub cohorts of the hold-out test set, divided by
presence/absence of lesion in the anterior stroma.

country accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Portugal 0.5946 0.5814 0.2632 0.8333 37 31 6 340
Spain 1 1 1 1 4 3 1 96

Lithuania 0 0 0 0 0 0 0 88
Turkey 0.4 0 0 0 5 5 0 82

Netherlands 0 0 0 0 0 0 0 68
Italy 0 0 0 0 1 1 0 35

Table 4.66: hybrid uc5 T2 CatBoost model performance on sub cohorts of the hold-out test set, divided by
country of origin of the data.

cases increases as the PIRADS increases. This proportion is also higher when a patient presents a lesion in
the PZ.

Model Performance

Fig. 4.34 shows the cross-validation ROC-AUC model performance for the 32 models trained for UC6. Even
though the differences are not extensive, the highest performance is achieved with a raddeep DWI dataset.

Model Selection

Given the results of the last section, we decided to move forward analyzing a raddeep model using DWI
sequences and excluding ERC patients. The model’s cross-validation performance at a 0.5 probability de-
cision threshold is shown in Table 4.67 and its confusion matrix, learning curve, precision-recall curve and
calibration plot are displayed in Fig. 4.35.

raddeep uc6 DWI noERC SGD
AUC 0.8393
Sensitivity/Recall/TPR 0.8056
Specificity/TNR 0.8730
Precision/PPV 0.5
F1 0.6111
F2 0.7119
Cohen’s Kappa 0.5340

Table 4.67: Multi-metric cross-validation performance of the raddeep uc6 DWI noERC SGD model at 0.5
probability threshold.

Given the model’s perfect performance on the train set, the fairness analysis was not carried out, since
the subcohort performance would also be perfect.

Explainability analysis

Fig. 4.36 shows the SHAP analysis performed on the raddeep uc6 DWI noERC SGD model. Here, shape
information seems to be highly impactful to the model output.

Fairness and sub-cohort analysis

Tables 4.68 through Table 4.73 show the fairness analysis for model raddeep uc6 DWI noERC SGD. Though
it is difficult to conclude about the performance on the smaller subcohort (SIEMENS), we can say the model
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generalized relatively well to GE data, with a drop in accuracy of around 17.6% but a rise in F2-score of
25% (Table 4.68). Regarding, index lesion location (Tables 4.70 to 4.72), the model shows minimal drops in
performance on TZ, CZ and AS (< 8% reduction in accuracy). On PZ we see a larger drop in performance
(Table 4.69), however the small cohort size (4 cases) doesn’t allow fair conclusions to be drawn. Regarding
country of origin (Table 4.73), the model performs relatively well on cases coming from Portugal or Spain
(around 90% accuracy), but the performance drops almost 20% for cases from Lithuania and Italy.

manufacturer accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

PHILIPS 0.8982 0.6111 0.5 0.6667 59 53 6 59
GE MEDICAL
SYSTEMS

0.7222 0.8586 0.5556 1 11 7 4 11

SIEMENS 0.6667 0 0 0 3 3 0 3

Table 4.68: raddeep uc6 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by scanner manufacturer.

index lesion
location PZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.8839 0.7405 0.5667 0.8056 69 59 10 69
0 0.5 0 0 0 4 4 0 4

Table 4.69: raddeep uc6 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.8789 0.7639 0.5 0.8889 58 51 7 58
1 0.8000 0.4629 0.5 0.5 15 12 3 15

Table 4.70: raddeep uc6 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the transitional zone.

index lesion
location CZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.8472 0.6608 0.4333 0.6269 66 58 8 66
1 1 0.6667 0.6667 0.6667 7 5 2 7

Table 4.71: raddeep uc6 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the central zone.

index lesion
location AS

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.8656 0.7242 0.5333 0.8056 67 57 10 67
1 0.8333 0 0 0 6 6 0 6

Table 4.72: raddeep uc6 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the anterior stroma.

4.2.12 Use Case 7a

The variables of the ecrf indicating the presence of side effects are four: Rectal Toxicity Acute, Rectal
Toxicity Chronic, Urinary Toxicity Acute, and Urinary Toxicity Chronic. Each of them has been assessed
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country accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Portugal 0.9203 0.6111 0.5 0.6667 46 43 3 46
Lithuania 0.7389 0 0 0 12 10 2 12
Spain 0.8889 0.9444 0.8333 1 9 4 5 9
Italy 0.7222 0 0 0 6 6 0 6

Table 4.73: raddeep uc6 DWI noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by country of origin of the data.

by clinicians with a score in {1, . . . , 5}. Hence, the UC7a could be tackled in different ways, depending on
which output we are interested in: to predict the generic presence of side effects, or to predict independently
both urinary toxicity and rectal toxicity. As the sample size is not so big (less than 150 cases), we decided to
train binary classification models addressing different classification tasks, namely the prediction of (i) rectal
toxicity and urinary toxicity independently; (ii) any side effect, but weighting more the chronic side effect
with respect to the acute one.

Independent prediction of Rectal Toxicity and Urinary Toxicity

In UC7a with rectal toxicity, a total of 136 patients (ProstateNet) were studied using the T2W axial images.
The whole gland masks for these patients were derived utilizing the pre trained nnU-net model. These masks
were automatically generated for all 136 patients, with the distribution between Grade 1 and Grade 2 being
[119, 17] respectively.

Moreover, in UC7a with urinary toxicity, a total of 136 patients were studied using T2W axial images.
The whole gland masks for these patients were derived utilizing the pre-trained nnU-net model. These masks
were automatically generated for all 136 patients, with the distribution between Grade 1 and Grade 2 being
[94, 40] respectively

Methodology

For each patient, 642 radiomics were derived using bin widths of 20, 50, and 80. To measure the performance
of the models, a 3-fold cross-validation was conducted over 100 iterations. Several feature selection methods,
including Variance threshold, ANOVA, and L1-based methods, were employed. To determine the optimal
classifier, a range of seven classifiers was assessed, encompassing GPC RBF, KNN, Decision tree, polynomial
SVM, Linear SVM, rbf SVM, and sigmoid SVM. By experimenting with different values, the optimal values for
the hyperparameters k (number of features to be selected) and c value (regularization) were identified as k
being 40, 80, or 120 and c value being 0.4, 0.8, or 1. Finally, learning curves were generated for the best
performing classifier.

Results

In analyzing Rectal and Urinary Toxicity under Use Case 7a, a series of classifiers and parameter combinations
were examined to identify the optimal model for each case. The results, summarized in Table 4.74, reveal
that for Rectal Toxicity, the Sigmoid SVM classifier, with a bin width of 80, k best of 80, and C value
of 1, yielded the highest performance across all metrics. Similarly, for Urinary Toxicity the Sigmoid SVM
classifier, with a bin width of 80, k best of 80, and C value of 0.4, demonstrated optimal performance.

Discussion

The confusion matrices, Figure 4.37, for Rectal and Urinary Toxicity illustrate both the strengths and
weaknesses of our models. For Rectal Toxicity, the model correctly identified most of the Grade 1 samples
but struggled with several False Positives, indicating a tendency to overestimate the presence of Grade 2
toxicity. In contrast, the Urinary Toxicity model demonstrated a fair balance in identifying both grades but
still had misclassifications. Finally, the learning curves Figure 4.38 reveal that the models are inclined to
overfit and exhibit poor performance on the test set, especially when the amount of training data is reduced.
We also observe that the model yields the best results on the test set when 70% of the total amount of data
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Rectal Toxicity Urinary Toxicity

Classifier Sigmoid SVM Sigmoid SVM

Parameters Bin width 80
k best 80
C value 1

Bin width 80
k best 80
C value 0.4

ACC MEAN 0.7214 [± 0.046] 0.6694 [± 0.03]

AUC MEAN 0.7835 [± 0.03] 0.6988 [± 0.037]

SN MEAN 0.7654 [± 0.097] 0.7323 [± 0.05 ]

SP MEAN 0.6774 [± 0.03] 0.606 [± 0.04]

F1 MEAN 0.7179 [± 0.06] 0.6836 [± 0.03]

Table 4.74: Comparison of Results for Rectal and Urinary Toxicity.

is used for training. We suspect this is attributable to the removal of data with an endorectal coil during
the data reduction process.

(a) Rectal Toxicity (b) Urinary Toxicity

Figure 4.38: Learning curves from the optimal models for Rectal and Urinary Toxicity.

Prediction of any side effect

In UC7a a total of 134 patients (ProstateNet) were studied using the T2W axial images. The whole gland
masks for these patients were provided by the Champalimoud team. These masks have been visually in-
spected and some correction have been applied with respect to the presence of multiple connected components
(occurring in 29/134 cases), and to any other issues (e.g. one mirrored mask), Fig. 4.39.

44



Deep Learning Master models and Radiomic Signatures
CHAPTER 4. RADIOMICS MASTER MODELS

Figure 4.39: Segmentation issues. In (a) multiple connected components (PatientID: PCa-
73840158220672581509385408987452733166); in (b) the original mask (white) and the mirrored one (green),
which perfectly fits the prostate shape in (c) (PCa-309443526081327790079195286136548121193).

Among the 134 T2W axial series, about the 50% of cases (66 patients) were acquired using an endorectal
coil. Hence, we decided to perform three different experimentation for predicting side effects after radio-
therapy: the first using all the subjects (All subjs), the second and the third one splitting the dataset with
respect to the coil used (ERC, and noERC).

Looking at the sum of the grading over the 4 variables for each patient, we obtained a population with
the distribution of side effects reported in Table 4.75

Side effect sum 4 5 6 7 8 9 10 11 12
# of patients 65 16 32 10 9 0 1 0 1

Table 4.75: Distribution of the cumulative grades of side effects in the UC7a population, not regarding the
type of side effect.

This distribution could be used to split the dataset into two classes: subjects with no side effects at all
(all grading are ones), and subjects with at least one side effect assessed as grade 2. This splitting would
result in a binary classification: 65 subjects with a sum equal to 4 and 69 subjects with a sum greater than
4.

Conversely, both type of side effects (Rectal and Urinary Toxicity) has been evaluated in terms of their
nature, distinguishing between Acute and Chronic effects. Naturally, the chronic side effects hold greater
significance compared to the acute ones. Therefore, a division that better respects the clinical context was
chosen: in the class with no side effects were included also the subjects who showed a grade 2 in only one
among rectal toxicity acute and urinary toxicity acute. Such a ground truth produced a [79, 55] splitting in
the whole dataset: 79 subjects with no or light side effects and 55 subjects with side effects.

In the end, also considering the coil used for the MRI examination, we have the following splittings for
the three dataset:

• All subjects: 79 subjects without side effects, hence [79, 55];

• ERC: 29 subjects without side effects, hence [29, 37];

• noERC: 50 subjects without side effects, hence [50, 18].

Methodology

The radiomic features were derived from the original T2W images labeled with the prostate mask, using
Simple-ITK and Pyradiomics libraries. In the end, 107 radiomic features (belonging to the classes: firstorder,
shape, glszm, ngtdm, glcm, glrlm, gldm) were extracted for each patient using the default bin width of 25.
The clustering plot in Figure 4.40 shows the redundancy among the radiomic features extracted.
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(a) All subjects (b) ERC (c) noERC

Figure 4.40: Radiomic features: clustering analysis.

The PCA analysis showed that in each dataset the 85% of features variance is retained in the first 4
principal components. For each dataset, the pairs of features with Pearson correlation > 0.9 have been
identified in order to reduce the number of radiomic features to train the classification models: (i) for the
whole dataset we got 36 features, (ii) for the ERC dataset we reduced to 25 features, and (iii) for the noERC
dataset to 33 features.

To study UC7a, we trained 3 different types of models: a classical k-nearest neighbor (kNN ) with k = 2,
a Support Vector Machine (SVM ) with kernel=’sigmoid’, gamma= 10 and C=1 and a Random Decision
Forest (RDF ), trained on 500 trees.
The performance of the trained models were compared using a 5-fold cross-validation scheme (i.e., each
model was trained 5 times, using 4 folds as the training set and evaluating performance on the fifth unseen
set). Patients were stratified by both ground truth and acquisition modality (ERC/noERC) in order to
ensure that each fold was homogeneous compared to the others.
Metrics were calculated on the test fold for each of the 5-folds. The area under the receiver operating
characteristic (AUROC) of each of the test fold was reported [Median AUROC ]. The score was given as
median and [0%-100%] percentiles due to the small number of samples and the non-normality of the values.
Considering the size of each fold (median value 27 [25-28]), an aggregated score can be more stable to the
splitting procedure. Therefore, we defined the Combined AUROC as the AUROC calculated by aggregating
the 5 test folds. The DeLong confidence interval was added to this score. The Confusion Matrix, obtained
as the sum of the confusion matrices of each fold, where the selection thresholds are calibrated using the 4
training folds, was also reported. Using this matrix we derived the following scores: Sensitivity, Specificity,
and Balanced Accuracy (to handle data imbalances).

Results

Tables 4.76, 4.77, and 4.78 report all the performance metrics for the three models trained on each dataset,
while confusion matrices are displayed in Figures 4.41, 4.42, and 4.43. Considering only the balanced accu-
racy, classification based on kNN is always the worst; while SVM and RDF achieved similar performances:
both of them showed near 65% of balanced accuracy in the whole dataset experimentation. On the other
hand, in the other two dataset, SVM models showed a stronger stability, while, probably due to the small
number of subjects, the performances of RDF dropped down. Also, the SVM showed the best balance be-
tween sensitivity and specificity both in the whole (0.6 sens. and 0.7 spec.) and in the noERC dataset (0.61
sens. and 0.68 spec.), despite the limited sample size.
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All subjects
Median
AUROC

Combined
AUROC

Sensitivity Specificity
Balanced
Accuracy

kNN - - 0.785 0.327 0.556

SVM
0.729

[0.578-0.787]
0.692

CI [0.603-0.786]
0.6 0.696 0.648

RDF
0.684

[0.677-0.787]
0.698

CI [0.605-0.792]
0.473 0.81 0.641

Table 4.76: Performance metrics of the three models (kNN, SVM, RDF) trained on the whole dataset.

(a) kNN (b) SVM (c) RDF

Figure 4.41: Confusion Matrices from the optimal models, for the whole dataset.

ERC
Median
AUROC

Combined
AUROC

Sensitivity Specificity
Balanced
Accuracy

kNN - - 0.655 0.405 0.53

SVM
0.628

[0.604-0.833]
0.640

CI [0.503-0.771]
0.459 0.758 0.609

RDF
0.586

[0.52-0.75]
0.571

CI [0.43-0.712]
0.649 0.448 0.549

Table 4.77: Performance metrics of the three models (kNN, SVM, RDF) trained on the ERC dataset.

(a) kNN (b) SVM (c) RDF

Figure 4.42: Confusion Matrices from the optimal models, for the ERC dataset.
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noERC
Median
AUROC

Combined
AUROC

Sensitivity Specificity
Balanced
Accuracy

kNN - - 0.88 0.167 0.523

SVM
0.775

[0.46-0.866]
0.706

CI [0.564-0.848]
0.611 0.68 0.645

RDF
0.60

[0.533-0.90]
0.685

CI [0.535-0.835]
0.333 0.86 0.597

Table 4.78: Performance metrics of the three models (kNN, SVM, RDF) trained on the noERC dataset.

(a) kNN (b) SVM (c) RDF

Figure 4.43: Confusion Matrices from the optimal models, for the noERC dataset.

Discussion

Both SVM and RDF performed quite well in predicting the presence of side effects after radiotherapy, even
if SVM showed a stronger ability of exploiting the homogeneity of the training dataset, despite the reduction
of the sample size (clear if considering performance metrics achieved in the whole dataset and in the ERC
dataset).

On the other hand, the RDF models are more explainable ML tools, as they make it possible to perform
an importance analysis of the radiomic features. In Table 4.79 the 5 features scoring highest for each dataset
are reported: it’s worth to remark that most of them are texture features, as expected, even if some features
derived from the prostate shape (e.g. elongation, Max 2D diameter) also occur.

All
subjects

ERC noERC

GLCM Correlation
5.7

Large Area Emphasis
4.0

Elongation
4.8

Elongation
4.5

GLSZM Size Zone
Non Uniformity

2.7

Max 2D diameter
3.9

GLSZM
Zone Entropy

4.2

Minimum
2.6

Least Axis Length
3.3

GLRLM
Run Length

Non Uniformity
4.1

GLCM Correlation
0.7

Flatness
2.5

Maximum
3.8

GLCM Inverse
Variance

0.6

GLCM LDMN
2.0

Table 4.79: Mean decrease accuracy for the RDF models. The 5 highest medians of the folds are reported.

48



Deep Learning Master models and Radiomic Signatures
CHAPTER 4. RADIOMICS MASTER MODELS

4.2.13 Use Case 7b

Model Performance (multiclass)

Figures 4.45 and 4.46 show, respectively, the cross-validation and hold-out test set ROC-AUC and Brier
model performance for the 48 models trained for UC7b.

Observing Fig. 4.44, we can see that during cross-validation the support vector classifier (SVC) produces
the best results when evaluating ROC-AUC, however, these do not hold when testing on the holdout data.
There we can observe a very high degree of overfitting from the SVC models, while the remaining ones
produce more consistent results. Overall, the stochastic gradient descent classifier (SGD) is the one that
generalizes the best, with its best version using Raddeep data with ADC features, obtaining a ROC-AUC
score of 0.60. However, when observing the Brier score, which provides an estimate of the model calibration,
we can see that despite providing the best ROC-AUC scores, the SGD models are highly unreliable. On
the other hand, a model that provides both a high ROC-AUC (0.55) and low Brier (0.68) is the CatBoost
trained on Radclin data with DWI features, which will be our chosen model.

In order to assess the impact of the different modalities, we compare the both ROC-AUC and Brier
score obtained on each modality, stratified by both dataset type and predictive model type (Figs. 4.45
and 4.46). During cross-validation, it can be observed that, regarding ROC-AUC, both Raddeep and SVC
tend to provide, generally, the best results, despite generating more miscalibrated classifiers in the case of
Raddeep. Looking at the holdout results, it can be seen that the results do not hold, with Radclin and SGD
providing the best models, although the SGD results are severely miscalibrated. Interestingly, neither in
cross-validation nor in holdout is there a clear best modality, with all of them producing very similar results.

Model Selection

Given the results of the previous section, we decided to move forward analyzing the CatBoost Radclin model
using DWI sequences. Observing the confusion matrix (Fig. 4.47) we can see that the model is severely
underperforming, throwing the vast majority of predictions to the “sufficient” class (class 2). Inspecting the
ROC (Fig. 4.48) curve confirms this as we can observe that all thresholds have very similar values.

Explainability analysis

From Fig. 4.49 to Fig. 4.54, the SHAP analysis performed on the CatBoost model using Radclind data
and DWI features is shown. For each class two plots are shown, the standard shap summary plot and an
additional one describing the impact of each category of a categorical variable on model output.

Regarding class 1, or low quality of life (Fig. 4.49), the model is relying heavily on three clinical variables,
namely extra prostatic extension, PIRADS and resection margin status, and on one shape feature, Sphericity,
inversely associated with the low quality of life output. Lower in the plot we can also find the age, positively
associated with low quality of life, and shape Flatness with an inverse relationship to the target. Analyzing
Fig. 4.50 we find the presence of extraprostatic extension associated with the low quality of life output.
Surprisingly, all PIRADS values are positively associated with a lower quality of life, with the exception
of PIRADS 5 which shows an inverse relationship to the target. It was also found that negative resection
margins lead to a higher risk of low quality of life.

Fairness and sub-cohort analysis

Tables 4.80 to 4.85 show the fairness analysis for the CatBoost model using Radclind data and DWI features
is shown. This analysis was, for the most part, inconclusive due to the low representation of minority
subgroups. Regarding scanner manufacturers (Table 4.80), the model seems robust to the two scanners
represented in the hold-out test set (PHILIPS and SIEMENS). Regarding PZ lesion location (Table 4.81),
CZ lesion location (Table 4.83) and country (Table 4.85), no conclusions can be drawn due to the low
representation of minority subgroups, with only 3, 2, and 1 patients respectively in the minority sub-cohorts.
Regarding TZ (Table 4.82) and AS (Table 4.84), we can cautiously conclude that the model performs better
when there is a lesion in these areas.

49



Deep Learning Master models and Radiomic Signatures
CHAPTER 4. RADIOMICS MASTER MODELS

manufacturer accuracy fbeta 2 precision recall
Test

counts
Test counts
target 1

Test counts
target 2

Test counts
target 3

Train
counts

PHILIPS 0.4 0.379132 0.391534 0.4 40 12 16 12 157
SIEMENS 0.555556 0.498575 0.555556 0.555556 9 2 4 3 47

Table 4.80: CatBoost model using Radclind data and DWI features performance on sub cohorts of the hold-
out test set, divided by scanner manufacturer.

Index lesion
location PZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 1

Test counts
target 2

Test counts
target 3

Train
counts

1 0.434783 0.407855 0.427323 0.434783 46 13 20 13 193
0 0.333333 0.37037 0.666667 0.333333 3 1 0 2 13

Table 4.81: CatBoost model using Radclind data and DWI features performance on sub cohorts of the hold-
out test set, divided by presence/absence of lesion in the peripheral zone.

Index lesion
location TZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 1

Test counts
target 2

Test counts
target 3

Train
counts

0 0.409091 0.382223 0.410349 0.409091 44 12 18 14 179
1 0.6 0.530303 0.366667 0.6 5 2 2 1 27

Table 4.82: CatBoost model using Radclind data and DWI features performance on sub cohorts of the hold-
out test set, divided by presence/absence of lesion in the transitional zone.

Index lesion
location CZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 1

Test counts
target 2

Test counts
target 3

Train
counts

0 0.425532 0.401386 0.426821 0.425532 47 13 19 15 190
1 0.5 0.416667 0.25 0.5 2 1 1 0 16

Table 4.83: CatBoost model using Radclind data and DWI features performance on sub cohorts of the hold-
out test set, divided by presence/absence of lesion in the central zone.

Index lesion
location AS

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 1

Test counts
target 2

Test counts
target 3

Train
counts

0 0.418605 0.392187 0.430523 0.418605 43 12 18 13 187
1 0.5 0.469697 0.388889 0.5 6 2 2 2 19

Table 4.84: CatBoost model using Radclind data and DWI features model performance on sub cohorts of
the hold-out test set, divided by presence/absence of lesion in the anterior stroma.

country accuracy fbeta 2 precision recall
Test

counts
Test counts
target 1

Test counts
target 2

Test counts
target 3

Train
counts

Portugal 0.4375 0.412941 0.433824 0.4375 48 13 20 15 197
Spain 0 0 0 0 1 1 0 0 9

Table 4.85: CatBoost model using Radclind data and DWI features performance on sub cohorts of the hold-
out test set, divided by country of origin of the data.

4.2.14 Use Case 8

Exploratory Data Analysis of Clinical variables

Fig. 4.55 shows the distribution of each clinical variable used in UC8. No patient appears to have the index
lesion located in the CZ, so this variable is not informative. Regarding the remaining variables, there is none
where the distinction between the two classes is clear.
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Model Performance

Fig. 4.56 shows the cross-validation ROC-AUC model performance for the 32 models trained for UC8. Here,
we see the performance is enhanced in the presence of deep features (hybrid and raddeep datasets). Even
though the differences are not extensive, the highest performance is achieved with a raddeep ADC dataset.

Model Selection

Given the results of the last section, we decided to move forward analyzing a raddeep model using ADC
sequences and excluding ERC patients. The model’s cross-validation performance at a 0.5 probability de-
cision threshold is shown in Table 4.86 and its confusion matrix, learning curve, precision-recall curve and
calibration plot are displayed in Fig. 4.57.

raddeep uc8 ADC noERC SGD
AUC 0.6905
Sensitivity/Recall/TPR 0.6667
Specificity/TNR 0.7143
Precision/PPV 0.15
F1 0.2444
F2 0.3935
Cohen’s Kappa 0.1361

Table 4.86: Multi-metric cross-validation performance of the raddeep uc8 ADC noERC SGD model at 0.5
probability threshold.

Given the model’s perfect performance on the train set, the fairness analysis was not carried out, since
the subcohort performance would also be perfect.

Explainability analysis

Fig. 4.58 shows the SHAP analysis performed on the raddeep uc8 ADC noERC SGD model.

Fairness and sub-cohort analysis

Tables 4.87 through Table 4.91 show the fairness analysis for model raddeep uc8 ADC noERC SGD. Though
it is difficult to conclude about the performance on the smaller subcohorts, we can say the model generalized
relatively well to PHILIPS data, with a drop in accuracy of around 6% (Table 4.87). Regarding, index
lesion location (Tables 4.88 to 4.90) and country of origin (Table 4.91), the model shows minimal drops
in performance (1.5% - 6% reduction in accuracy) from the largest cohorts seen in training to the least
represented ones. We also observe a rise in accuracy, but only on subcohorts composed uniquely of the
majority class label. This is the case for GE MEDICAL SYSTEMS (Table 4.87), index lesions located in
the anterior stroma (Table 4.90) and cases from Turkey (Table 4.91).

manufacturer accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

SIEMENS 0.7273 0.4273 0.1769 0.6667 81 73 8 81
PHILIPS 0.6667 0 0 0 10 10 0 10

GE MEDICAL
SYSTEMS

1 0 0 0 1 1 0 1

Table 4.87: raddeep uc8 ADC noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by scanner manufacturer.
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index lesion
location PZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

1 0.7237 0.4074 0.1619 0.6667 58 54 4 58
0 0.7071 0.3704 0.1333 0.6667 34 30 4 34

Table 4.88: raddeep uc8 ADC noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the peripheral zone.

index lesion
location TZ

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7339 0.4257 0.1742 0.6667 74 68 6 74
1 0.6714 0 0 0 18 16 2 18

Table 4.89: raddeep uc8 ADC noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the transitional zone.

index lesion
location AS

accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

0 0.7059 0.4125 0.1667 0.6667 82 74 8 82
1 0.8333 0 0 0 10 10 0 10

Table 4.90: raddeep uc8 ADC noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by presence/absence of lesion in the anterior stroma.

country accuracy fbeta 2 precision recall
Test

counts
Test counts
target 0

Test counts
target 1

Train
counts

Netherlands 0.7037 0.4273 0.1769 0.6667 75 67 8 75
Portugal 0.7222 0 0 0 14 14 0 14
Turkey 1 0 0 0 3 3 0 3

Table 4.91: raddeep uc8 ADC noERC SGD model cross-validation performance on sub cohorts of the train
set, divided by country of origin of the data.
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(a) Calibration plots for the WG models with the highest performance in internal
and external validation.

(b) Calibration plots for the Tumor models with the highest performance in inter-
nal and external validation.

(c) Variable importance of the best radiomic models for the tumor and the WG.

Figure 4.17: Calibration plots for the (a) WG’s best performing model in internal (left) and external (right)
sets, (b) tumor’s best performing model in internal (left) and external (right) sets and (c) The variable
importance of tumor (left) and WG (right).
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Figure 4.18: Distribution of clinical variables according to development of metastatic disease whithin 6
months.
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Figure 4.19: Cross-validation ROC-AUC model performance of 32 models trained to predict metastatic
development in UC3. The observations are color coded according to the inclusion or exclusion of endorectal-
coil exams: all patients in green; excluding ERC cases in pink.
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Figure 4.20: Analysis of the hybrid uc3 DWI noERC SGD model in terms of cross-validation confusion
matrix, learning curve, precision-recall curve and calibration plot.

Figure 4.21: SHAP values contribution of features for hybrid uc3 DWI noERC SGD model.
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Figure 4.22: Distribution of clinical variables according to biochemical recurrence.
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Figure 4.23: Cross-validation and hold-out test set ROC-AUC model performance of 32 models trained
to predict biochemical recurrence in UC5. The observations are color coded according to the inclusion or
exclusion of endorectal-coil exams: all patients in green; excluding ERC cases in pink.
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Figure 4.24: Hold-out test set receiver
operator characteristics curve of the hy-
brid uc5 T2 noERC CatBoost model.

hybrid uc5 T2 noERC CatBoost
AUC 0.8188
Sensitivity/Recall/TPR 0.8571
Specificity/TNR 0.5854
Precision/PPV 0.2609
F1 0.4000
F2 0.5882
Cohen’s Kappa 0.2272

Table 4.55: Multi-metric
performance of the hy-
brid uc5 T2 noERC CatBoost
model at 0.0528 probability
threshold.

Figure 4.25: Analysis of the hybrid uc5 T2 noERC CatBoost model in terms of confusion matrix, learning
curve, precision-recall curve and calibration plot.
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Figure 4.26: SHAP values contribution of features for hybrid uc5 T2 noERC CatBoost model.

Figure 4.27: SHAP values contribution of the categorical feature extraprostatic extension for the hy-
brid uc5 T2 noERC CatBoost model output.

Figure 4.28: SHAP values contribution of the categorical feature resection margin status for the hy-
brid uc5 T2 noERC CatBoost model output.
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Figure 4.29: Cross-validation and hold-out test set ROC-AUC model performance of 32 models trained to
predict biochemical recurrence in UC5 (pre-surgery context). The observations are color coded according to
the inclusion or exclusion of endorectal-coil exams: all patients in green; excluding ERC cases in pink.
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Figure 4.30: Hold-out test set receiver operator
characteristics curve of the hybrid uc5 T2 CatBoost
model.

hybrid uc5 T2 CatBoost
AUC 0.6899
Sensitivity/Recall/TPR 0.7143
Specificity/TNR 0.5366
Precision/PPV 0.2083
F1 0.3226
F2 0.4808
Cohen’s Kappa 0.1250

Table 4.61: Multi-metric
performance of the hy-
brid uc5 T2 CatBoost model
at 0.0038 probability threshold.

Figure 4.31: Analysis of the hybrid uc5 T2 CatBoost model in terms of confusion matrix, learning curve,
precision-recall curve and calibration plot.
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Figure 4.32: SHAP values contribution of features for hybrid uc5 T2 CatBoost model.

Figure 4.33: Distribution of clinical variables according to biochemical recurrence.
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Figure 4.34: Cross-validation ROC-AUC model performance of 32 models trained to predict biochemical
recurrence in UC6. The observations are color coded according to the inclusion or exclusion of endorectal-
coil exams: all patients in green; excluding ERC cases in pink.
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Figure 4.35: Analysis of the raddeep uc6 DWI noERC SGD model in terms of cross-validation confusion
matrix, learning curve, precision-recall curve and calibration plot.

Figure 4.36: SHAP values contribution of features for raddeep uc6 DWI noERC SGD model.
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(a) Rectal Toxicity (b) Urinary Toxicity

Figure 4.37: Confusion Matrices from the optimal models for Rectal and Unrinary Toxicity.

a) b)

c) d)

Figure 4.44: General overview of ROC-AUC (a and b) and Brier scorer (c and d) performance for the
different predictive models. a and c refer to the cross-validation results, while b and d refer to the holdout
results.
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a) b)

c) d)

Figure 4.45: Mean cross-validation ROC-AUC (a and b) and brier scorer (c and d) performance for 48
models trained to predict quality of life in UC7b. Results are stratified by dataset and predictive model
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a) b)

c) d)

Figure 4.46: Mean holdout ROC-AUC (a and b) and brier scorer (c and d) performance for 48 models
trained to predict quality of life in UC7b. Results are stratified by dataset and predictive model
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Figure 4.47: Multiclass confusion matrix. Figure 4.48: Multiclass ROC-AUC curves threshold.
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Figure 4.49: SHAP values contribution of features for CatBoost model using Radclind data and DWI features
class1 output.

Figure 4.50: SHAP summary plot of the impact of categorical variables on the prediction of class 1.

Figure 4.51: SHAP values contribution of features for the CatBoost model using Radclind data and DWI
features class2 output.
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Figure 4.52: SHAP summary plot of the impact of categorical variables on the prediction of class 2.

Figure 4.53: SHAP values contribution of features for the CatBoost model using Radclind data and DWI
features class3 output.

Figure 4.54: SHAP summary plot of the impact of categorical variables on the prediction of class 3.
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Figure 4.55: Distribution of clinical variables according to the stay in the active surveillance program
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Figure 4.56: Cross-validation ROC-AUC model performance of 32 models trained to predict early withdrawal
from the active surveillance program in UC8. The observations are color coded according to the inclusion
or exclusion of endorectal-coil exams: all patients in green; excluding ERC cases in pink.
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Figure 4.57: Analysis of the raddeep uc8 ADC noERC SGD model in terms of cross-validation confusion
matrix, learning curve, precision-recall curve and calibration plot.

Figure 4.58: SHAP values contribution of features for raddeep uc8 ADC noERC SGD model.
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4.3 Discussion

In this work, we report the use of bi-parametric MRI whole-prostate-gland radiomics analysis for seven
separate use cases: the prediction of disease aggressiveness (UC2), development of metastasis within 6 months
(UC3), biochemical recurrence risk after prostatectomy or radiation therapy (UC5 and UC6, respectively),
toxicity after radiation therapy (UC7a), quality of life after prostatectomy (UC7b) and early withdrawal
from the active surveillance program (UC8).

As is well known, radiomics analysis require segmentations of the target volumes of interest. These can
be performed manually, by an expert radiologist, in an automated fashion, by deep learning models, or semi-
automatically, where the masks are AI-generated and corrected where needed by an expert radiologist. Due
to the significant size of our dataset, the whole gland segmentation masks were generated automatically for
T2W sequences by an inhouse trained software. For DWI, however, this was not possible so an alternative
approach was selected: to coregister the T2W and DWI volumes and apply the transformation matrix
to the previously automatically generated mask. The segmentation quality assessment revealed the T2W
segmentations to be of extremely high quality, however, this was not the case for DWI. Further analysis
revealed that the lower quality was mostly due to “mismatches”, defined by the radiologist as an “apparent
translation of the mask from the gland location”, which revealed some imperfections in the coregistration
stage of the pipeline. Despite this apparent lower quality, the radiomic features extracted proved useful,
especially for use cases 3, 6, 7b and 8, where DWI or ADC models were ultimately preferred.

Regarding UC2, the known lack of concordance in the literature for the definition of clinically significant
cancer (further discussed in Chapter 5 section 5.1.3), lead us to train three binary classification models
(ISUP=1 vs ISUP=2,3,4,5; ISUP=1,2 vs ISUP=3,4,5; and ISUP=1,2,3 vs ISUP=4,5) and one multiclass
classification model (ISUP=1 vs ISUP=2,3 vs ISUP=4,5. Interestingly, for all ground truth definitions, the
highest performing models combined information from the three MRI volumes (T2W, DWI and ADC) to
arrive at a decision. The preferred data type was pure radiomics features, with the exception of ISUP=1,2 vs
ISUP=3,4,5, where the combination of radiomics and clinical data outperformed the pure radiomics model.
This ground truth definition also proved to be the hardest to model (lowest performance out of the three
classifiers), which was expected given the known mixture of clinically significant and insignificant cases in the
ISUP classifications 2 and 3, corresponding to GS = 3 + 4 and GS = 4 + 3, respectively. The explainability
analysis revealed that the three models relied heavily on radiomic features extracted from wavelet filters,
which are known for their relative invariability across volumes with big differences in intensity values, such as
those found in different scanner manufacturers. This was further supported by the fairness analysis, where it
was found that the models performed the highest with PHILIPS cases, despite not being the most represented
cohort seen during training. This was followed by SIEMENS (the largest fraction of the training examples)
and GE (the smallest fraction of the training examples). Despite this, for the first ground truth definition
(ISUP=1 vs ISUP=2,3,4,5), the model generalized very well to GE cases and had the lowest performance
with exams from SIEMENS scanners. Still regarding the second ground truth definition (ISUP=1,2 vs
ISUP=3,4,5), it is of note that the model relied heavily on clinical information, namely baseline PSA and
age, both positively associated with the aggressive output, and imaging information, namely PIRADS and
presence of index lesion in the peripheral zone, again both showing a positive association to the aggressive
output.

Use case 3, prediction of metastatic development within 6 months, was the smallest use case, with only 78
complete cases. While for most use cases, the most significant reduction in the number of patients happened
due to unavailability of DWI or ADC volumes, for UC3 the reduced dataset size is mostly attributable
to ground truth unavailability. It was found that for around 30% of the original number of patients, the
reported metastatic status was ”MX”, corresponding to an inability to evaluate the metastatic status by the
radiologist. These cases were treated as having a missing ground truth and were removed from the analysis.
Despite the small dataset, the selected model achieved a 3-fold cross-validation AUC of 0.8077. Surprisingly,
the model was very good at identifying the minority class (specificity of 1.0), corresponding to no metastasis
after 6 months, but not so great with the majority class (sensitivity 0.6155), corresponding to metastatic
development within 6 months. Even though the model was trained with a hybrid dataset (radiomics, clinical
and deep features), no clinical variables were found among the 20 most significant to the model’s output,
relying heavily on deep features. Regarding the subcohort analysis, the model generalized well to GE exams,
but the performance dropped around 15% for SIEMENS.
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Use case 5 related to the prediction of biochemical recurrence after radical prostatectomy surgery. For
this use case, two approaches were taken: pre-surgery prediction and post-surgery prediction. The latter
including clinical variables reported during or after the radical prostatectomy surgery itself. Interestingly, for
both scenarios, a hybrid T2 model was selected, emphasizing the importance of this sequence in biochemical
recurrence prediction. Also in agreement were the explainability analyses, with both models relying heavily
on clinical information such as gleason score of the most prominent histological pattern, baseline PSA level
and ISUP grade, all positively associated with the biochemical recurrence output. The post-surgery classifier
additionally utilized the variables presence of extraprostatic extension and resection margin status, also with
a positive influence on the biochemical recurrence output, which can explain the higher performance of the
post-surgery model (0.82 AUC), when compared with the pre-surgery classifier (0.69 AUC).

Use case 6 aimed to predict biochemical recurrence after radiation therapy. The selected model achieved
a 3-fold cross-validation AUC of 0.8393, and sensitivity and specificity of 0.8056 and 0.8730, respectively.
The explainability analysis, showed the model relied heavily on shape features, namely: Sphericity, Max-
imum3DDiameter, Flatness, Maximum2DDiameterRow and Elongation. This suggests that the shape of
the prostate gland is highly associated with the success of radiation therapy. Namely, high values of gland
sphericity, elongation and flatness, and low values of Maximum3DDiameter and Maximum2DDiameterRow
are associated with recurrence.

Regarding UC7b, the epic26 continuous values were divided into 3 bins, representing good, average and
high quality of life. With these new labels, a multiclass classification approach was followed. The preferred
model, which tried to balance both AUC classification performance and the Brier score calibration error, was
the CatBoost model which used Radclin data and DWI radiomic features. However, it was shown that due
to the class imbalance, this model tended to classify the majority of samples as the average class. Taking
this into account, possible paths forward include calibrating the models through conformal prediction, as
well as turning this multiclass problem into an ordinal classification problem.

Use case 8 related to the prediction of an early withdrawal from the active surveillance program. This
was the only use case where an ADC model was ultimately selected. Here, we achieved an AUC of 0.6905,
and 0.6667 and 0.7143 sensitivity and specificity, respectively. In concordance with the other small use cases,
the fairness analysis was mostly inconclusive due to the low representation of minority cohorts.

Overall, despite the significant data size of some use cases, the learning curves demonstrated there still
was learning capacity. The discrepancy between training and cross-validation performance was as high as
28% for UC2 (ISUP=1,2 vs ISUP=3,4,5) and UC8, while the lowest discrepancy was found in UC5, where
the cross-validation performance was only 12% below training performance. Consistently across the different
use cases, the hold-out test set performance was higher than the corresponding cross-validation performance.
This can be explained by the relatively low number of folds used in the cross-validation stage, which led to
models trained with fewer data. In contrast, the hold-out test set performance reflects models trained on the
full train set, which was beneficial for model performance. Another possible explanation would be hold-out
test set selection bias. Even though the held-out patients were randomly selected from the entire pool of
patients, it is possible that, by chance, patients that were ”easier” for the model to classify were selected.
However, given that this phenomenon was observed in all use cases it is much more likely that the root cause
was a methodological aspect, that all use cases have in common, such as the cross-validation strategy.

Several limitations can be identified in the body of work. The first and largest limitation was the very
reduced dataset size of some use cases, the most extreme case being UC3. Secondly, the same methodology (or
with only slight deviations) was applied to the different use cases. This is not ideal, as different classification
problems might thrive with different learning strategies. With more time other methodologies could be
explored. Thirdly, the lack of lesion segmentation masks made it impossible to explore lesion radiomics in
addition to the whole-gland radiomics results presented.

.
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Deep Learning Master Models

Chapter summary

ProstateNet constitutes a sizeable dataset, providing ample opportunities in terms of developing modelling
strategies. This section is thus split into several distinct sections, each of which is relatively self-contained
and focuses on a specific modelling aspect. We note that each one of these sections was carried out by
different partners (Table 5.1) and focuses on either classification (C) or segmentation/detection (S):

• On the impact of target definition and additional variables on UC2 (FCHAMPALIMAUD;
section 5.1) — in this section, we investigated how different models and features contribute towards
the performance of aggressiveness classification models. Additionally, we consider how detailing dif-
ferent targets — as specified in chapter 4 — could have an impact on this. Particularly, the main
question was one concerning the definition of aggressive prostate cancer. We consider three distinct
alternatives: ISUP=1 vs. ISUP=2,3,4,5, ISUP=1,2 vs. ISUP=3,4,5 and ISUP=2,3 vs. ISUP=4,5. We
train different DL models (VGG, ConvNeXt, ViT and factorized ViT) and test whether the inclusion
of clinical and demographic variables (PSA, age, PI-RADS). Finally, a fairness analysis was performed
to identify possible biases in our modelling approach. Following this study, we finally created a model
ensemble to predict PCa risk between low (ISUP=1), intermediate (ISUP=2,3) and high (ISUP=4,5)
and tested whether conformal prediction could be used to improve prediction (C);

• On the impact of cropping strategies in UC2 and UC5 (CNR; section 5.2) — here, we
investigated how different cropping strategies (central crop and adaptive whole prostate gland cropping)
affect the performance of deep learning models in both UC2 and UC5. Additionally, we also investigated
how the amount of training data and different DL models impact performance (C);

• On the differences between supervised and unsupervised learning strategies for UC1
(FORTH; section 5.3) — here, the performance of different learning paradigms (supervised and
unsupervised) was inspected as potential solutions for UC1 (determining whether an individual has a
lesion), while also investigating different architectures. Additionally, lesion segmentation models with
different architectures were also tested in order to determine how these specifications have an impact
on segmentation and detection performance (C+ S);

• On the performance of 2D & 3D models on index lesion segmentation with a curated
dataset (ADVANTIS; section 5.4) — here we tested how the use of two- or three-dimensional
inputs to neural network models impacts the performance of segmentation models; this helped us
better understand more precisely whether there are important relationships between different slices in
the same series that can help DL models better predict lesion segmentation maps (S);

• On the impact of mpMRI sequence combination to automatically detect prostate cancer
(FPO; section 5.5) — here, we investigated how different ways of combining mpMRI data can lead
to improved performance in lesion segmentation and detection models by considering different feature
fusion paradigms — using the mpMRI sequences as the input or processing each sequence separately
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and fusing their features at later learning stages. This helped us understand how fusing features at
different levels can impact performance (S);

• Validation of ProCAncer-I prostate segmentation tool (QUIBIM; section 5.6 — here, the
performance of the QUIBIM prostate zone segmentation tool was assessed on novel ProstateNet data.
Additionally, new 2D and 3D models were trained and tested to further improve on the performance of
prostate zone segmentation, considering the presence of different types of data (i.e. with and without
endorectal coil) (S);

• Effect of dataset characteristics on segmentation performance (FCHAMPALIMAUD; sec-
tion 5.7 — here, we used different datasets — ProstateX [5], Prostate158 [3] and ProstateNet — to
determine how using ProstateNet could impact the performance of whole prostate gland, prostate zone
and lesion segmentation models. In particular, we were interested in showing how annotations which
are both more diverse and more numerous — as is the case of ProstateNet — can be determining in
improving the performance of segmentation and lesion detection models (S);

• ProstateNet Lesion Segmentation with Deep Learning (HULAFE; section 5.8 — here, the
focus is on performing lesion segmentation on T2-weighted axial images sourced from the ProstateNet
dataset using deep learning techniques with Tensorflow. The primary objective involves developing
and refining models to accurately identify and delineate lesions within the prostate gland. The data
extraction process involves selecting 419 T2-Ax segmented monochromatic series from the ProstateNet
dataset, which underwent further processing and refinement. Preprocessing steps included analyzing
spatial resolutions, standardizing dataset spacing, and implementing image cropping, denoising, and
intensity normalization. For the 2D model, a sequence of three frames was used to predict a final 2D
segmentation mask, while for the 3D model, a frame depth of 16 was chosen to ensure consistent input
size. The architecture and specifics of the 2D and 3D prediction models are detailed as well as the
issues regarding prediction in the 2D models and over-fitting, and the strategies employed to mitigate
it, such as regularization techniques and adjustments in layer complexity (S).

In more concrete terms, we present here work comprising seven distinct and self-contained analyses, each
of which presents a series of models. In total, six partners were responsible for developing the work presented
here.

Section Partner
On the impact of target definition and additional variables on UC2 FCHAMPALIMAUD
On the impact of cropping strategies in UC2 and UC5 CNR
On the differences between supervised and unsupervised learning strategies for UC1 FORTH
On the performance of 2D & 3D models on index lesion segmentation with a curated dataset ADVANTIS
On the impact of mpMRI sequence combination to automatically detect prostate cancer FPO
Validation of ProCAncer-I prostate segmentation tool QUIBIM
Effect of dataset characteristics on segmentation performance FCHAMPALIMAUD
ProstateNet Lesion Segmentation with Deep Learning HULAFE

Table 5.1: List of sections in this chapter and the responsible partners.

5.1 On the impact of target definition and additional variables on
UC2

5.1.1 Methods

Data description

We used the retrospective cases available through ProstateNet until March 13th, 2023 (8,891 cases), of
which 5,478 were specific for use case 2. Using an automated DICOM-to-NIFTI conversion pipeline, we
obtained a total of 5,352 PCa studies with any relevant sequence. Of these, 4,975 had T2-weighted sequences
(T2w), whereas 4,574 had all three sequences for multiparametric MRI (mpMRI) – T2w, diffusion weighted
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imaging sequences (DWI), and apparent diffusion coefficient sequences (ADC). Given that we are interested in
assessing the impact of clinical/demographic data – prostate specific antigen (PSA) and age at baseline – we
further calculate the amount of sequences with clinical/demographic data (4,764 studies with T2w and 4,380
complete mpMRI studies). Using the set of studies with all 4,380 mpMRI studies and clinical/demographic
data, we constructed 5 non-overlapping validation folds using 85% of the data (n = [741, 744, 747, 746, 745])
and use the remaining 15% as a hold-out test set (n=657). Validation folds and the hold-out test set were
obtained by considering ISUP scores (1, 2, 3, 4, 5), scanner manufacturer and endorectal coil usage as
stratifying variables.

Three different ISUP-based target variables were considered:

• Low vs. possibly high — ISUP 1 vs. ISUP 2-5 – a clinical application of this would enable the
stratification of patients considering a low-risk class (ISUP=1) and a possibly high risk class (ISUP=2-
5)

• Possibly low vs. high — ISUP 1-2 vs. ISUP 3-5 – a clinical application of this would enable
the stratification of patients considering a possibly low-risk class (ISUP=1,2) and a high risk class
(ISUP=3-5)

• Intermediate vs. high — ISUP 2-3 vs. ISUP 4-5 – a clinical application of this would enable
the stratification of patients considering an intermediate risk class (ISUP=2,3) and a high risk class
(ISUP=4,5)

The complete training set and hold-out test set composition is provided in Table 5.2. We note once again
here that the data was split in such a way that an approximately equal proportion of all ISUP-manufacturer
intersections is present across training and hold-out test sets.

Manufacturer ISUP=1 ISUP=2 ISUP=3 ISUP=4 ISUP=5 Total
Training set (cross-validation)
GE (ERC) 143 (28.9%) 191 (38.6%) 88 (17.8%) 51 (10.3%) 22 (4.4%) 495
GE (no ERC) 216 (22.7%) 417 (43.9%) 170 (17.9%) 55 (5.8%) 92 (9.7%) 950
Philips 550 (37.0%) 525 (35.3%) 251 (16.9%) 87 (5.8%) 75 (5.0%) 1488
Siemens 515 (24.5%) 804 (38.2%) 342 (16.3%) 185 (8.8%) 256 (12.2%) 2102

Hold-out test set
GE (ERC) 14 (31.8%) 16 (36.4%) 7 (15.9%) 5 (11.4%) 2 (4.5%) 44
GE (no ERC) 17 (19.8%) 37 (43.0%) 17 (19.8%) 6 (7.0%) 9 (10.5%) 86
Philips 84 (37.5%) 81 (36.2%) 36 (16.1%) 13 (5.8%) 10 (4.5%) 224
Siemens 69 (21.8%) 124 (39.2%) 55 (17.4%) 25 (7.9%) 43 (13.6%) 316

Total
GE (ERC) 157 (29.1%) 207 (38.4%) 95 (17.6%) 56 (10.4%) 24 (4.5%) 539
GE (no ERC) 233 (22.5% 454 (43.8%) 187 (18.1%) 61 (5.9%) 101 (9.7%) 1036
Philips 634 (37.0%) 606 (35.4%) 287 (16.8%) 100 (5.8%) 85 (5.0%) 1712
Siemens 584 (24.2%) 928 (38.4%) 397 (16.4%) 210 (8.7%) 299 (12.4%) 2418

Table 5.2: Data distribution across different ISUP scores and manufacturers.

Data preparation

All sequences were resampled to 0.5x0.5x3.0mm spacing and a 128x128x24 voxel central crop was extracted,
similar to previous studies on PCa aggressiveness prediction using multiparametric MRI data [66]. T2w and
DWI were individually normalized to values between 0 and 1, while ADC were first converted to mm2/s (if
necessary) and multiplied by 1

3 . This enables us to keep the dynamic value range for ADC while ensuring that
values are approximately between 0 and 1. In models using more than one sequence all three sequences are
concatenated in the 0-th dimension (the input for a three sequence model is 3x128x128x24 voxels). Additional
models were trained using a 192x192x24 voxel-size crop to confirm that a smaller size crop contains the
relevant predictive signal (this assessment consists of comparing the performance of the 128x128x24 crop
with that of the 192x192x24 crop).
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Model
Batch size

(per GPU)
Warmup
epochs

Number of
epochs

Learning
rate

Weight
decay

Dropout
rate

VGG 64 (16)

10 100
5 * 10-4 0.005

0.1
ConvNeXt 128 (32)

ViT 64 (32)
5 * 10-5 0.1

F. ViT 64 (32)

Table 5.3: Training hyperparameters for deep learning networks (F. Vit is Factorized ViT).

Deep learning model specification

We trained 4 distinct 3D deep learning architectures – a VGG-based model (consisting only of convolutions,
Gaussian error linear unit activations, batch normalizations and max-pooling operations) [80], a ConvNeXt
model [51], a 3D vision transformer (ViT) model [21] and a variation of the 3D ViT that separates within
and between slice processing (factorized ViT). General training details are provided in Table 5.3. All models
output a probability value between 0 and 1 – 0 if it belongs to the lower risk class, 1 if it belongs to the
higher risk class. Particular details about each architecture are provided below:

• VGG. The VGG model was composed of 3 blocks with depth d following a conv(d)-gelu-batchnorm-
conv(d*2)-gelu-batchnorm structure. In other words, for a given depth d, each element is passed
through a convolution (conv), a Gaussian error linear unit (gelu), a batch normalization (batchnorm)
and this process is repeated with the double of the depth. This is followed by a 2x2x2 max-pooling
operation and repeated three times with depths [64,128,256]. After the last pooling operation, a
global max-pooling operation is applied to the image, yielding a 512-dimension vector. A multilayer
perceptron (with structure [512,512,512,1] and gelu activations and batchnorm) is then applied to this
feature vector, yielding a uni-dimensional prediction.

• ConvNeXt. For the ConvNeXt model, we used the block architecture specified in the original paper
[51] with no modifications. This block is repeated 4 times with depths [32, 64, 128, 256] and the output
vector with size 512 is then used as the input to a multilayer perceptron (with structure [512, 512, 512, 1]
and gelu activations and batchnorm).

• ViT and factorized ViT. For the ViT, we rely on replicating the original implementation [21] with
no modifications. We use an 8 ViT block structure with a convolutional embedding size of 768 and 12
heads. For the multilayer perceptron structure of each block we used a [768, 2048, 768] structure.

Data augmentation. During training, images are randomly augmented in real-time. For this, we used a
wide array of augmentations from MONAI [61], namely:

• Identity (no transform)

• Random contrast adjustment (gamma = [0.5, 1.5])

• Random standard shift in intensity (range = [−0.1, 0.1])

• Random shift in intensity (range = [−0.1, 0.1])

• Random Rician noise (std = 0.02)

• Random bias field (degree = 3; T2W-only)

• Affine transforms (translation range = [4, 4, 1], rotation range = π
16 ,

π
16 ,

π
16 ])

• Horizontal flip

Each study is augmented with one of the above-mentioned transforms, which is picked at random with
uniform probability (this is a protocol similar to that proposed as TrivialAugment [63]).
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Optimization. Models were trained using the AdamW optimizer [52], a modification to the Adam opti-
mizer that corrects the application of weight decay with a standard cross-entropy loss. To account for the
class imbalance, we calculate a weight for the loss such that each positive instance is multiplied by pos/neg,
where pos and neg are the number of positive and negative cases, respectively. This is performed at the
beginning of each fold.

Inclusion of other variables. As mentioned above, we trained models considering 4 distinct deep-learning
architectures. Additionally, we also trained models using only T2w and using T2w, DWI and ADC. Finally,
we also assessed how clinical/demographic/radiological features – PSA, age at baseline, and PI-RADS –
could have an effect on prediction. This assessment was performed in two different manners:

• Retraining the models and concatenating the standardized age and PSA – we call this approach the
“hybrid model” approach

• Extracting the probability scores from each sequence-only deep-learning model and calculating a bi-
nomial linear model which combines this with PSA and age at baseline. We call this approach the
binomial linear model approach. Given that this warrants additional flexibility and reduced computa-
tional costs, we also train models which make use of PI-RADS.

In total, we train 4 architectures with 2 distinct sequence inputs and with the inclusion/exclusion of clini-
cal/demographic/radiological features. Each of these 16 combinations is trained using 5-fold cross validation
for a total of 80 training runs.

Model evaluation. Each model is evaluated with its AUC using 5-fold cross-validation according to the
best observed AUC during training and its generalizability is assessed using the hold-out test set. To assess
how models perform on different subsets, we use the hold-out test set with different data subsets.

Sensitivity analysis and learning curves

To understand how crop size impacts the performance of each model, we train the best performing model
using a larger crop size (192 × 192 × 24). Additionally, to understand how the amount of data impacts
model performance we train the best performing model using different fractions of the total amount of data
– 0.1, 0.3, 0.5 and 0.7; this allows us to build learning curves, which describe how the amount of data has
an impact on performance.

Multi-dimensional data visualization and dataset distances

To understand how the multi-dimensional features of the best performing model are distributed, we use
t-SNE [88] on the last convolutional layer of our models for the complete hold-out test set. This technique
allows us to have a two-dimensional representation of a multi-dimensional space.

Model ensembling

To study how binary models can be combined into an ensemble to produce a multiclass model, we ensemble
the low vs. possibly high and the intermediate vs. high models to produce a three class classifier — predicting
ISUP=1 vs. ISUP=2,3 vs. ISUP=4,5. To do so, we use the same folds and the mpMRI VGG model, freeze
the encoders from these tasks and concatenate their outputs (512 + 512 = 1024 total features). Then, a
GeLU activation with linear normalization and a 25% dropout is followed by a linear layer to reduce these
features to 512. This final set of features is used to classify instances between the three aforementioned
classes.

As extensions to this, two minor adaptation modules are tested:

• Low rank adaptation module (LoRA) — a module which linearly converts features before and after
the application of the last VGG block (loosely inspired on the work on LoRA in large language models
[32] and on the batch ensemble operator [93])
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• Squeeze and excite (SAE) — a CNN-specific attention mechanism which reduces features both in
terms of space and feature space in order to learn which parts of the volume/feature space are the
most important. The SAE module is applied to the output of the frozen binary class VGG encoders
[33].

These models are compared against a more naive approach — a simple multiclass VGG — using one-
versus-one multiclass AUC. Additionally, the inclusion of sensitive variables (lesion location, age, PSA, PI-
RADS) is also tested in a simple post-hoc linear model. Finally, a conformal prediction method — adaptive
prediction sets (APS) [74] — is tested to demonstrate how these methods, while reducing the prediction
coverage, lead to an improvement in performance. Conformal prediction methods introduce a notion of
uncertainty into ML models, making it possible to reject predictions if high-uncertainty is detected. APS, in
particular, defines, for each sample, a set of predictions (in this case one of ISUP=1, ISUP=2,3 or ISUP=4,5)
by considering the cumulative (and descending order-sorted) output probabilities (COP): the prediction set
is defined with the COP index at which it crosses an inferred threshold.

A nominal example for APS may be helpful, considering probabilities [0.1, 0.5, 0.4] for classes [0, 1, 2]
and a threshold t = 0.8. First, the COP is calculated as COP = [0.5, 0.9, 1.0]. It is easily verifiable that 1
(considering a 0-index system) is the minimum index at which the COP crosses the threshold, corresponding
to a prediction set = [1, 2].

5.1.2 Results

Performance of sequence-only models

In general, CV performance highlights two specific trends — T2W+DWI+ADC (mpMRI) models outperform
models using only T2W sequences, and VGG-based models generally perform better than other architectures
(Figure 5.1A), trends which remain consistent upon evaluation on a hold-out test set for the low vs. possibly
high ({1} vs. {2,3,4,5}) and possibly low vs. high ({1,2} vs. {3,4,5}) targets (Figure 5.1B; Table 5.4).
Interestingly, the intermediate vs. high target ({2,3} vs. {4,5}) shows relatively good generalization except
for the VGG mpMRI models, which end up performing comparably to the VGG T2W model or to the
ConvNeXt mpMRI model (Figure 5.1C). Indeed, while the better performance of mpMRI models is to be
expected, it was surprising to observe that a simple model architecture (VGG) outperformed more modern
and complex architectures (ConvNeXt, ViT-based models). Additionally, the superiority of CNN-based
models was routinely observed when compared with ViT-based models (Table 5.5), possibly indicative of the
latter requiring more data to achieve comparable performance.

Target Model (other) Mean VGG AUC Mean 2nd best AUC Sequences p-value
ConvNeXt 0.6152 0.5858 T2W 0.0426

1 vs. 2,3,4,5
ConvNeXt 0.7286 0.6774 T2W+DWI+ADC 0.0354
ConvNeXt 0.6167 0.5954 T2W 0.0566

1,2 vs. 3,4,5
ConvNeXt 0.6827 0.6651 T2W+DWI+ADC 0.1606
ConvNeXt 0.6547 0.5969 T2W 0.0159

2,3 vs. 4,5
ConvNeXt 0.6476 0.6437 T2W+DWI+ADC 0.7956

Table 5.4: t-test results comparing sequence-only VGG models with the second best sequence-only model
for each target and sequence input. p-values are highlighted in black if differences in mean are statistically
significant and in grey otherwise.

Performance of hybrid models

Hybrid deep models. Hybrid models (deep-learning models trained using both volumes and age and
PSA as inputs) show comparable trends to sequence-only models, including the lack of generalization for
VGG mpMRI models (Figure 5.2). However, specific trends, particularly those comparing architectures, are
not as clear (Table 5.6; Table 5.7). When directly comparing sequence-only and hybrid models, there is little
evidence that the inclusion of age or PSA contributes positively towards prediction (Figure 5.3; Table 5.8),
suggesting that either these models are not capable of learning how to combine information from volumes
and from age and PSA, or that there is little else to be learned from these images.
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Figure 5.1: Performance (AUC) for models trained only on sequence data. A: Cross-validated (CV) perfor-
mance. B: Hold-out test set performance. C: Comparison between CV and hold-out test set performance.
In all panels, points represent the average, while lines (horizontal or vertical) represent the standard error
around the mean.

Target Mean CNN AUC Mean ViT AUC Sequences p-value
0.6227 0.5743 T2W 0.0039

1 vs. 2,3,4,5
0.6961 0.6598 T2W+DWI+ADC 0.002
0.6204 0.5660 T2W 0.002

1,2 vs. 3,4,5
0.6731 0.6473 T2W+DWI+ADC 0.0645
0.6457 0.5640 T2W 0.002

2,3 vs. 4,5
0.6890 0.6243 T2W+DWI+ADC 0.0039

Table 5.5: t-test results comparing sequence-only CNN-based models with sequence-only ViT-based models
each target and sequence input. p-values are highlighted in black if differences in mean are statistically
significant and in grey otherwise.
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Figure 5.2: Performance (AUC) for models trained on sequence and MRI and age and PSA. A: Cross-
validated (CV) performance. B: Hold-out test set performance. C: Comparison between CV and hold-out
test set performance. In all panels, points represent the average, while lines (horizontal or vertical) represent
the standard error around the mean.

Target Model (other) Mean VGG AUC Mean 2nd AUC Sequences p-value
Regular ViT 0.6023 0.5979 T2W 0.8444

1 vs. 2,3,4,5
ConvNeXt 0.7129 0.6600 T2W+DWI+ADC 0.056
ConvNeXt 0.6276 0.6231 T2W 0.8787

1,2 vs. 3,4,5
ConvNeXt 0.6796 0.6653 T2W+DWI+ADC 0.3834
ConvNeXt 0.6266 0.6320 T2W 0.8115

2,3 vs. 4,5
ConvNeXt 0.6530 0.6622 T2W+DWI+ADC 0.5168

Table 5.6: t-test results comparing sequence-only VGG models with the second best sequence-only model
for each target and sequence input. p-values are highlighted in black if differences in mean are statistically
significant and in grey otherwise.
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Target Mean CNN AUC Mean ViT AUC Sequences p-value
0.5920 0.5614 T2W 0.1055

1 vs. 2,3,4,5
0.6864 0.6468 T2W+DWI+ADC 0.0059
0.6253 0.5907 T2W 0.1602

1,2 vs. 3,4,5
0.6725 0.6250 T2W+DWI+ADC 0.0039
0.6293 0.5859 T2W 0.1055

2,3 vs. 4,5
0.6576 0.5932 T2W+DWI+ADC 0.002

Table 5.7: t-test results comparing sequence-only CNN-based models with sequence-only ViT-based models
each target and sequence input. p-values are highlighted in black if differences in mean are statistically
significant and in grey otherwise.
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Figure 5.3: Comparison of sequence-only and hybrid models. A: Comparison of cross-validated performance.
B: Comparison of hold-out test set performance. In all panels, points represent the average, while lines
(horizontal or vertical) represent the standard error around the mean.

Hybrid linear models. To better understand the impact of age and PSA, we calculated the non-
normalized probability output (logit) from the deep-learning models and used it as a feature in a simple
linear model with age and PSA. Given the relative flexibility of this modelling strategy, we also tested
how the inclusion of PI-RADS could improve performance. We focused specifically on mpMRI VGG mod-
els and show that these simpler linear models may lead to slightly improved performance when compared
with sequence-only models; however, these differences are all statistically non-significant with relatively wide
performance values, possibly indicating that, while clinical/demographic/radiological features may lead to
improved performance, this should be assessed and determined for each use case.
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Target Sequences Model SO avg. AUC Hybrid avg. AUC p-value
VGG 0.615 0.602 0.365
ConvNeXt 0.586 0.582 0.7696
Regular ViT 0.548 0.598 0.0567

T2W

Factorized ViT 0.513 0.525 0.6224
VGG 0.729 0.713 0.3078
ConvNeXt 0.677 0.660 0.5157
Regular ViT 0.668 0.659 0.5034

1 vs. 2,3,4,5

T2W+DWI+ADC

Factorized ViT 0.646 0.635 0.3359
VGG 0.617 0.628 0.6023
ConvNeXt 0.595 0.623 0.2841
Regular ViT 0.594 0.622 0.3629

T2W

Factorized ViT 0.555 0.559 0.8454
VGG 0.683 0.680 0.8288
ConvNeXt 0.665 0.665 0.9877
Regular ViT 0.620 0.622 0.9092

1,2 vs. 3,4,5

T2W+DWI+ADC

Factorized ViT 0.646 0.628 0.1328
VGG 0.655 0.627 0.2564
ConvNeXt 0.597 0.632 0.0725
Regular ViT 0.574 0.623 0.0453

T2W

Factorized ViT 0.535 0.549 0.5474
VGG 0.648 0.653 0.7072
ConvNeXt 0.644 0.662 0.2379
Regular ViT 0.613 0.597 0.4874

2,3 vs. 4,5

T2W+DWI+ADC

Factorized ViT 0.597 0.589 0.6829

Table 5.8: Comparison of hybrid and sequence-only (SO) model hold-out test set performance.

Target R p-value
{1} vs. {2,3,4,5} 0.774 5.8e-06
{1,2} vs. {3,4,5} 0.520 0.008
{2,3} vs. {4,5} 0.070 0.740

Table 5.9: Association between training data fraction and hold-out test set performance. The p-values
correspond to the Pearson correlation coefficient (R).

Learning curve analysis

Deep-learning models are highly data-dependent. To understand this dependency on our data, we trained
mpMRI VGGmodels on fractions of the total trainign data (0.1, 0.25, 0.5, 0.7) and evaluated them afterwards
on the same validation set. In general, we observe a distinct positive trend when analysing how the amount
of data impacts performance (Figure 5.5). However, this trend is not as evident when considering the test
performance for the intermediate vs. high target (Figure 5.5B) — indeed, while CV performance improves,
test-set performance remains constant for this target, suggesting that more data may not lead to improved
generalisation. For other targets, this trend is clearly positive and there should be a clear performance
benefit in collecting more data (Table 5.9).

Sensitivity analysis to crop size

To estimate if the crop size could have a negative impact on performance by accidentally excluding the
lesion, mpMRI VGG models were trained with a larger crop size (192x192 rather than 128x128). This
analysis shows that performance is nearly identical (Figure 5.6; tbl:deep-crop) — the central crop used for
all models has no significant impact on either target, suggesting that a 128x128 central crop is sufficient to
contain the signal relevant for classification.

Feature representation

To better understand feature distributions, a t-distributed stochastic neighbour embedding (t-SNE) projec-
tion was calculated for the bottleneck features (Figure 5.7A). Upon stratification by risk, it is possible to
see some minimal clustering (Figure 5.7B); however, stratifying by dataset reveals that the high-dimensional
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Figure 5.4: Difference between CV (x-axis) and test (y-axis) performance for hybrid linear models and
sequence-only models for all targets. The first column refers to models incorporating logits, PSA and age,
whereas the second columns refers to models incorporating logits, PSA, age and PI-RADS. Individual points
represent the metric value for each fold, while the large hollow circles represent the average performance.

Target 128x128 avg. AUC 192x192 avg. AUC p-value
{1} vs. {2,3,4,5} 0.729 0.713 0.256
{1,2} vs. {3,4,5} 0.683 0.675 0.480
{2,3} vs. {4,5} 0.648 0.642 0.755

Table 5.10: Comparison of model hold-out test set performance when trained with different crop sizes
(128x128 and 192x192).

structure tends to be more strongly influenced by dataset than by classification ((Figure 5.7B vs. Fig-
ure 5.7C). An additional factor contributing towards the structure of the feature space is the use of an
endorectal coil — in particular, studies performed with endorectal coils tend to have very few neighbouring
studies using no endorectal coil. This highlights an important aspect of these models — not only is there a
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Figure 5.5: Learning curve analysis. A: Learning curve for cross-validated performance. B: Learning curve
for hold-out test set performance. The black points/lines represent the mean/standard error around the
mean, the blue line/grey area represent a linear fit to the plotted data/95% confidence interval for the fit,
respectively.
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Figure 5.6: Sensitivity analysis to size. A: Cross-validation performance. B: Hold-out test set performance.
Points/lines represent the mean/standard error around the mean.
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significant association between features and data providers, the use of endorectal coil also leads to significant
changes in the feature representation of these studies.
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Figure 5.7: t-distributed stochastic neighbour embeddings for all targets. A: Original embeddings. B:
Embeddings stratified by classification (low/high risk is ISUP={1}/{2,3,4,5}, ISUP={1,2}/{3,4,5} and
ISUP={2,3}/{4,5} for each column). C: Embeddings stratified by data provider. D: Embeddings strati-
fied by use of endorectal coil.

Fairness analysis

Models may perform differently depending on different forms and levels of stratification and analysing this
is of great importance — by understanding where different models perform better, it is possible to better
define the cases where they can be applied and generate value. In this section, different stratifying variables
— dataset provider, PI-RADS, PSA quartiles, age quartiles and lesion location (in terms of transversal zone,
peripheral zone, central zone and anterior fibromuscular stroma (TZ, PZ, CZ and AS, respectively) and apex,
middle and base (A, M and B, respectively)) — are analysed for all three target definitions. These results
are displayed in Figure 5.8. To calculate each AUC, the average predictions of the 5 CV folds were calculated
for the hold-out test set for all three targets. 95% confidence intervals for the AUC were calculated using
2,000 bootstrap samples.

Dataset provider. In general, a wide range of performances is observed across datasets, most likely in
association with the relative abundance of cases — as is the case for RADBOUDMC. While some cases
with a relatively small number of cases show considerably good performance (IPC, IDIBGI for the low vs.
possibly high target), we note that their small numbers (no more than 30 cases) should prevent us from
making overarching claims about performance in these centers. While other instances are harder to explain,
the relatively poor performance for FPO is easily explained — FPO is a centre using almost exclusively
endorectal coils in their examinations.

PI-RADS. The best performance is consistently observed in PI-RADS=5. This is not unreasonable — the
expectation is that malignancy is more evident in these cases, which would make the definition of a decision
threshold easier for an automated approach. While unexpected, the low performance of the intermediate vs.
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high risk model in PI-RADS=4 is likely associated with the relatively small number of positive cases (23 out
of 188).

Endorectal coil. Performance is significantly worse in cases where endorectal coil is used. While it may be
due to changes in contrast (endorectal coil leads to changes in contrast, particularly in T2W images), there
is also the possibility that the relatively small amount of studies with endorectal coil skews the performance
negatively; however, it should be noted that as evidenced in Figure 5.7C, the feature representations are
relatively different between studies using and not using endorectal coil. For this reason, we posit that a
mixture of both — few instances and changes in volume contrast — lead to the very poor performance in
studies using endorectal coil.

Age (quartiles). Performance remains relatively stable across different age groups for the low vs. possibly
high and possibly low vs. high targets (with the exception of the thid quartile for the possibly low vs. high risk
target). For the lowest and the highest age quartile there is a stark drop in performance for the intermediate
vs. high risk models.

PSA concentration (quartiles). As with age, prediction is worse for half of the quartiles when consid-
ering the intermediate vs. high risk target models. There is also a clear drop in performance for the low
vs. possibly high risk for the highest quartile — this would be indicative that these models are more likely
to fail at higher PSA concentrations, when the prevalence of possibly high risk cases is considerably higher
than for the rest of the PSA quartiles.

Location. Performance for different locations appears to be largely influenced by the amount of data when
considering TZ, PZ and CZ. However, for AS, performance appears to be consistently good across targets
(it should be noted nonetheless that there are only 32 test cases for AS).

Location (apex, middle, base). Performance for lesions in the middle of the prostate appears to be
more variable than for lesions in the apex despite existing in similar numbers. A marked increase in the
variability of the performance is observed for lesions in the base of the prostate.

Multiclass ensembling

Ensemble performance To test how these models can be further repurposed in a multiclass setting,
additional experiments are performed using the low vs. possibly high and the intermediate vs. high models
to construct an ensemble model. As demonstrated in Figure 5.9 (top), CV performance is best for ensemble
models when compared with the baseline. While some alterations to the ensemble were tested, given that
improvement was minimal, the more basic ensemble model (with no LoRA or SAE) was used and considered
for further experimentation, particularly through the addition of clinical features and conformal prediction.
Further testing these models shows that their performance generalises well as was the case with earlier target
definitions.

Inclusion of clinical variables To test how the inclusion of clinical variables to prediction, three different
elastic net-regularized linear classification models are trained — one with all clinical variables (incl. PI-
RADS), one with multiclass probabilities and PI-RADS, and one with multiclass probabilities and all clinical
variables. As visible in Figure 5.10, models incorporating DL are marginally better than those using clinical
information derived through careful inspection by a set of medical experts. This has been, in fact, a trend
throughout these results — PI-RADS has, in general, no additional predictive power once features extracted
through DL methods are considered, implying that, for the tasks considered, DL methods are extracting the
information that radiologists would generally consider without being explicitly guided to do so (i.e. predict
PI-RADS).
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Conformal prediction Conformal prediction methods have the potential to improve performance, but
it is hard to consider them to be particularly useful in this scenario — as illustrated in Figure 5.11, the
main improvement lies in the detection of High risk cases for models using DL, with a considerable drop
in coverage (from 100% to 77.36%), a drop which becomes considerably more significant once High risk
cases are considered (100% to 46.8%). So, while using conformal prediction can have a positive impact by
removing cases where the model is uncertain (and patients should simply follow a standard and ”traditional”
care routine), it does not provide a predictive performance adequate for a clinical care model. Nonetheless,
it should be noted that as master models — models which can be used as foundational building blocks for
other approaches — these models should promising discriminatory performance.
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Figure 5.8: Fairness analysis for all binary target definitions for the deep-learning models. Point-and-range
plots represent the performance (mean and bootstrap 95% confidence interval) and the coloured vertical
lines represent the expected performance on the whole dataset. Horizontal bar plots represent the counts in
each target and stratum. The lighter fraction of the bars represents the positive cases.
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5.1.3 Discussion

Direct comparisons of performance between targets may not be particularly informative. Nonetheless, we
attempt here to summarize the more relevant performance differences when considering different targets.

Relevant commonalities and differences

In general, we observe the following to be applicable to all target types (we note exceptions, particularly for
the intermediate vs. high risk target, whenever relevant):

1. VGG models outperform other, more recent models. This may be a consequence of more
recent models requiring larger amounts of data as they have been developed with modern natural image
datasets, typically comprising of hundreds of thousands or millions of images. This is particularly the
case for ViT models

2. mpMRI outperforms T2w-only models. In general this is sensible — PI-RADS, the protocol used
to evaluate prostate MRI studies recommends the use of both high b-value DWI and ADC to ensure
the best possible results [7]. Interestingly, mpMRI models in the intermediate vs. high risk target
suffered a considerable drop in performance when tested on a hold-out test set, oftentimes making
them perform comparably to T2W-only models. This entails that there may be little information to
be gained in functional sequences (ADC, DWI) when classifying between intermediate and high risk
cases, or that this information is more complicated to learn for DL models

3. Performance is relatively stable between CV and hold-out test set. In general, we observe
that generalizability — the ability of models to perform as well on a hold-out test set — is good for
the low vs. possibly high and possibly low vs. high target definitions, while being relatively poor for
mpMRI intermediate vs. high models. We posit that this may be due to the relatively smaller amounts
of data which can lead to more dramatic cases of overfitting [62]

4. Clinical data (age, PSA, PI-RADS) does not appear to improve the performance of DL
models. While multiple different models were assessed, we failed to see consistent gains by using
PSA, age or PI-RADS as additional predictors in a model. While this complicates future additions
to these models as other types of data are relatively more complicated to obtain, we note that this
also shows that our DL models are learning the information that otherwise would require additional
mpMRI interpretation to derive a PI-RADS score

5. More data is likely to be beneficial. Our learning curve analyses show that there is a general
association between data volume and performance. This, however, is not always the case — the
performance of intermediate vs. high models appear to show no association with the amount of data,
suggesting that other studying alternative approaches may be more useful

6. A central crop is sufficient to contain the relevant signal. One of the main concerns for this
project was the definition of a crop that would not require additional input from clinical practitioners
regarding the location of the prostate. Here, we show that using a central and relatively small crop
is sufficient, validating an approach used in earlier studies with smaller datasets [66]. This indicates
that, generally, we can expect the prediction-relevant signal to be centered around the prostate and in
the middle of the image

7. Data provider and endorectal coil use overpowers the feature landscape. Finally, we note
an important aspect of this analysis — the effect that data provider and endorectal coil use have on
the distribution of features at high dimensions is predominant when compared with classification. This
highlights an important aspect that is likely to be crucial to the applicability of these models in new
clinical settings and centers — a minimal amount of finetuning is a likely necessity for the incorporation
of possible deviations in the feature space.
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Considerations on the utility of models with different targets

Different objectives can be accomplished with each models trained on either of the first two targets — low
vs. possibly high is a target to reduce the necessary biopsies, whereas possibly low vs. high is a target
to reduce the chance of overtreatment. Considering the relative performance of each model, we suggest that
low vs. possibly high is likely to be the most impactful as it still allows for relevant patient stratification.

Considerations on target definition through ISUP grading

For the classification tasks, we focus primarily on aggressiveness classification (use case 2). To define aggres-
siveness, conflicting evidence arises — to the best of our knowledge, the most recent definitions rely either on
the clinical categorisation of prostate cancer (PCa) into T1-4 (depending mostly on the size of the tumour),
N1-2 (depending on the infiltration of lesions in nearby lymph nodes) and M1 (depending on the detection of
metastases) or on the International Society of Urological Pathology (ISUP) grading, which is itself derived
from Gleason scores [37]. While both are valid, we have, primarily, access to ISUP grading derived from
Gleason scores, causing us to choose this as our preferred target. However, there is still an issue as ISUP
grading is an ordinal value, with 5 possible values — the integers between 1 (least aggressive) and 5 (most
aggressive).

There are clear differences in overall survival between each individual ISUP score with the exception of
the comparison between 1 and 2, where differences in survival are not statistically significant [84], and there
is evidence that ISUP=1,2,3 vs. ISUP=4,5 is associated with the most discernible distinction in terms of
clinical progression [37]. However, discerning between overall survival categories is not the only aspect which
can be of interest — indeed, one can be interested in discerning between clearly low risk lesions (ISUP=1)
from other lesions (ISUP=2,3,4,5) as this would prevent unnecessary biopsies as suggested by Schoots and
others [79], or follow the ISUP guidelines [94], determining that high risk PCa corresponds to ISUP=3,4,5. In
either case, this requires distinct models — while a categorical or ordinal multiclass classification is always
possible, we note that this is a highly unbalanced problem with little precedent and to the best of our
knowledge there is always a step of discretization involved [85] (we note here that the absence of a precedent
for such a multiclass approach is likely explained by reporting bias which, tendentially, leads researchers to
avoid publishing results were performance is not satisfactory [58]).

In general, we tendentially observe better performance for the Low vs. possibly high (ISUP=1 vs.
ISUP=2,3,4,5) when compared with the Possibly low vs. high (ISUP=1,2 vs. ISUP=3,4,5). This is rea-
sonable — from a histopathological perspective, ISUP=1 is characterized as having no clear indications of
pathogenicity, whereas ISUP¿2 should have some clear signs. On the other hand, ISUP=2 is characterized by
some indicative signs that the lesion is growing, whereas ISUP¿3 has clear indications of abnormal prostate
cells.

However, it should be noted that from a prognostic point of view this relationship is not as clear cut —
while ISUP=1 and ISUP=2 are generally considered to stratify patients in terms of overall survival [84], the
evidence for stratification in recurrence-free survival is mixed [84, 82, 60]. Additionally, there may be missing
information in ISUP scores and relevant differences in grading between experts — a 2015 study has shown
that ISUP=2 without cribriform structures may be similar to ISUP=1 [47], whereas another showed that
reevaluation of Gleason scores leads to a different grading in approximately 20% of instances [91]. Indeed,
ISUP is a useful, albeit noisy, grading and we believe this is consequential in terms of defining a target
variable for prediction.

5.2 On the impact of cropping strategies

5.2.1 Methods

Data curation and preparation

We used the retrospective cases available through ProstateNet in May 2023, which consisted of 16921 T2W
series belonging to 9582 patients. The following filtering steps were applied to select suitable data.

• We exclusively chose axial acquisitions by assessing the presence of the terms ax or tra in the se-
ries description field. To further validate the axial nature of the acquisition, we calculated the cross

95



Deep Learning Master models and Radiomic Signatures
CHAPTER 5. DEEP LEARNING MASTER MODELS

product of the x, y, and z coordinates of the upper left hand corner of the image provided in the im-
age orientation patient field. If the cross product equaled 2, it confirmed the acquisition as being
axial.

• We excluded series that did not include FS in the scan options field.

• We filtered out series containing whole pelvis, bh, star or kidney in the series description field.

• We kept only the series where the slice thickness, as indicated in the slice thickness field, was less
than or equal to 4 mm.

These filters resulted in a filtered dataset consisting of 4903 UC2 series, corresponding to 4686 unique patients.

To further homogenise the dataset, additional filtering steps were applied, based on the information
derived from DICOM tags. More precisely, we:

• required a minimum of 16 slices in the acquisition.

• set a gap of less than or equal to 1 mm.

• ensured that the slice distance, defined as the sum of slice thickness and gap, was less than or equal to
5 mm.

• ensured a vertical FOV of less than or equal to 150 mm.

By applying these additional criteria, we identified 4796 UC2 series, corresponding to 4613 unique patients,
which met the specified conditions.

By further analysing the dataset, we identified cases with anomalous ground truth values, namely Gleason
Scores ≤ 0. This value was assigned to patients that had no biopsy or with an erroneous selection of the
index lesion during data upload. Also there are cases with PI-RADS = 0. We preferred not to consider all
these cases, thus deleting 301 series (belonging to 297 patients), in order to be sure the cases we use have
visible lesions of prostate tumor, along with a bioptic ground truth.

We conducted a final manual inspection to identify any remaining artifacts and endorectal coils in the
dataset. As a result of this last filter, we obtained a cleaned T2W dataset referred to as C T2W UC2,
which consists of 4145 UC2 series of 3984 patients.

Since UC5 is a subset of UC2, we derived the ultimate UC5 dataset, designated as C T2W UC5, by
extracting all UC5 series from the final refined UC2 dataset. C T2W UC5 comprises 694 series from 659
patients.

To train the models based on both T2W and ADC data, we paired each T2W acquisition fromC T2W UC2
with the corresponding ADC acquisition, by matching the same patient ID wtih the study. This pairing
resulted in the creation of the cleaned T2W+ADC dataset, referred to as C T2W+ADC UC2, which com-
prises 3298 UC2 series involving 3294 patients. Notably, this indicates that 690 patients exclusively possess
T2W series without any corresponding ADC data. Furthermore, the corresponding C T2W+ADC UC5
dataset consists of 555 series from 554 patients, within the UC5 subset.

Finally, to train models that utilize T2W, ADC, and DWI data, we associated each T2W+ADC acquisi-
tion from C T2W+ADC UC2 with the corresponding DWI acquisition. It is worth noting that multiple
DWI acquisitions were collected for each patient, each corresponding to a different b value. However, for our
dataset, only the DWI series corresponding to the maximum b value was included. We acknowledge that
this approach may introduce biases into the model, as discussed in subsection 5.2.3.

The resulting cleaned T2W+ADC+DWI dataset, referred to as C T2W +ADC+DWI UC2, com-
prises 2979 UC2 series involving 2977 patients. Notably, this indicates that 317 patients exclusively possess
T2W+ADC series without corresponding DWI data. Additionally, the corresponding C T2W +ADC +
DWI UC5 dataset includes 508 series from 507 patients within the UC5 subset.

We provide an overview of our filtering pipeline in Figure 5.12.
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Figure 5.12: Filtering pipeline flowchart.

Difference between central and adaptive crop

Generally, the prostate gland is located around the middle zone of the acquisitions. To avoid focusing on
regions that do not contribute to the prediction, we decided to crop the images (using 64× 64mm ×16 slices
square FOV, followed by a resampling using linear interpolation to 256× 256 pixels ×16 slices).

However, this FOV may cause some of the information from the prostate to be lost. In addition, the
mismatch between T2 and ADC acquisitions is amplified by the use of a reduced FOV, which may decrease
the predictive ability of the models.

Consequently we defined two cropping strategies. The first one is a Central Crop Strategy: a central
crop of 64 × 64mm ×16 slices FOV) is extrapolated from T2W, ADC, and DWI. Without co-registration,
these 3 crops are used to train the models.

The second strategy is an Adaptive Crop Strategy: an in-house segmentation model (i.e., based on an
Attention-UNet [12, 11]) is trained on the T2W/ADC PICAI challenge [78] acquisitions.Consequently, the
Adapative Crop Strategy is applied only to C T2W and C T2W ADC datasets.

This model identifies the 3D prostate independently on both T2 and ADC.
For each slice, only the greater connected component is kept (if greater than 5mm2), whereas the other

segmentations are removed. A 3D prostate mask is identified. The center (x,y,z) of the gland is defined as
the baricenter of the mask. Consequently, both T2W and ADC acquisitions are cropped around their center
(using a 64 × 64mm ×16 slices FOV). This allows the images to be co-registered and reduces the risk of
losing information about the prostate.

Since the segmentation model was training on T2W and ADC data, the Adapative Crop Strategy is
applied only to C T2W and C T2W ADC datasets.

All the volumes are normalized by applying a Z-score normalization. The mean µ of the volume is moved
to 128, whereas [µ − 2σ, µ + 2σ] gray-scale values are mapped on [0, 255], with σ the standard deviation of
values of the whole volume.
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Figure 5.13: Example of improved crop using Attention-UNet segmentation on T2W acquisitions.

Deep learning model specification

Models description. We used two models for our experiments: 3D Vision Transformer (ViT) and a
3D modified VGG, introduced in the previous section, as this gave the best results. The ViT model was
originally designed for handling two-dimensional data. We modified the original model [21] to handle three-
dimensional input, i.e., each embedding is obtained by flattening a 3D patch rather than a 2D one. We
define our input as x ∈ RH×W×Z×C , where (H,W,Z) represents the resolution of the volumetric input,
and C denotes the number of channels. The ViT divides the input volume into (P, P, Z) patches and
flattens them into a one-dimensional vector. As a result, the encoder receives a sequence of flattened patches
xp ∈ RNx(P 2·Z·C) as input for each input volume, where N = HW/P 2 represents the number of patches.
In this case we considered P=16 and Z=4, i.e., each volumetric input is splitted into 16 × 16 × 4 volumes
from which computing the embeddings. For our 3D ViT model architecture we considered the following
hyperparameters: MLP dimension of 2048; number of encoders equal to 32; number of attention heads of 8
and embedding size of 32.

For the description of the VGG model, please refer to the Section above.
Initially, both ViT and VGG models were trained exclusively using T2w images. To incorporate the ADC

and DWI modalities into both the 3D ViT and 3D VGG models, we developed a multi-branch architecture.
We began by training a two-branch model that handled the T2 and ADC modalities and subsequently
expanded it into a three-branch model to accommodate the DWI modality as well. In both scenarios, each
branch received one modality as input and extracted its relevant features. Finally, the features extracted
from each branch were concatenated and forwarded to a common linear layer, which generated the ultimate
prediction. We present our multi-branch 3D ViT in Figure 5.14.

Experiments. We utilized the Binary Cross Entropy loss function and the Adam optimizer during the
training of our models. To mitigate the effects of class imbalance, we implemented batch-weighting, a
technique that dynamically adjusts the weights assigned to each sample within a batch based on the class
distribution observed in that particular batch. We did not employ any data augmentation technique.

Throughout our experiments, we maintained consistent hyperparameters for both the ViT and VGG
models. Specifically, all models were trained for 100 epochs, with an initial 10 epochs designated for warmup.
The ViT model started with an initial learning rate of 5e-5, while the VGG model began with a learning
rate of 5e-4. Additionally, we applied a weight decay value of 0.1 to the ViT and 0.005 to the VGG model.
Finally, we used a batch size of 30 for the ViT and of 16 for the VGG.

In our study, we trained a total of six distinct models, encompassing T2W, T2W+ADC, and T2W+ADC+DWI
combinations, for both the ViT and VGG architectures on the center cropped dataset. Additionally, for the
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Figure 5.14: Multi-branch 3D ViT

adaptive cropped dataset, we trained four models, covering T2W and T2W+ADC combinations for both
ViT and VGG models. This sums up to a total of 10 models for each specific use case.

Models evaluation. For each combination of use case (UC2/UC5) and model (ViT/VGG) we applied a
5-fold cross validation procedure, tested on an external independent test set. The dataset is stratified for
both vendor (’Philips’, ’Siemens’, ’GE’, ’Other’) and ground truth (’HG’, ’LG’) and randomized to each
other patient characteristic to reduce bias. This stratification ensures consistency across the 5 folds.

The dataset is subdivided in 6 folds (16.6%). One fold is kept as an external test set, while the other 5
are used to train 5 models in a 5-fold cross-validation approach. Each time, 4 folds are used as training set
and one as validation set (to define a stopping strategy to prevent overfitting). The selected model is the
one minimizing the validation loss for each of the folds. The 5 models trained in this manner are applied on
the external test set and the AUROC scores are reported as median and [0%,100%] percentiles.

Learning curve analysis

After training the models, we evaluate the learning capacity of the VGG and ViT models for UC2 and UC5
with respect to the dataset size.

The data set were resampled using the same stratification (vendor+pathology) to obtain 3 subsets of
cardinality 25%, 50%, and 75% of the full set. For each subset, the same training/validation procedure is
applied (6 folds: 1 test, 5 used as training+validation) and the scores are reported as median performance
of the models on the test set and percentiles on the 5 folds.
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5.2.2 Results

UC2

In this section, we present the results achieved for UC2 for both 3D ViT and 3D VGG. These models were
trained using two datasets, namely Central crop and Adaptive crop datasets. Using the Central crop dataset,
the models were trained using T2w modality alone, a combination of T2w and ADC, and a combination of
T2W, ADC, and DWI. For the Adaptive dataset, instead, only T2W alone and the combination of T2W and
ADC modalities were used for training. The results we provide are computed as averages across the 5-fold
for both the validation and test datasets. Specifically, we provide statistics including the mean, median, 0th
percentile, and 100th percentile.

We provide results for Adaptive and Central in Table 5.11 and Table 5.12, respectively.
Regarding the Adaptive Crop dataset, both the ViT and VGG models exhibit comparable performance

levels. This holds true for both the T2W-only modality and the combination of T2W and ADC. Notably, the
inclusion of the ADC modality appears to yield only marginal improvements in terms of AUROC performance
for both models. The VGG model, in particular, achieves the highest performance, with a mean AUROC
of 55.6% when trained on the combined T2W and ADC modalities. Across all experiments, we consistently
observe minimal variation among the 5-folds, as evidenced by the closely aligned values for the 0th and 100th
percentiles. This demonstrates a high level of model stability across different dataset splits.

Adaptive crop Dataset ViT VGG

T2W
Validation 53.28%/52.4% [51.4%-56.1%] 59.1%/59.3% [57.1%-61%]

Test 53.6%/53.7% [52.7%-54.4%] 54.3%/56.1% [50.6%-57.1%]

T2W+ADC
Validation 53.02%/52.1% [51.4%-56.5%] 57.6%/57.5% [55.4%-59.8%]

Test 54.5%/54.3% [54.2%-55.2%] 55.6%/55.4% [53.7%-57.6%]

Table 5.11: For each experiment, we present the validation and test performances in terms of mean, median,
0th percentile, and 100th percentile.

In the case of the Central crop dataset, it exhibits slightly better but comparable performance compared
to the Adaptive Crop dataset. Once again, all experiments yield fairly consistent results, with the inclusion
of the ADC modality resulting in only a modest improvement in performance. Specifically, there is an
approximate 2% increase in AUROC for the ViT model and slightly over a 1% improvement for the VGG
model on the test set when ADC is added. It’s worth noting that, similar to the Adaptive Crop dataset, we
still observe model stability across the 5 folds in most cases. However, there is an exception when considering
the VGG model trained solely on T2W images, where we observe an almost 10% variation between the 0th
and 100th percentiles. Once again, the VGG model trained on the combination of T2W and ADC achieves
the best performance, with a mean AUROC of 56.2% on the test set.

Central crop Dataset ViT VGG

T2W
Validation 51,7%/51,9% [49,2%-53,6%] 56.7%/56.6% [55.4%-58.7%]

Test 53,8%/53,8% [53,5%-54%] 54.9%/52.9% [51.9%-61.1%]

T2W+ADC
Validation 59%/58.9% [57.5%-60%] 61.6%/61.5% [60.6%-63.3%]

Test 55.8%-56.8% [52.4%-57.5%] 56.2%/56% [55%-57.7%]

T2W+ADC+DWI
Validation 59.4%/59.9% [55.4%-62.1%] 64.2%/64.4% [60.7%-67.6%]

Test 59.3%/59.3% [58.8%-59.7%] 63.1%/63.2% [61.3%-65.2%]

Table 5.12: For each experiment, we present the validation and test performances in terms of mean, median,
0th percentile, and 100th percentile.

UC5

In contrast to UC2, in the case of the Adaptive Crop dataset, we observe an improvement in performance on
the test set w.r.t the Central crop dataset. This improvement ranges from 2% to almost 9% for the ViT model
when trained on both modalities. However, there is an exception for the VGG model trained on T2W-only
images, where the Adaptive Crop dataset leads to worse performance. Additionally, it’s noteworthy that for
the Adaptive Crop dataset, the inclusion of the ADC modality results in a significant 5% improvement when
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using the VGG model. Specifically, the VGG model trained on both T2W and ADC modalities achieves the
highest performance, boasting a mean AUROC of 58.7%.

Adaptive crop Dataset ViT VGG

T2W
Validation 51%-54.8% [38.4%-56.4%] 64.9%64.5% [62.6%-67.8%]

Test 57.48%-59.1% [51.4%-60.1%] 53.7%-52.3% [46.8%-61.7%]

T2W+ADC
Validation 53.8%-53.1% [35.2%-72.5%] 66.7%/67.4% [63.4%-68%]

Test 55.4%-55.8% [37.6%-73%] 58.7%-60.8% [53.4%-60.8%]

Table 5.13: For each experiment, we present the validation and test performances in terms of mean, median,
0th percentile, and 100th percentile.

Central crop Dataset ViT VGG

T2W
Validation 48.1%/48.2% [42%-54.3%] 64.3%/64.8% [61.1%-66.8%]

Test 52.8%/53% [51.5%-53.6%] 56.9%/57.4% [49.3%-63.4%]

T2W+ADC
Validation 42.9%/44.5% [34.3%-47.6%] 69.1%/68.3% [65.5%-72.4%]

Test 46.7%/47.3% [37.2%-58.2%] 56.2%-56.9% [51.6%-60.7%]

T2W+ADC+DWI
Validation 66.3%-62.7% [53.1%-69.8%] 65.7%-68% [65.3%-73.4%]

Test 62.4%-63.2% [58.1%-64.3%] 56.02%-57% [48%-60.3%]

Table 5.14: For each experiment, we present the validation and test performances in terms of mean, median,
0th percentile, and 100th percentile.

Learning curve analysis

The results of the curve analysis are reported in Figure 5.15.
The learning curves indicate that, concerning UC2, the performance trends for both VGG and ViT do not

follow the expected pattern of improvement as the dataset size increases. Instead, there is a slight decline in
performance (even if not statistically significant). This phenomenon could be attributed to the fact that the
expansion of the training dataset introduces more complex and challenging cases (e.g., increasing number
of vendors) for the neural network to classify, consequently affecting its overall performance negatively.
Alternatively, one could consider the possibility of the networks being undersized. This notion gains support
from the UC5 scenario, where we observe a contrasting performance trend. In the case of UC5, there
is a notable increase in performance as the dataset size grows, particularly evident in the case of VGG,
where the improvement is consistent with dataset expansion. Indeed, the UC5 task stands out due to its
considerably smaller training dataset, approximately one-sixth the size of the UC2 dataset. Additionally,
it consists of a more challenging task, also because of a higher degree of data imbalance. Consequently,
any further reduction in the training data has a more pronounced impact on the model’s performance when
compared to the UC2 scenario. This distinctive nature of the UC5 task results in both the ViT and VGG
models delivering comparatively better performance, on average, for UC5 in comparison to UC2. However,
it’s important to note that these differences do not attain statistical significance, as the confidence intervals
exhibit substantial overlap.

5.2.3 Discussion

We report here some considerations that might be useful to analysis and doublecheck results of models using
DWI data.

BY analysis ProstateNet dataset and the DWI data, we think it is worth noting that heterogeneous b
values may have a short-cut learning effect on the the trained deep learning models. More precisely, the
models may learn a short-cut rule based on the b value ”meta-information”: the maximum b-values of the
DWI series determines the prediction of tumor aggressiveness. This, of course, could potentially redirect the
network’s attention away from the features to be extracted and toward an attempt to reconstruct a simpler
relationship.

To provide a numerical example, for UC2, 1044 patients with ADC+T2W+DWI meet the inclusion
criteria. Out of these: 810 are LGs and 234 are HGs. The distributions of maximum b values are close
(mean LG 1468, mean HG 1527, median 1400).
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Figure 5.15: Learning curves for UC5 and UC2

However, 92.8% of LG values (in contrast to 79.4% of HG values) are below a b value of 1500. Similarly,
51.1% of LGs are below a threshold of 1400 while 60.3% of HGs are below the same threshold. Wanting to
define a trivial classification: (HG if ¡1400 or ¿1500) results in the following confusion matrix, corresponding
to an F1 score of 84% and a sensitivity of 87%.

Actual
LG

Actual
HG

Predicted
LG

710 170

Predicted
HG

100 64

Table 5.15: Classification model based on an elementary b value-Ground Truth relationship.

Therefore, it is necessary to analyze the dependence of the model on the provided b value by applying
an appropriate correction strategy. Examples include:

• Homogenize data to provide the same b value to each patient.

• Evaluate the network’s ability to learn the b value (and not the requested ground truth).

• Determine whether, given the same ADC and T2W inputs, changing the DWI input (in terms of the
b value) changes the prediction of the model.
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5.3 On the differences between supervised and unsupervised learn-
ing strategies for use case 1

Use Case 1 (UC1) of the ProCAncer-I Project, detection of prostate cancer, can be thought of as compre-
hending two distinct tasks: a) Binary Classification of Prostate Cancer Presence denoted as UC1—tA; b)
Prostate Index Lesion Segmentation denoted as UC1—tB as seen in Figure 5.16. Specifically for UC1—tA
two different sub-tasks were designed on the basis of two well known machine learning techniques, unsuper-
vised and supervised learning denoted as UC1—tA1 and UC1—tA2 respectively. The deep learning models
developed (FORTH contributor) for those tasks can be used either as standalone models or dependently
operating.
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Use Case 1
Detection of PCa

“UC1—tA”
Classification

of PCa Presence
(cancer/no cancer)

“UC1—tB”
Prostate Index

Lesion Segmentation

“UC1—tA1”
Anomaly Detection

(unsupervised learning)

“UC1—tA2”
Binary Classification
(supervised learning)

Figure 5.16: Tasks for addressing ProCAncer-I’s Use Case 1, detection of prostate cancer. Different colours
correspond to different level of tasks.

5.3.1 Binary Classification of PCa Presence (UC1—tA)

Data Curation

We make use of the retrospective cases from the ProstateNet imaging archive. We start by obtaining a
total of 9,095 T2-weighted (T2w) sequences consisting of negative PCa (Use Form 1) and positive PCa (Use
Form 1+2) cases, as described in [8]. Then, patients where an endorectal coil had been used were excluded
alongside those cases that were obtained with fat-suppression technique. We end up with 6,843 cases of
T2w sequences. 43% (2,946) are patients without confirmed PCa by pathology (e.g. positive MRI but
negative biopsy) or men with no PCa findings on MRI and confirmed negative at follow-up (at least 1 year).
The words normal and negative PCa are used interchangeably for these cases. Oppositely, 57% (3,897) are
patients with confirmed prostate cancer at biopsy. For these cases the words abnormal and positive PCa are
used interchangeably. The dataset that contains all Use Case 1 cases is denoted as UC1-T2w. Additionally,
for our experiments we consider two different routes for collecting negative PCa cases as seen in Figure 5.17.
By following the left branch of the flowchart, we are able to assemble a subgroup of 1,864 negative PCa
cases solely with men that had no PCa findings on MRI and confirmed negative at follow-up (at least 1
year). This subgroup alongside the positive PCa cases from the original UC1-T2w dataset is denoted as
UC1-T2w-LeftBranch. The complete composition of all different datasets used in our expirements is provided
in Table 5.16. For all of them, 15% of the cases are used for validation, 15% are used as holdout-test, and
the remaining 70% for training. Additionally, and in order to understand how the amount of data impacts
model performance we split the training data into different fractions of the total amount of data – 0.1, 0.5
and 0.75; this allows us to build learning curves, which describe how the amount of data has an impact on
model’s performance.
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Figure 5.17: Stratification of negative PCa cases for Use Case 1 by PCa findings.

UC1 subset
train val test

total
neg. pos. neg. pos. neg. pos.

UC1-T2w 2062 2728 442 584 442 585 6843

UC1-T2w-LeftBranchRaw 1305 2357 279 505 280 505 5231

UC1-T2w-LeftBranch 1305 1491 279 319 280 320 3994

Table 5.16: T2w data curation for Use Case 1. Note that for UC1-T2w-LeftBranch, the number of positive
cases has been purposely reduced in order to maintain the true ratio of positive vs negative PCa cases (57% vs
437%) found in the full-size ProstateNET retrospective data. On the other hand, UC1-T2w-LeftBranchRaw
includes the cases maintaining their original distribution, without any reduction to alter the true ratio of
positive to negative cases.

Data Preprocessing

We utilized a pre-trained nnUNet [40] model to automatically segment the prostate gland for all ProstateNet
cases. This model was validated on all 600 available ProstateNet ground truth prostate gland masks, and
reached a Mean DSC of 0.8751 with a standard deviation of ±0.094. Additionally, we trained from scratch
the v2 of the nnUNet model from MONAI on those 600 ground truth masks, and it produced a 5-fold Mean
DSC of 0.9252, with a standard deviation of ±0.0012. Training for Use Cases 1 and 7a was conducted on
the whole gland predicted from the pre-trained nnUNet model. For the subsequent phase, the volumes were
resampled to a pixel spacing of 0.5mm x 0.5mm and a slice thickness of 3.0mm. This decision was based
on the average spatial spacings observed in the cohort. To align with the model’s requirements, a cropping
and padding strategy was adopted, resulting in each volume being adjusted to dimensions of 32 slices x 224
pixels x 224 pixels. Additionally, for the cases where the field of view was wide an interpolation strategy
was used.

Anomaly Detection (UC1—tA1)

Anomaly detection is the problem of recognising abnormal inputs based on observed examples of normal
data and has been well-studied within diverse research areas and application domains. It arises from a
common need when analysing real-world datasets to identify which instances stand out as being dissimilar
to all others. Such instances are known as anomalies, and the goal of anomaly detection (also known as
outlier detection) is to spot the ’abnormal’ data samples knowing the ’normal’ ones in a data-driven fashion
[13]. This trait is especially important in high consequence applications, such as medical decision support
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Figure 5.18: A generic architecture of an autoencoder. An autoencoder employs an encoder-decoder struc-
ture, where the encoder maps the input data to a low-dimensional latent representation and the decoder
interprets the code and reconstructs the input.

systems, where it is vital to know how to recognise the anomalous data.
Auto-encoders (AEs). Auto-encoders are a type of neural network where the output layer has the

same dimensionality as the input layer as seen in Figure 5.18. An auto-encoder looks to replicate the data
from the input to the output in an unsupervised manner. In particular, AEs look to project the original input
xi ∈ Rd, where d << D, to a lower-dimension space Rd and obtain a reconstruction of the original input xi

from the compressed version of the input. The two other main components of AEs are the encoder and the
decoder. The encoder usually takes the form of a deep convnet (i.e., FFNN, CNN or Transformer) and aims
to compress the input into a latent space representation, obtaining a lower dimension representation. The
decoder, typically “mirrors” the structure of the encoder and is responsible for reconstructing the input back
to the original dimensions from the reduced representation obtained by the encoder. Two commonly known
AEs are the convolutional auto-encoders (cAE) [56] and the variational auto-encoders (VAE) [69]. cAE are
based on encoder-decoder structures that exploit convolutional layers, which allows an optimal encoding to
be learnt for imaging-related tasks.

Representation Learning. Typically, in annotated medical imaging datasets, cases that demonstrate
abnormalities (otherwise called positive) are scarce. By exploiting the ability of AEs to extract useful
representations from the input data by reconstructing it from a compressed representation of it, and abundant
negative (controls, healthy or normal cases) data, we hypothesise that AEs will be able to learn the ’concept
of normality’ and discriminate in an unsupervised way those cases that significantly differ from the ”learnt
normality”. Specifically, AEs are trained solely with normal cases to learn their representations (features).
Then, during testing, both normal and abnormal cases will be discriminated based on the divergence of the
testing representations from the ones learnt during training (normal population) [18]. This process can also
be defined as outlier detection, which has been extensively studied in other areas [15].

Task Definition. We assume an input Xh = (xh1, xh2..., xhN ), where xh1, i = 1...N are either normal
(healthy, negative PCa) T2w volumes. The objective here is to learn the distribution p(Xh) of normal cases
through an auto-encoder architecture as seen in Figure 5.19. Our hypothesis is that a trained auto-encoder
model will not be able to reconstruct abnormal images accurately due to the fact that it has only been trained
with control ones, hereby learning the non-anomalous data distribution as a prior p(Xh). To quantify the
quality of the reconstruction the following two metrics are used:

MSE =

N∑
k=1

(xhk
− xĥk

)2 (5.1)
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Figure 5.19: Pipeline of the proposed framework to learn the distribution of normal prostate MRI volumes.

SSIM =
N∑

k=1

l(xhk
, xĥk

)c(xhk
, xĥk

)s(xhk
, xĥk

) (5.2)

Where c represents the contrast, l the luminance, s the structure of the images, xĥk
represents the kth

reconstructed image and N is the number of images in the batch under consideration.
Proposed Architecture. One of the most prominent cAE architectures follows a U-Net like structure

[75], including 3D convolution filters followed by a rectified linear unit (ReLU), pooling operations and dense
layers, as seen in Figure 5.20. All architectures are trained using Mean Squared Error (MSE) loss function
for all image modalities, with a learning rate of 1e−5, 200 epochs and batch size of 8. Solely negative PCa
volumes are used during the training phase whereas both neagative and positive PCa volumes are used for
testing purposes. The ”base channel size” is another network parameter of our development and refers to
the number of channels used in the first convolutional layer. The hyperparameters of the developed models
are shown in Table 5.17.

Hyperparameter Value

Activation Function ReLU
Output Function tanh or sigmoid
Loss Function MSE
Optimizer Adam
Batch Size 8 or 4
Epochs 200

Learning Rate 0.00001 (1e-5)

Table 5.17: Hyperparameter settings of the cAE models.
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Figure 5.20: U-Net-based convolutional auto-encoder architecture for reconstructing prostate MRI volumes.
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Figure 5.21: Inference phase for (A) classification and (B) anomaly detection (lesion localisation) tasks using
an unknown MRI slice as input and the prior distribution of normal prostate MRI slices learned by the
autoencoder model.

Once the prior distribution p(Xh) has been learnt, a mix of 3D prostate MRI volumes are used as an
input to the trained models.

Binary Classification of Volumes. The validation set is composed by a mix of normal and abnormal
cases (denoted as Xa = (xa1, xa2..., xan)). This process is required in order to obtain an estimate of the mean
squared error (MSE) or structural similarity index (SSIM) distribution of Xa and Xh, which will be later
utilised to determine a classification threshold tMSE or tSSIM . Using this classification threshold, we are
able to turn the problem of detecting tumour presence into a binary classification task (distinguish between
negative PCa and positive PCa MRI volumes) as seen in section A of Figure 5.21. All images with associated
MSE > tMSE or SSIM > tSSIM are deemed as abnormal.

Residual Maps: PCa Localisation without Supervision. The trained cAE is capable of detecting
potential anomalous regions on slice-level without being trained explicitly on this task. This is accomplished
by highlighting the poorly reconstructed regions of the image. These regions are identified by the reconstruc-
tion error between the input image and it’s reconstructed counterpart as seen in section B of Figure 5.21.
Specifically, during inference the difference between the input image and the reconstructed one is calculated
to derive an anomaly (residual) map, which is then binary divided based on a specific threshold to detect
the anomalous region.

Results and Discussion. We report results on the discrimination ability of four variants of the U-
Net-based cAE model in terms of AUC. The results presented in Table 5.18 refer to models trained on the
UC1-T2w-LeftBranch dataset. We have also trained the same cAE models on the UC1-T2w-LeftBranchRaw
where we observed similar performance. As it can be observed from Table 5.18, models trained with either
output function reach similar performance. It is evident from Figure 5.22 that for the hold out test set,
the reconstruction error corresponding to the two mutually exclusive classes, negative PCa and positive
PCa cases, is largely similar. Ideally for our setting, reconstruction errors for those two classes should be
linearly separable. Almost identical reconstruction errors do not allow our models to discriminate between
negative PCa cases and positive PCa cases as seen in Table 5.18. This occurs because the models failed to
extract useful representations from the input data and/or because the positive PCa cases do not significantly
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output
function

base
channel

0.1 0.3 0.5 0.7 1 Trainable
Params.

sigmoid
16 0,4591 0,4473 0,4634 0,4733 0,4861 6,561,793

8 0,4975 0,4459 0,4651 0,4651 0,4758 1,641,729

Tanh
16 0,4607 0,4895 0,4648 0,4744 0,489 6,561,793

8 0,3999 0,4436 0,4696 0,4722 0,4761 1,641,729

Table 5.18: Comparison between different U-Net-based models trained on prostate MRI volumes with sigmoid
and Tanh output functions for various UC1-T2w-LeftBranch training subsets. Volumes with an associated
MSE > threshold are deemed as positive PCa (abnormal).

differ from their negative counterparts for this cohort. The shortcomings of the models are evident from
the confusion matrices in Figure 5.21. Both models regularly fail to classify positive PCa cases (labelled as
1) correctly. Instead, the majority of those cases are classified as negative PCa (false negative). Finally, It
is evident from Figure 5.24 that there is correlation between the amount of training data (the fraction of
available training data) and performance for the cAE models.

(a) base channel = 8 (b) base channel = 16

Figure 5.22: Threshold calculation using MSE error distribution for U-Net-based cAE trained with the
sigmoid output function.

Supervised Binary Classification (UC1—tA2)

Supervised learning involves training models to classify data into distinct classes, which can extend beyond
just two classes. In our context, the task at hand is the differentiation between ’normal’ and ’abnormal’
cases.

Common Image Classification Architectures.
Residual Networks: ResNet [31] is characterized by its residual or skip connections, which bypass one

or more layers. The core idea behind these connections is to solve the vanishing gradient problem on deep
learning architectures. By incorporating these connections, the network can learn identity functions that
ensure the higher layers perform at least as well as the initial.

Densely Connected Convolutional Networks: DenseNet [35] stands out due to its dense connectivity pat-
tern. In this architecture, each layer receives feature maps from all preceding layers, ensuring a compounded
feature integration process. This dense feature fusion leads to improved gradient flow, more diversified
features, and requires fewer parameters than a traditional CNN, enhancing the model’s efficiency.
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(a) base channel = 8 (b) base channel = 16

Figure 5.23: Confusion matrix for the optimal classification threshold for U-Net-based cAE trained with the
sigmoid output function.

(a) tanh output function (b) sigmoid output function

Figure 5.24: Learning curves for the anomaly detection task.

VGG (Visual Geometry Group): VGG [81] employs 3x3 convolutional layers stacked upon one another,
followed by max-pooling. The model’s depth is significant, with versions containing up to 19 layers (VGG19).
This depth and the small filter size allow the network to learn hierarchical features from the data, capturing
intricate patterns effectively.

ViT (Vision Transformer): The Vision Transformer [21] diverges from conventional convolutional ap-
proaches by leveraging the self-attention mechanism from the Transformer architecture. An image is divided
into fixed-sized patches, and these patches are then linearly embedded into a sequence of vectors. These
vectors are then processed through Transformer blocks, allowing the model to capture both global and con-
textual information. The self-attention mechanism enables the model to weigh the importance of different
patches in relation to each other, granting the ability to understand long-range dependencies and complex
relations across the image.

Hyperparameter Selection. Numerous experiments were conducted to find the optimal hyperparam-
eters, shown in Table 5.19. Initially, the models quickly overfitted, leading to significant differences between
training and validation results. However, the introduction of pooling, dropout, L1 & L2 regularization, and
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Hyperparameter Value

Input size 224x224x32
Activation Function ReLU

Normalization Batch Norm
Augmentation Random Flip p=0.4
Loss Function BCEwithLogits
Optimizer Adam

Regularization L1 & L2
Dropout p=0.5
Pooling AverageMax()

Batch Size 2
Epochs 200

Learning Rate 0.00001 (1e-5)

Table 5.19: Hyperparameter settings of the Classification models.

augmentation using random flip greatly improved training consistency. The Adam optimizer outperformed
SGD, which did not surpass 60% accuracy. Increasing the depth of the model did not aid the classification
performance. In fact, it caused more challenges. Only when the batch size was adjusted to 16-18, the models
seem to perform better with added layers. The overarching observation was that simpler models yielded
better outcomes. The models also displayed a keen sensitivity to normalization and learning rates, making
batch normalization and a learning rate of 1e-5 ideal. Additionally, various tests were carried out concerning
the volumetric dimensions of the input data. Combinations involving 128x128, 224x224 (height, width), and
depths of 32, 30, 28, and 26, focusing on 16 middle slices, were examined. The specific depth values were
chosen because the prostate might be absent or minimally present in the final slices. However, better results
were obtained using the entire volume.

Figure 5.25: The VGG architecture comprises four stages with increasing filters: 64, 128, 256 and 512. Each
stage contains multiple VGG blocks, with each block having a convolution, batch normalization, ReLu, and
dropout. At the last layers, a combined Global Max and Average pooling is applied, followed by a binary
classification head.

Results Among the aforementioned models, VGG (Figure 5.25) was superior in performance but notably
in the stability of the training process.

UC1-T2w. As previously stated, the UC1-T2w dataset is comprised of both negative PCa cases (as per
Form 1) and positive PCa cases (incorporating Forms 1+2). Consequently, all the related experiments in
this section have been performed utilizing this dataset. In Table 5.20, we present a comparative evaluation
of different classification models, specifically DenseNet, ResNet50, ViT, and VGG, trained on prostate MRI
volumes. These models were analyzed with fine-tuned hyperparameters to ascertain their performance.
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DenseNet ResNet50 ViT VGG

ACC 0.7047 0.7274 0.6654 0.7479

AUC 0.7758 0.7920 0.7021 0.8121

F1 score 0.7137 0.7682 0.7089 0.7860

Trainable Params. 11,243,649 46,157,121 82,250,754 29,868,353

Table 5.20: Comparison between different classification models trained on prostate MRI volumes with the
fine-tuned hyperparameters. The presented results are based on a hold-out test set.

UC1-T2w UC1-T2w-LeftBranchRaw

ACC 0.7479 0.7956

AUC 0.8121 0.8242

F1 score 0.7860 0.8455

Table 5.21: Comparison across the initial dataset and derived cases from the left branch.

Each model exhibited varying degrees of accuracy (ACC), Area Under the Curve (AUC), and F1 score,
reflecting their unique capabilities in handling the dataset. Among the models analyzed, VGG demonstrated
the highest accuracy of 0.7421 and a AUC of 0.8036, indicating its superior performance in distinguishing
between the classes effectively. It also secured an F1 score of 0.7787, reflecting a balanced precision and
recall.

ViT, having the highest number of trainable parameters, showed relative underperformance, suggesting
possible overfitting for this dataset. Conversely, ResNet50, with significantly fewer parameters, demon-
strated a balanced performance. DenseNet, with the least number of parameters, also exhibited comparable
effectiveness.

UC1-T2w-LeftBranchRaw. In this section, we conduct experiments with the VGG architecture using a
subset of the initial dataset, specifically excluding the cases from the right branch, those instances where
a positive MRI was followed by a negative biopsy. Table 5.21 illustrates a comparative analysis between
experiments on UC1-T2w and UC1-T2w-LeftBranchRaw datasets. A marked enhancement is observed in
the UC1-T2w-LeftBranchRaw dataset, evidenced by its higher ACC, AUC, and F1 score. This indicates a
superior performance when excluding MRI scans initially annotated as cancerous but later determined as
normal through biopsy.

Discussion A key insight derived from our unsupervised methodology is the substantial similarity be-
tween negative PCa and positive PCa cases. Additionally, Figure 5.26, depicting the confusion matrices,
reveals a tendency of the model to misclassify normal cases as cancerous more frequently. This observation
was also a driving factor for our experiments with the UC1-T2w-LeftBranchRaw dataset. Removing cases
that were initially labelled as MRI positive helps the model make better predictions. The challenging cases,
which even confused clinicians, seem to have features that make classification difficult, leading to more errors.
Therefore, an augmentation strategy with synthetic normal or abnormal MRI cases with generative networks
[27] could potentially increase the discrimination ability of our models. Finally, the learning curves depicted
in Figure 5.27 for both datasets clearly illustrate that reducing the volume of training data correlates with
a decline in performance on both the training and testing sets.

5.3.2 Prostate Index Lesion Segmentation (UC1—tB)

In this section, a variety of DL models have been implemented to address the task of lesion segmentation
in a fully-supervised manner (FORTH contributor). More specifically, the models have been trained to to
accurately identify, at a pixel level, if a particular region is likely to be associated with a prostate lesion. In
addition, the binary ground truth masks (GT) exclusively included the index lesions while any other lesions
were excluded.
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(a) UC1-T2w dataset dataset (b) UC1-T2w-LeftBranchRaw dataset

Figure 5.26: Confusion matrices from the optimal model trained on initial dataset and cases from left branch,
respectively.

(a) UC1-T2w dataset (b) UC1-T2w-LeftBranchRaw dataset

Figure 5.27: Learning curves from the optimal model trained on initial dataset and cases from left branch,
respectively.

Data Curation

For index lesion segmentation, data originated from 12 clinical centers and 4 manufacturers were used. The
initial number of cases were 440 and after the preprocessing stages a cohort of 419 cases were used for patient
train and validation. More specifically in Table 5.22 the total number of cases for each clinical center and MR
vendor is provided extensively. The analysis made on 3 available sequences, namely T2-Weighted (T2W),
Apparent Diffusion Coefficient maps (ADC) and Diffusion-weighted imaging (DWI) which represented the
input of the Deep learning models for each case.

Data Preprocessing

Initially, the cohort contained 440 patient cases. For each case, an affine registration between pairs of
T2W, ADC and DWI in respect to T2W has performed. Index Lesion ground truth masks were outlined
on T2W and that was the underlying reason of selecting T2W as the baseline sequence to register ADC
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Philips Siemens GE Medical System Toshiba
FCHAMPALIMAUD 44 6 - -
NCI 50 - 7 -
HACETEPPE 34 55 22 -
QUIRONSALUD 27 - - -
RMH 7 37 13 1
RADBOUDUMC - 21 - -
IDIGBI 33 - 10 -
HULAFE 1 1 28 -
IPC - - 24 -
JCC 12 - - 1
GAONA 3 1 1 -
FPO - - 1 -
Total 211 121 106 2

Table 5.22: Number of Cases per clinical center & MR vendor.

& DWI. However in a couple of cases the registration failed and they were kept apart. Sequentially, the
analysis performed on the Prostate’s Whole Gland (WG). These masks obtained from a pre-trained nnU-
Net [40] and dilated accordingly to extend the boundaries of the WG. The underlying cause of the dilation
operation is that it has been observed that prostate lesions tend to invade in other structures outside the
WG. The performance of the nnU-Net for WG segmentation was between of 88 − 94% Dice Score. As
a next step, a resample of 0.5mmX0.5mmX3.0mm for pixel spacing and slice thickness for the volumes
performed while the selection criteria for that included the mean spatial spacings from the cohort. Conse-
quently, cropping/padding strategy was chosen to meet models requirements and transform each volume to
24 slices X 192 pixels X 192 pixels. The percentage of cropping, if needed, for a specific volume can be
set accordingly to the original work of Aldoj et al., [4], where they cropped the top half 25% and bottom
half 25%. For our cases the margins were lower and hence no WG region was taken apart. Ultimately, the
normalization strategy utilized was the minimun-maximum strategy, for model’s ease of convergence, and
therefore the voxels for each sequence normalized to have values at the interval of voxel value ∈ [0, 1].
The selection of number of floating points for the voxels included 2 configurations, 216 floating points and
28 integer points. The latter seemed to produce worse results than the former.

Deep Learning Segmentation Models

The following section provides a concise overview over the Deep Learning models that were employed for the
Index Lesion Segmentation - Lesion Detection Use Case. In our analyses, we transformed several well-known
deep learning networks to their 3D Variants to analyse cases in a voxel-based manner. U-Net 3D. U-Net
3D [19] is a CNN architecture designed for semantic segmentation of 3D volumetric images. Modifications
were made to the original U-Net architecture to incorporate 3D data. U-Net 3D consists of two primary
components (a) a contracting path and (b) an expanding path. The contracting path downsamples the input
image to extract features, whereas the expansive path upsamples the extracted features and combines them
with the extracted features from the contracting path to generate a mask containing segmented pixels.

Attention U-Net 3D. Attention U-Net 3D model is a modified version of the U-Net 3D architecture
that incorporates attention mechanisms. Attention mechanisms assist the model to focus on specific regions
of the image that are more relevant especially for lesion segmentation tasks [1]. The attention mechanism is
placed at the contracting path of the U-Net model and its mathematical expression is given by Equation 5.3

WeightedMap = σ(xcontracting + xexpanding) ∗Wexpanding ∗ xexpanding (5.3)

Where xcontracting and xexpanding represent the features from the contracting and expanding path respec-
tively, Wexpanding represents the weight matrix, and σ is the sigmoid function.

VNet. VNet model [59] consists of an encoding and decoding pathway, which is identical to U-Net.
However it incorporates residual connections as an additional component. The V-Net model utilizes a
sequence of 3D convolutions, batch normalization, and non-linear activation functions, such as ReLU, GeLU
etc., in both the encoder and decoder components. The usage of residual connections in V-Net is seen as
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a significant advancement, since it effectively addresses the issue of vanished gradients and facilitates the
training of more complex networks. The residual connections are given by the expression Equation 5.4

Xresidual = Xinput +Xinput ∗ TrConv−>BN−>ReLU (5.4)

where Xresidual is the outcome of the layer, Xinput are the input features and TrConv−>BN−>ReLU are the
sequence of transformations, in the case of VNet are convolutional operations, Batch Normalization and
ReLU non linear activation units.

USE-Net 3D. USE-Net 3D [77] is also and encoder-decoder architecture with squeeze & Excitation (SE)
attention mechanisms [34] placed at the end of each encoder layers. SE improves the representational power
of the initial U-Net 3D model by enabling it to perform dynamic channel-wise feature recalibration. The SE
block aims to adaptively adjust the importance of each channel in the feature maps, thereby allowing the
network to focus more on the most informative features. The squeeze operation is given by Equation 5.5

Xsqueeze =
1

H ×W ×D

H∑
h=1

W∑
w=1

D∑
d=1

xchannel
hwd (5.5)

Where H,W,D are the spatial dimensions of the volume representing the depth, weight and height while
channel are the number of channels. The excitation operation is given by Equation 5.6

Xexc = σ(W2ReLU(W1Xsqueeze)) (5.6)

where Xsqueeze is the outcome of Equation 5.5, W2,W1 are the weights of fully connected neural networks, σ
is the sigmoid function and ReLUistheRectifiedLinearUnit. Finally the outcome of the SE layer is given
by

SE = Xexc ∗ xchannel
hwd (5.7)

where Xexc is the outcome of Equation 5.6 and xchannel
hwd is the input of the SE layer.

Dense2U-Net 3D. Dense2U-Net 3D [4] is a variant of 3D U-Net architecture. However instead of
using typical CNN layers, it utilizes Densely Connected CNNs. More specifically, in typical CNNs each
layer receives input only from its immediate predecessor while in Densely connected CNNs, each layer
receives input from all preceding layers. This layer architecture facilitates more efficient gradient flow during
backpropagation, mitigates the vanishing gradient problem, and encourages feature reuse, thereby making
it possible to train deeper networks with fewer parameters. The expression that define Densely connected
CNNs is given by Equation 5.8

xl = Hl([x0, x1, . . . , xl−1]) (5.8)

where [x0, x1, . . . , xl−1] are the concatenations of each layer l[0, length(l)] sequentially.
TransU-Net 3D. TransU-Net 3D [14] incorporates the Vision Transformer (ViTs) [21] architecture as a

bottleneck for intensive feature extraction at the very last step of the contracting path. The idea is to analyse
feature maps as sequences of patches and apply self-attention mechanisms to capture both local and global
dependencies. More importantly, Unlike CNNs, which capture local features through small receptive fields,
the self-attention mechanism in ViTs allows for capturing global context from the entire image. The equation
that describes self-attention mechanism which is the main component of ViTs are given by Equation 5.9

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (5.9)

Initially, the feature maps are divided into N overlapping patches where N is a hyperparameter. Eq.5.10
gives the expression for the patchification of the volumetric feature maps.

patchWHD = Convolution(Xinput)

features = embedding dimension, kernel size = strides
(5.10)
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Where embedding dimension are the number features in the embedding space, kernel size and strides
are set accordingly based on the number of patches for each axis for each volumetric patch patchWHD with
dimensions W,H,D for weight height and depth, respectively. After that operation each volumetric patch
is flattened in a 1-dimensional sequence and positional encodings assigned to each sequence to provide the
model with information about the position of each element in the sequence. these are given by Equation 5.11

embs =

length(patches)∑
posenc=1

Flatten(patchposenc
WHD ) + posenc (5.11)

where patches are the total number of patches and posenc is a value related to the position of each patch.

transl = LayerNorm(x+MultiHeadAttention(embs, embs, embs))

trans = LayerNorm(transl + FeedForward(transl))
(5.12)

where MultiHeadAttention(embs, embs, embs) is the multiple self-attention obtained from Equation 5.3,
transl is the outcome of each transformer layers, FeedForward is the fully connected neural network and
LayerNorm is the layer normalization component.

nnU-Net. The nnU-Net [40] is considered a state of the art in medical image segmentation tasks while
its novelty comes to the automatic hyperparameter configuration to provide strong performance across a
wide range of 2D and 3D segmentation. nnU-Net contains 3 architectures namely, U-Net 3D, Cascaded
U-net and U-Net 2D while for the experiment the 3D full resolution U-net was chosen.

Hyperparameters Selection

The training hyperparameters utilized for each individual model training are presented in Table 5.23. Ini-
tially, the models were trained using the Sigmoid Focal Crossentropy loss function [49]. However, the obtained
results for the same architectures were significantly lower. Consequently, a combination of Dice and Binary
Crossentropy loss functions employed. The same approach is implemented within the plans configured by
nnUnet. Moreover, the utilization of a cyclical learning rate, characterized by a comparatively low minimum
learning rate, is favored to facilitate the optimization of models towards attaining optimal local minima.
Simultaneously, a high maximum learning rate is employed to aid models in escaping local minima and
exploring the global ones. The cyclical strategy assists the models to diverge the learning rates values from
maximun to minimum learning rate periodically.

Hyperparameters / Models Loss Function Activation Function Batch Size Epochs Training Strategy Optimizer Callbacks
U-Net 3D Weighted Combination of DC & BCE (a:0.7, b:0.3)

Sigmoid
4 250

Cyclical Learning Rate
Max Learning Rate: 0.01,
Min Learning Rate: 0.0001

Adam Model
Checkpoint

Attention U-Net 3D Weighted Combination of DC & BCE (a:0.7, b:0.3)
VNet Weighted Combination of DC & BCE (a:0.7, b:0.3)

USE-Net 3D Weighted Combination of DC & BCE (a:0.7, b:0.3)
Dense2U-Net 3D Weighted Combination of DC & BCE (a:0.7, b:0.3)
TransU-Net 3D Weighted Combination of DC & BCE (a:0.7, b:0.3)

nnU-Net Combination of Dice Loss & Binary Crossentropy 18 1000
Polynomial LR

Init LR: 0.01, Momentum: 0.99,
Nesterov: True, Decay: 0.00003

SGD

Table 5.23: Model Training Hyperparameters.

DL Models Configuration

In this analysis various model configurations were used to find the optimal ones. For instance, different
kernel sizes for each convolutional operation and pool sizes for each layer tested with the best proven ones
to be those of Table 5.24. Throughout the experiments, the worst configurations proved to be those with
isotropic kernel size of 3 across each encoding and decoding layer and isotropic pool sizes of 2, respectively.
This may attributed to low spatial resolution of the axial plane. On the contrary, identity pool sizes of 1 for
the axial plane for the 2 first layers of the encoding path proved to be the most effective ones. The same
applies for the kernel sizes where the a kernel size of 1 for the axial plane at the 2 first layers was the best,
as indicated by the automatic configuration of nnU-Net.
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U-Net 3D Attention U-Net 3D VNet USE-Net 3D Dense2U-Net 3D TransU-Net 3D nnU-Net
Kernel Sizes (1,3,3), (1,3,3), (3,3,3), (3,3,3), (3,3,3)
Pool Sizes (1,2,2), (1,2,2), (2,2,2), (2,2,2) (1,1,1), (1,2,2), (2,2,2), (2,2,2)
Filters (32,64,128,256,512) (32,64,128,256,320)

Patch Size - - - - - (1,3,3) -
Transformer Layers - Heads - - - - - 8 -8 -

Dense Size - - - - 8 - -
Growth Rate - - - - 4 - -

Dropout 0.3 -

Table 5.24: Model Architecture Hyperparameters.

Results

The following section showcases the segmentation performance of DL models to identify primary lesions
located within the WG. The experiments performed included 350 cases for train-validation & 69 cases as
a hold-out set. The models’ and training hyperparameters were tuned in the train-validation experiment
while the hold-out set kept apart for evaluation purposes. Table 5.25 highlights the performance of each
model in the hold-out set. In terms of purely segmentation metrics like volumetric dice score (VDS) and
Hausdorff distance (HD) nnU-Net seems to outperform all the compared models with a large margin. For
instance, nnU-Net achieves mean VDS 36.1 % while the second best performing (TransU-Net 3D) reaches,
at most, 31.1 %. Same applies for the HD where nnU-net is significantly better than the second one, which
in this case is Attention U-net 3D. However, regarding Recall, TransU-net 3D is the most dominant one,
by a significant difference of 14% from nnU-Net while it retains a relatively comparable precision with the
other models. On the other hand, nnU-net reaches a precision of almost 50% outperforming VNet, which is
the second best by 5.5%. Sensitivity analysis also included as a part of this experiment to investigate the
optimal thresholds to flatten the sigmoid outcomes from each model and produce the final binary masks.
The most notable part is that for all the models, the optimal threshold resulted to be that of 0.05 where this
threshold may take continuous values from SigmoidOutcome ∈ [0, 1 ].

Volumetric Dice Score
( % )

HD
( mm )

Precision
( % )

Recall
( % )

Optimal Threshold
(Outcomes Flatten)

U-Net 3D 27.6 22.8 31 36

0.05

Attention U-Net 3D 27.1 20.1 35.3 27.9
VNet 29.1 21.5 43.8 30.1

USE-Net 3D 28 23.2 41.5 28.2
Dense2U-Net 3D 19.5 33.2 20.3 39.5
TransU-Net 3D 31.1 21 36.1 46.7

nnU-Net 36.1 14.1 49.3 32.1

Table 5.25: Mean Results for each model and metric.

Vendor Specific Results In Table 5.26, the mean VDS is presented with respect to each MR Vendor for
the hold-out set. It is clearly evident that the majority of the models indicate a significant VDS variability
across vendors. On the contrary, TransU-Net 3D proved to be less prone to variations across vendors with
a standard deviation(std) of 3.91% while the second less prone to vendor model, namely Atention U-Net
3D, achieves an std of 6.19%. The best performing model, nnU-Net, has an std of 8.55% . Noteworthy, the
compared models have their performance significantly degraded on Siemens Vendor.

Correlation with Lesion Axial Diameter In this analysis t-SNE utilized for reducing the dimen-
sionality of a subset of features for projection in a lower dimensional space. It allows us to visualize these
features in a scatter plot by mapping it into two dimensions as components 1 and 2. The algorithm behind
t-SNE calculates the probability of relationships between pairs of data points, in the vector space. Essentially
t-SNE aims to maintain the relationships of the features when projecting them onto a vector space. More
specifically, VDS & Recall correlated with DL models and Lesion Axial Diameter in mm to identify possible
clusters. Figure 5.28 present the t-SNE components originated from VDS distribution with respect to (a)
lesion sizes and (b) DL models and those originated from Recall with respect to (c) lesion sizes and (d) DL
models. Regarding VDS, Figure 5.28a and Figure 5.28b highlight that Lesion axial Diameters > 15 mm are
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Philips Siemens GE Medical System
U-Net 3D 28.5% 21.2% 39.5%

Attention U-Net 3D 31% 20.7% 31.8%
VNet 31.2% 18.3% 32.2%

USE-Net 3D 29.3% 19.9% 41.6%
Dense2U-Net 3D 26% 8.8% 23.8%
TransU-Net 3D 34.7% 26.9% 31.4%

nnU-Net 36% 30.9% 47.6%

Table 5.26: Mean VDS results for each MR Vendor.

close to each other for each model’s performance while lesions with axial diameter < 15 mm are much more
distant between each other & between lesion with axial diameter > 15 mm. Especially for lesions with a
diameter > 18 mm models’ outcomes seem to be less variant with each other and with different diameter
categories indicating similar performance.

(a) Lesion size Comparison with respect to VDS (b) Model Comparison with respect to VDS

(c) Lesion size Comparison with respect to Recall (d) Model Comparison with respect to Recall

Figure 5.28: t-SNE Analysis with respect to VDS & Recall, Axial Lesion Size in mm and DL model.

Discussion

Figure 5.29 shows the overlap of GT binary masks and predicted binary masks for 4 cases and the compared
models. The most notable component is that of case 3, wherein the dimensions of the lesions exhibit a
significant degree of overlap with the WG. However, it should be noted that out of all the models evaluated,
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only two models, namely TransU-Net 3D and nnU-net, were able to provide predictions. Notably, the TransU-
Net 3D model demonstrated a high level of efficiency by accurately predicting the entire lesion area. Prostate
lesion segmentation pose a particular difficulty due to variations in sizes and textures. Although Dense2U-
Net 3D demonstrated strong prediction capabilities for Case 1 and 4, it exhibited a complete inability to
generate a binary mask for Case 2 and 3. These findings further indicate the presence of diversity in the
results obtained by the VDS across different networks.

Figure 5.29: Overlap between GT and predicted binary masks for 4 cases.

5.4 On the performance of 2D & 3D models on index lesion seg-
mentation with a curated dataset

5.4.1 Introduction

In this section, we detail the evaluation of the nnUNet framework for segmenting index lesions using a specific
subset of the ProstateNet data. Only the T2-weighted axial images along with the lesion segmentations were
used for this study.

5.4.2 Methods

Data Curation. The primary dataset consisted of 440 cases from 12 clinical centers and 4 manufacturers
(as of 01/08/2023). This number was narrowed down to 419 after excluding cases where the T2-weighted
sequences were fat-suppressed or when an endorectal coil was employed. A thorough visual review of the
segmentations was undertaken to determine their appropriateness for deep learning modeling. During this

118



Deep Learning Master models and Radiomic Signatures
CHAPTER 5. DEEP LEARNING MASTER MODELS

phase, we identified several categories of concern. While some were addressed and included in the dataset,
cases related to unresolved issues were omitted (refer to Table 5.27 for details on these issues). The final
dataset comprised 301 cases. Of these, 241 were designated for training and 60 for testing, following an
80/20 training/testing split. Table 5.28 displays the final distribution based on manufacturer and provider.

Issue Count

1 or more slices missing from the annotation 9
Challenging annotation 59
2 lesions with the same annotation label 10
Mixup of Whole Gland and Lesion annotations 21
Conversion to nifti issues 21

Table 5.27: List of unresolved issues and their respective counts. Note that a case may have more than 1
issue.

Manufacturer GE Medical System Philips Siemens Toshiba
Provided by

FCHAMPALIMAUD 0 26 1 0
FPO 3 0 0 0
HACETTEPE 14 24 42 0
HULAFE 18 0 2 0
IDIBGI 9 25 0 0
IPC 17 0 0 0
JCC 0 0 10 1
NCI 1 26 0 0
QUIRONSALUD 0 11 0 0
RADBOUDUMC 0 0 18 0
RMH 12 7 33 1
Total 74 119 106 2

Table 5.28: Distribution of cases based on the manufacturer and provider.

Data Preprocessing. The images were center-cropped, as needed, using a fixed-size box with dimen-
sions (115.0, 110.0, 130.0) mm for the x (L-R), y (P-A), and z (I-S) axes, respectively. The dimensions were
selected to strike a balance between including all potential lesions and minimizing the input space’s dimen-
sionality. Segmentations were enhanced by retaining the largest connected component and filling any gaps.
This step helped eliminate unrelated single pixels distant from the lesion and any lone-pixel gaps within
segmentations observed during the review. Subsequently, the data were processed with nnUNet to define
the normalization function, target spacing, and training/network parameters. The chosen normalization was
z-score, and the target spacings were (0.462,0.462) for in-plane dimensions and 2.999 for slice-thickness (used
only in 3D configuration).

Network Configurations. Both the 2D and 3D configurations of UNet supported by nnUNet were
examined. For the 2D setup, the patch size was set to (256, 256), while for the 3D setup, it was set to (28,
256, 256). The design of the 3D network adheres to the classic encoder-decoder paradigm seen in U-Net
architectures. The encoder is composed of seven stages, with channels increasing from 32 to 320. Each stage
is made up of stacked blocks containing two 3D convolutional layers. The convolution kernel size starts at
(1,3,3) and shifts to (3,3,3) as the channel count grows. The decoder reflects the encoder’s structure but also
incorporates skip connections. It begins by expanding the channel count and then gradually decreasing it
in the later stages. Throughout the architecture, 3D data undergoes processing via 3D convolutions. Both
instance normalization and LeakyReLU activations are uniformly used across the network. The 2D variant
of the network is quite similar in design, but it can extend to as many as 512 channels or features.

Training. We followed the default nnUNet training procedure, which involves 1000 epochs, with each
epoch defined as 250 iterations using a specified batch size of 49 for 2D and 2 for 3D configurations. The
optimizer chosen was the stochastic gradient descent with an initial learning rate of 0.01, a nesterov mo-
mentum of 0.99, and a linear polynomial LR schedule. The loss function was a balanced combination of
the Dice coefficient and cross-entropy with deep supervision. nnUNet’s default data augmentation, which
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includes rotations and noise, was applied. For both 2D and 3D configurations, an ensemble of five models
was trained in a 5-fold cross-validation manner.

Inference. During the evaluation phase, the T2-weighted sequence of each test case was fed into each
model in the ensembles, encompassing both 2D and 3D configurations, via the nnUNet API. nnUNet de-
rives the final prediction by averaging a collection of predictions for each model. This collection comprises
predictions from various patches (if needed) and reflections across every dimension. Consequently, for each
ensemble, there were five probability maps, each representing predictions from models trained on distinct
folds. These maps were then averaged over the five folds. Segmentations were subsequently derived by
applying two separate thresholds, 0.05 and 0.5, leading to a unique segmentation for each ensemble at both
thresholds. No further post-processing steps were undertaken.

Analysis We used counting metrics like Dice, Precision, and Recall to evaluate the models’ semantic
segmentation and object detection capabilities. Additionally, the 95th and 100th percentiles of the Hausdorff
Distance (HD95 and HD, respectively) were computed for a more detailed performance analysis.

5.4.3 Results

The 5-fold 2D and 3D UNet ensembles were trained using 241 cases and tested on the remaining 60. nnUNet
generates both a best and a final checkpoint for each model. The results presented here pertain to the
best checkpoint, as it showed marginally superior performance. Table 5.30 presents the average metric
values across the two ensemble configurations, evaluated at two distinct thresholds. The inclusion of these
thresholds in our analysis stems from the observation that model-generated probabilities often gravitate
towards extreme values. As a result, a lower threshold effectively shifts the ensemble’s interpretation strategy:
rather than averaging the predictions of its constituent models, the ensemble determines if any single model
positively predicts a voxel.

Model Threshold Dice (%) Recall (%) Precision (%) HD (mm) HD95 (mm)

2d
0.05 83.0 86.1 - - -
0.5 80.4 75.1 - - -

3d
0.05 91.9 92.9 91.6 2.180 0.775
0.5 89.3 85.0 - - -

Table 5.29: Macro-average metrics of the ensemble of models on training dataset. Empty metrics are due to
blank predictions

Model Threshold Dice (%) Recall (%)

2d
0.05 35.9 33.0
0.5 27.8 22.3

3d
0.05 44.2 42.3
0.5 40.1 35.6

Table 5.30: Macro-average metrics of the ensemble of models on the full testing dataset (N=60).

Upon examining the Dice coefficients from the ensemble results presented in Table 5.30, it becomes evident
that the 3D ensemble consistently surpasses its 2D counterpart. More specifically, for the 0.05 threshold, the
3D ensemble achieves a Dice score of 44.2% as opposed to the 2D ensemble’s 35.9%. Similarly, at the 0.5
threshold, the 3D ensemble attains a Dice score of 40.1% compared to the 2D ensemble’s 27.8%. Evidently,
the performance is amplified when adopting the lower 0.05 threshold in both ensemble configurations.

Regarding Recall, the pattern is analogous to the Dice coefficient pattern. However, it’s notable that
Recall scores are consistently lower than their corresponding Dice scores. The disparity is more accentuated
at the 0.5 threshold, where the differences amount to 5.5% for the 2D ensemble (27.8% Dice vs. 22.3%
Recall) and 4.5% for the 3D ensemble (40.1% Dice vs. 35.6% Recall). When the threshold is set at 0.05,
these discrepancies shrink to 2.9% for the 2D ensemble (35.9% Dice vs. 33.0% Recall) and 1.9% for the 3D
ensemble (44.2% Dice vs. 42.3% Recall). Such observations underscore that the enhancements in Dice scores
predominantly stem from the models’ heightened sensitivity.
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Certain metrics, including Precision, HD, and HD95, were not computable across the entire testing
dataset due to instances in every configuration where predictions were void or blank. Specifically, as detailed
in Table 5.31, when considering the 0.05 threshold, 10 and 10 subjects from the 2D and 3D ensembles
respectively had such blank predictions. For the 0.5 threshold, these counts increased to 17 and 13 for the
2D and 3D ensembles, respectively. In these scenarios, Precision becomes undefined, and the Hausdorff
Distance (HD) would be infinitely large, skewing any averages.

To provide a clearer picture of model performance, Table 5.31 presents metrics computed only on cases
with non-blank predictions. As anticipated, Dice and Recall scores in this table surpass those from the full
dataset, given the exclusion of blank predictions. Notably, the 3D ensemble with a threshold of 0.05 emerges
as the top performer, recording a Dice score of 53.0% and a Recall of 50.8%.

In all configurations, Precision consistently exceeds Recall. The most significant gap appears in the 2D
ensemble with a threshold of 0.5, where Precision is 73.9% against a Recall of 31.1%, leading to a difference
of 42.8%.

Assessing the Hausdorff Distances, the 3D ensemble consistently reports lower HD and HD95 values than
the 2D ensemble across both thresholds. Specifically, for the 3D ensemble, the HD reduces from 15.158 mm
at a 0.5 threshold to 13.375 mm at a 0.05 threshold, while the HD95 diminishes from 12.020 mm to 10.395
mm. Conversely, in the 2D ensemble, both HD and HD95 increase when the threshold is lowered: HD values
change from 16.562 mm (0.5 threshold) to 18.022 mm (0.05 threshold), and HD95 values shift from 13.356
mm to 14.241 mm.

Model Threshold N Cases Dice (%) Recall (%) Precision (%) HD (mm) HD95 (mm)

2d
0.05 50 43.1 39.6 65.1 18.022 14.241
0.5 43 38.7 31.1 73.9 16.562 13.356

3d
0.05 50 53.0 50.8 70.1 13.375 10.395
0.5 47 51.1 45.4 74.9 15.158 12.020

Table 5.31: Macro-average metrics of the ensemble of models on testing dataset, excluding blank predictions.

5.4.4 Discussion

In our investigation, we trained and tested 2D and 3D ensembles on a meticulously selected subset of the
ProstateNet dataset’s index lesion annotations. The data revealed a consistent trend: the 3D ensemble
surpassed the 2D ensemble across all evaluated metrics, underlining the potential advantage of 3D modeling
in this context.

A notable observation was the disparity between Recall and Precision scores. The lower Recall, juxtaposed
with notably higher Precision, suggests that the primary challenge for the models lies in accurately detecting
the presence of lesions. The significant count of blank predictions further bolsters this assertion.

Considering these findings, there may be merit in exploring ensembles composed of diverse models. These
models could leverage varied strategies, such as incorporating different input modalities, and prioritize pre-
cision. The saturated probabilities produced by the models suggest two potential ensemble strategies. When
adopting a threshold of 0.5, the ensemble tends towards a ”majority with equal vote” strategy, seeking a
collective consensus among the models. On the other hand, a threshold of 0.05 leans towards a strategy
where even a few models’ positive predictions can influence the overall ensemble decision. Given the ob-
served improvement in model performance with reduced thresholds, further exploration of these combination
strategies might prove beneficial.

5.5 On the impact of mpMRI sequence combination to automat-
ically detect prostate cancer

5.5.1 Introduction

AI-based systems have been proposed to support radiologists to overcome important issues of prostate cancer
(PCa) diagnosis pathway, by automatically detecting and characterizing PCa on magnetic resonance imaging
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(MRI). These systems have contributed to the improvement of the detection rate while reducing reading time
and inter-reader variability. Thanks to the increased availability of medical image datasets, deep learning
(DL) algorithms have been preferred over traditional machine learning (ML) techniques for their ability
to learn directly from data/images, without the need for extracting predefined parameters from suspected
areas. However, one advantage of ML techniques is that they can easily combine different MRI sequences
into a single vector that can be fed to the classifiers, mimicking the radiologist’s behavior when reporting
prostate multiparametric MRI (mpMRI). Indeed, among mpMRI sequences, T2-weighted (T2w) images,
diffusion-weighted (DWI) sequence and the associated apparent diffusion coefficient (ADC) map are equally
important to detect PCa in both peripheral (PZ) and transition (TZ) zones. Therefore, assessing the impact
of different ways to combine different MRI sequences is very important to improve performances in detection
and segmentation of PCa. We evaluated three different ways of combining mpMRI using two different DL
architectures.

5.5.2 Methods

Networks architectures

We developed two different structures based on the U-Net architecture:

1. Unet-Resnet50 encoder (UR 50): in which the encoder of the U-Net has been replaced with a a ResNet-
50, characterized by 50 layers (48 Convolution layers along with 1 MaxPool and 1 Average Pool layer).
ResNet differs from the other CNNs for the presence of the skip connections that link the original input
to the output of each convolutional block.

2. Unet-standard encoder with Attention Gate (UR ATL): attention gates are incorporated into the
standard U-Net architecture to highlight salient features that are passed through the skip connections,
in order to highlight only the relevant activations during training. This reduces the computational
resources wasted on irrelevant activations, providing the network with better generalization power.

Development and validation of the segmentation models

We compared three different strategies to combine complementary information coming from the different
mpMRI sequences, i.e., T2w, ADC, and high b-value DWI (hbDWI). The following configurations were
trained and validated:

• 3-channels input (model 1): T2w, ADC map, and hbDWI were concatenated and given as a single
input of the UR 50 net.

• Multi-output (model 2): each sequence (T2w, ADC, and hbDWI) was used as input of a single channel
UR 50 and the output image was created by averaging the results of the single networks.

• Multi encoders-single decoder with Attention Gate (model 3): we used the UR ATL with three branches
(encoders), each having a different combination of the three MR sequences (i.e., T2w-ADC-T2W/T2W-
ADC-hbDWI/T2-hbDWI-ADC etc).

All models have been trained with the Adam optimizer and a learning rate of 0.001, β1 of 0.9, and β2
of 0.999. Data Augmentation was used during the training, to reduce the overfitting of the model. Among
the different data editing techniques, we decided to use Flipping in which vertical or horizontal rotations
are applied, and Random Rotation, in which rotations are applied randomly by 30◦. The loss function was
a combination of two metrics: Dice similarity coefficient and the Binary Focal loss, as follow:
LossFunction = DiceLoss+BinaryFocalLoss

Before feeding the networks, some pre-processing steps were applied. First, in case T2w and hbDWI/ADC
didn’t have the same slice thickness, they were co-registered with the T2w image, using an elastic transfor-
mation and the mutual information as metric. Then, all sequences were cropped and resampled in order
to have the same resolution and field of view (FOV), and the N4 bias correction filter was applied to the
T2w image to correct inhomogeneities due to the coil. Finally, each sequence was cropped around the au-
tomatically segmented prostate area using a bounding box of 224x224 pixels to ease the network training
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Figure 5.30: Distribution of centers and scanners among training and test set

and reduce the computational cost. Then, a pixel standardization using the z-score technique was applied at
the patient level. Pixel intensities values were rescaled between 0 and 1, and all voxels outside the prostate
area were set to 0. Finally, 2D slices were transformed into RGB images since CNNs are mostly designed for
natural images which usually have three channels. Since each model requires different input configurations,
RGB images were obtained differently according to the model used: for models 1 and 4, each RGB channel
is represented by a different sequence (T2w, ADC, and hbDWI), while for models 2 and 3 each channel was
fed with a single sequence converted to RGB image, i.e., T2W-Grayscale to RGB, ADC-Grayscale to RGB,
and hbDWI-Grayscale to RGB.Once the output images were generated, a binary threshold filter was applied
to the probability maps returned by the networks to obtain the automatic masks of the tumors. Then,
connected areas smaller than 50 voxels were discarded.
Each model was trained by transfer learning using weights obtained during a pre-training performed on other
cases from one partner (FPO) with endorectal coil.

5.5.3 Results

Patients

For this task, we used all patients having a biopsy confirmed PCa and a manual segmentation of at least
one tumor. A total of 371 tumors were collected, 312 used to train and tune the models, and 59 to test the
networks on a subset of unseen tumors. To avoid bias, the random selection of tumors was made based on
patients. Fig. 5.30 shows the distribution of centers and scanners among training and test set.

Results on training and validation set

Table 5.32 and table 5.33 show results obtained by the 6 networks (3 models with two different initialization
methods) on both the training and the validation set. Detection rate (DR)-patient refers to the number of
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patient in which a lesion was detected (regardless of whether it matches exactly the position of the manually
segmented tumor) over the total number of positive patients. DR-lesion refers to the total number of detected
lesions over the total number of lesions. In this case, a PCa was considered detected if the Dice Similarity
Coefficient (DSC) between manual and automatic masks was >0.10. Model 2 reached the highest DR per
patient, however DR per lesion was extremely low. Moreover, these models produced a higher number of
false positive (FP) either in terms of volumes and as number of voxels. Model 1 and model 3 obtained good
performances in terms of detection rate and showed a good compromise between detection rate and number
of FPs, in particular considering volumes of FPs.

Figure 5.31 shows the violin plots of Dice Similarity Score (DSC) considering the whole automatic mask
(ALL) and only detected lesions, i.e., DSC >0.10 (TP). From the graphics, we can infer that model 1 and
3 are those reaching the highest accuracy in segmenting PCas, reaching a median DSC of 0.53 and 0.57,
respectively, when considering TP lesions. From the distributions of the violin plot, we can also observe that
when the tumor is detected, model 3 has a higher number of lesions better segmented (i.e., the curve is more
concentrated around the mean value).

Model DR-patient [rate] (%) DR-lesion [rate] (%) DSC-Patient False negatives/N voxels
M1 195/250 (78%) 184/250 (74%) 0.7 5/465
M2 246/250 (98%) 213/250 (85%) 0.5 7/2937
M3 211/250 (84%) 180/250 (72%) 0.62 6/656

Table 5.32: Results of the three models on the training set. DR=Detection Rate, DSC=Dice Similarity
Score, False negatives and N voxels are reported as the median number for patient.

Model DR-patient [rate] (%) DR-lesion [rate] (%) DSC-Patient DSC-Lesion False negatives/N voxels
M1 52/62 (84%) 41/62 (66%) 0.47 0.53 1/575
M2 62/62 (100%) 50/62 (81%) 0.27 0.44 3/3747
M3 50/62 (81%) 37/62 (60%) 0.50 0.57 0/455

Table 5.33: Results of the three models on the validation set. DR = Detection Rate, DSC = Dice Similarity
Score, False negatives and N voxels are reported as the median number for patient.

Figure 5.33 show the distribution of FNs of the training set, in terms of percentage,among centers and
scanners.

Figure 5.32 shows the median number of false positives per patient stratified for vendors (Fig. 5.32a) and
for centers (Fig. 5.32b). Considering FPs per patient, model 2 obtained the worst results, since for some
centers there were, in median, more than 4 FPs findings per patient. Conversely, model 1 and 3 obtained
comparable results in terms of FPs, with no clear differences among centers and scanners.

Figure 5.33 shows the percentage of patients in which the index lesion was not detected separately for the
cases in which the slice thickness between the sequences was equal (orange) and different (blue). Except for
model 2, most FNs were in patients in which the slice thickness was different, i.e., 39% and 45%, respectively
in model 1 and 3, of index lesion in patients with different slice thickness were FNs vs 28% and 34% of
index lesions in patients with the same slice thickness. This might be due to the fact that the coregistration
between different sequences introduces reconstructed voxels that might no correctly reflect the correct signal
intensity.

Results on test set

Table 5.34 reports the results of the three networks on the test set in terms of detection rate and number of
FPs. As anticipated during the training, model 2 can’t be used for segmentation purposes, due to the low
DCS and number and volumes of FPs, while model model 1 and model 3, obtained comparable results.

Figure 5.34 shows the violin plots of Dice Similarity Score (DSC) on the test set considering the whole
automatic mask (ALL) and only detected lesions, i.e., DSC >0.10 (TP).

Figure 5.35 confirms what we observed in terms of FPs of the three models among centers and vendors. In
this case, model 3 seems to be that obtaining the highest precision in segmenting the tumor, at the expense
of a slight decrease of detection rate.
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Figure 5.31: Violin Plot of Dice Similarity Score (DSC) obtained on the training set considering the whole
automatic mask (ALL) and only detected lesions, i.e., DSC>0.10 (TP)

(a) Median number of false positive lesions on the valida-
tion set, grouped by vendors

(b) Median number of false positive lesions on the valida-
tion set, grouped by vendors

Figure 5.32: Median number of false positives
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Figure 5.33: Percentage of false negatives index lesions on the validation set among patients having same
slice thickness between sequences (orange) and a different slice thickness (blue).

Discussion

In our investigation, we trained and tested 3 different architectures for PCa detection and segmentation
using a multi-parametric input. We observed that using networks that combine images at input-level seems
to perform better in terms of segmentation’s precision. However, the model that combined three different
networks each fed with a different sequence was the one obtaining the highest detection rate, either at patient-
level and at lesion-level. Considering these results, there may be worthy to combine different networks to
increase either detection rate and number of false positives. Results obtained on the master model were
promising, however it must be noticed that a number of issues should be faced. First, the dataset comprised
images from 4 different vendors, therefore different normalization techniques should be exploited. Moreover,
some images were acquired with endorectal coil (ERC) and others without. The ERC introduces strong
artifacts (either in signal intensity and geometrical), therefore the pre-processing should be differentiated
according to the presence of the ERC. Also, a larger number of cases with endorectal coil might be useful
to increase performances. From our results, we also pointed out the need of perform further analysis while
co-registering different sequences (when the slice thickness is different between sequences) to reduce artifacts
that might be introduced by the registration itself.
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Model DR-patient [rate] (%) DR-lesion [rate] (%) DSC-Patient DSC-Lesion False negatives/N voxels
M1 52/59 (75%) 41/59 (64%) 0.50 0.58 0/537
M2 62/59 (88%) 50/59 (83%) 0.28 0.40 2/4167
M3 50/59 (75%) 37/59 (58%) 0.44 0.53 0/476

Table 5.34: Results of the three models on the test set. DR=Detection Rate, DSC=Dice Similarity Score,
False negatives and N voxels are reported as the median number for patient.

Figure 5.34: Violin Plot of Dice Similarity Score (DSC) obtained on the test set considering the whole
automatic mask (ALL) and only detected lesions, i.e., DSC >0.10 (TP)
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(a) Median number of false positive lesions on the valida-
tion set, grouped by vendors

(b) Median number of false positive lesions on the valida-
tion set, grouped by vendors

Figure 5.35: Median number of false positives on test set.

Figure 5.36: Percentage of false negatives index lesions on the validation set among patients having same
slice thickness between sequences (orange) and a different slice thickness (blue)
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5.6 Validation of ProCAncer-I prostate segmentation tool

In the scope of ProCAncer-I, there is the goal of developing algorithms for automatic segmentation of both
prostate regions and lesions. For prostate regions Quibim provided an already integrated first version of an
automatic segmentation tool in the ProstateNet platform. As mentioned earlier in the deliverable, the tool
was used by the radiologists during the process of segmentation, helping them by non starting from scratch
as it is known that manual segmentation is a time consuming task. The resulting final segmentations were
used as ground truth for developing a new version of the automatic segmentation tool that will be trained
and tested using the ProCAncer-I data.

In this section we present the results of the validation performed on the first version of the tool with the
segmentations performed by the clinical partners.

5.6.1 Data

To validate the version 1 of the tool (V1) for automatic prostate region segmentation, we utilized a dataset
comprising 552 cases, each with radiologist-validated segmentations. These cases were sourced from 12
different providers and acquired using equipment from three distinct manufacturers. The segmentation
process exclusively employed MRI T2-weighted (T2w) images.

The dataset encompassed four image categories based on visual characteristics Figure 5.37:

1. Normal T2w Images: These images featured an enlarged prostate region and constituted the ma-
jority of the dataset.

2. Endorectal Coil Images: In some cases, patients underwent imaging with an endorectal coil, result-
ing in darker images.

3. Whole Pelvis Field of View: Images in this category provided a view of the patient’s entire pelvic
region.

4. Fat Suppression Sequence: A subset of images included a fat suppression sequence.

Figure 5.37: Description of the dataset used for V1 validation. 118 cases where excluded due to the image
category and the 435 rest were used.
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5.6.2 Validation of the tool Version 1

In the earlier stages of the project, Quibim integrated an automatic segmentation tool for prostate regions.
This tool was developed using deep learning techniques, specifically employing a UNET architecture. It
segments three distinct regions within the prostate: the Transitional + Central zone, the Peripheral Zone,
and the Seminal Vesicles [42].

However, it’s important to note that the training dataset used for this tool did not include images with
Endorectal Coil, Whole Pelvis Field of View, or fat suppression sequences. Consequently, these specific
image types were not considered in the subsequent analysis of the results, where the final number of cases
was 435 Figure 5.37.

The ground truth segmentations used for evaluation were primarily obtained by refining the masks
generated by the automatic segmentation tool. It is worth mentioning that this approach may introduce
variations in the results compared to a scenario where radiologists manually performed the segmentation
from scratch. These differences in segmentation origin could potentially impact the outcome of the validation
analysis. The results show that the algorithm performed very well Figure 5.38. The results were grouped
by manufacturer for each of the prostate regions to explore potential variability in the outcomes. For the
majority of the groups the mean dice score consistently exceeded 0.9, even surpassing 0.95 in some of the
groups, specially in Phillips cases Table 5.35. However, it’s worth noting that some of the ground truth
segmentations exhibited issues during the analysis, resulting in exceedingly low scores. These concerns have
been duly communicated to the data providers, and corrective measures have been performed.

Figure 5.38: Dice Score results for the segmentations of the V1 tool. CZ+TZ: Central Zone and Tranzitional
Zone; PZ: Periferal Zone; SV: Seminal Vesicles; WG: Whole Gland (CZ+TZ and PZ

DC Phillips GE Siemens

CZ+TZ 0.95 ± 0.12
1.5T 0.96 ± 0.12

0.92 ± 0.16
1.5T 0.93 ± 0.09

0.92 ± 0.08
1.5T 0.92 ± 0.08

3T 0.94 ± 0.12 3T 0.92 ± 0.20 3T 0.91 ± 0.07

PZ 0.94 ± 0.07
1.5T 0.94 ± 0.08

0.91 ± 0.12
1.5T 0.89 ± 0.13

0.86 ± 0.16
1.5T 0.87 ± 0.16

3T 0.94 ± 0.05 3T 0.92 ± 0.12 3T 0.85 ± 0.15

SV 0.95 ± 0.09
1.5T 0.96 ± 0.10

0.95 ± 0.11
1.5T 0.93 ± 0.14

0.92 ± 0.13
1.5T 0.92 ± 0.14

3T 0.94 ± 0.07 3T 0.96 ± 0.07 3T 0.92 ± 0.11

WG 0.96 ± 0.06
1.5T 0.96 ± 0.07

0.94 ± 0.11
1.5T 0.93 ± 0.10

0.93 ± 0.06
1.5T 0.93 ± 0.07

3T 0.96 ± 0.04 3T 0.94 ± 0.11 3T 0.93 ± 0.04

Table 5.35: Dice Scores for the V1 tool grouped by manufacturer and magnetic field strength
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5.6.3 Development of the tool Version 2

Within the framework of Task T6.2 in the ProCancer-I project, new automatic segmentation tool is aimed
to be developed using the project’s available data. As previously highlighted, the considerable variability in
the data arising from different manufacturers, magnetic field strengths, sites, and image acquisition protocols
presents a valuable opportunity to create a robust tool. As mentioned before, the initial version (V1) of the
algorithm was not trained with Endorectal Coil images, which consequently led to suboptimal segmentations
in cases involving these cases Figure 5.39. Given the substantial presence of Endorectal Coil cases in the
dataset (93 in total), one of the primary objectives for the forthcoming V2 of the automatic segmentation
tool is to demonstrate improved performance on these specific cases.

Figure 5.39: Example of bad segmentation performed by the V1 tool (Automatic) compared to the corrected
segmentation performed by radiologists (Semiautomatic) when Endorectal Coil is present in the image

Methodology

Similar to the previously described approach, the experiments to development of a new version of the tool
(V2) have been done using the nnUNet framework. nnUNet short for Neural Networks UNet, stands as a
cutting-edge framework at the forefront of the medical image segmentation. Built upon the foundation of the
well-known UNet architecture, nnU-Net represents an innovative deep learning segmentation approach that
autonomously tailors itself to new tasks within the biomedical domain. This self-configuration encompasses
preprocessing, network architecture, training, and post-processing, effectively streamlining the entire process
[41].

Different approaches have been tested for finding the best results in both types of images: without and
with Endorectal Coil.

1. Baseline model based on the 2D configuration trained with both types of images.

2. Model based on the 2D configuration trained only with “normal” images (without Endorectal Coil).

3. Model based on the 2D configuration trained only with Endorectal Coil images.

4. Baseline model based on 3D configuration trained with both types of images.

131



Deep Learning Master models and Radiomic Signatures
CHAPTER 5. DEEP LEARNING MASTER MODELS

Results

2D vs 3D baselines

When examining the outcomes from the two baseline models configured in both 2D and 3D, with both types
of images, no definitive superiority of one over the other emerged, as evident in Figure 5.40. In broad terms,
the Dice score exhibited fluctuations within the range of 0.85 to 0.91. Considering that the 3D approach
demands more time and resources, a strategic decision was made to proceed with the 2D configuration for
each image type.

Moreover, when narrowing down the dataset to either of the two image types, the overall number of
available images for training diminishes. This reduction could pose limitations when opting for the 3D
configuration, as it would necessitate a larger dataset to maintain robust performance.

Figure 5.40: Dice scores for TZ+CZ (Dice1), PZ (Dice2), SV (Dice3) and mean for both 2D and 3D
approaches.

Baseline vs non-EC model

Following the creation of the 2D baseline model, a dedicated model was developed specifically for images
without the Endorectal Coil (EC). This model was trained using a dataset consisting of 304 cases for training
and 66 cases for testing. Importantly, the data partitioning aligns with the same data split utilized in the
baseline approach. In other words, the 304 cases featuring non-EC images in the non-EC model approach
were the same used in the baseline, and this consistency extended to the test set as well to make the results
comparable.

The outcomes of the analysis shows good results over all, being the mean Dice scores for each of the
regions higher than 0.85 and even reaching 0.9 in the TZ+CZ Figure 5.41. Again not major differences are
found between approaches. The results show that having also the EC cases in the training dataset didn’t
change the overall results.

When analyzing individual results it can be seen that both models tend to be consistent in the predictions.
Only for some specific cases, there are significative differences such as in the case that can be seen in
Figure 5.42, where the non-EC model was able to segment better an abnormal PZ region.

Baseline vs EC model

Same approach than before was carried out for the 2D configuration for the EC model where the training set
contained 66 cases and the test set 28. As expected, the overall results were lower compared to the non-EC
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Figure 5.41: Dice scores for TZ+CZ (Dice1), PZ (Dice2), SV (Dice3) and mean for both 2D baseline and
2D non-EC model.

Figure 5.42: Example of non-EC model performing better than the 2D baseline for an abnormal case.

cases, but still good results Figure 5.43. The EC model performed slightly worse than the baseline for the
Endorectal Coil images, in our opinion, due to the fact that the final model is trained with much less data
than the baseline which could take advantage of using also the non-EC data to identify the morphology of
the prostate and its regions.

In the Figure 5.44 we can se an example of how the baseline model was able to segment better the PZ
(yellow) compared to the EC model.
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Figure 5.43: Dice scores for TZ+CZ (Dice1), PZ (Dice2), SV (Dice3) and mean for both 2D baseline and
2D EC model.

Figure 5.44: Example of baseline model performing better than the EC-model in the PZ.

Discussion

We have presented different approaches for the whole prostate gland segmentation master model where the
main objective was to improve the overall results and, specially, in the cases where Endorectal Coil was
present in the image. The 2D baseline model trained with both non-EC images and EC images shows good
results for both image categories. Furthermore, as demonstrated, specific models for each of them were
not able to improve significantly its performance. In summary, the 2D baseline shows good results in both
non-EC and EC images, showing that the model new version of the model could target EC images which
was an exlusion criteria in the V1 of the tool.

134



Deep Learning Master models and Radiomic Signatures
CHAPTER 5. DEEP LEARNING MASTER MODELS

5.7 Effect of dataset characteristics on segmentation performance

In the scope of the ProCAncer-I project, FCHAMPALIMAUD developed several segmentation models for
the tasks of whole gland, prostate zones (Peripheral and Transitional+Central) and lesion segmentation. The
models were evaluated not only on the ProCAncer-I dataset, but also in additional ones and combinations
between those and ProCAncer-I. The best models were then used to provide ground truths for the Radiomics
models, in cases where no previous ground truths were available. In this section, we present the methodology
behind the development of the models, as well as the extensive evaluation performed.

5.7.1 Methodology

Data description

Four different datasets were used in this study:

• Prostate158 is a collection of biparametric MRI volumes that include T2W, DWI and ADCmodalities.
These volumes were obtained by the German university hospital - Charité University Hospital Berlin,
using Siemens 3T MR scanners (VIDA and Skyra). Regarding the acquisition of the images, the
following description was provided by the authors of the paper:”T2w sequences were acquired with the
following parameters: slice thickness 3 mm, no interslice gap, in-plane resolution 0.47 × 0.47 mm, field
of view (FOV) size 180*180mm, time to echo (TE)/repetition time (TR) 116 ms/4040 ms, turbo factor
25, flip angle 160º, acquisition time 3 min and 56s” [2]

• ProstateX is a collection of prostate MRI volumes that include T2W, DWI and ADC modalities.
These volumes were obtained by the Prostate MR Reference Center — Radboud University Medical
Centre (Radboudumc) in the Netherlands, using two Siemens 3T MR scanners (MAGNETOM Trio
and Skyra). Regarding the acquisition of the images, the following description was provided by the
challenge’s organizers: ”T2-weighted images were acquired using a turbo spin echo sequence and had
a resolution of around 0.5 mm in plane and a slice thickness of 3.6 mm” [5]

• ProstateNet is a collection of multiparametric MRI volumes that include T2W, DWI and ADC
modalities. These volumes were obtained by the 12 clinical partners of the ProCAncer-I project.
These partners used Siemens (Aera, Skyra, Sola, Avanto, VIDA, Tim, Prisma, Veri, Symphony, Osirix),
Philips (Ingenia, Achieva, Multiva) and GE scanners (Optima, Signa, DISCOVERY). Given that each
center has specific acquisition protocols, no single one was used across all mpMRI studies used. Given
that labels could be defined automatically (using the QUIBIM-developed ProCAncer-I prostate region
segmentation tool), manually corrected but not validated and manually corrected and validated, we
define a hierarchy of annotations, selecting the whichever one is available first: 1) manually corrected
and validated (n=610), 2) manually corrected but not validated (n=30), 3) automatically generated
(n=65).

• ProstateAll is a combination of all previous datasets. It was created with the purpose of increasing
available data, as well as add even more heterogeneity, so that we could train more robust master
models which would not suffer from the caveats of institution, protocol and scanner manufacturer
variability.

Table 5.36 shows the entire composition of our entire dataset. From these values, 15% were used as
holdout-validation, and the remaining was used for training, following a 5-fold cross-validation strategy.

Deep learning model specification

Three distinct 3D deep-learning (DL) segmentation models were trained - a simple 3D U-Net model [76]
(U-Net), a 3D U-Net model with deep supervision [99] (U-Net + D.S.), and a 3D high-resolution nnUNet
model [41] (nnUNet).

Deep supervision is a technique that utilizes intermediate predictions, generated at each step of the
decoder to produce semantically meaningful features that will enhance the model’s performance, instead of
relying solely on the final output of the model.
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Gland
Total Siemens Philips GE

Prostate158 139 139 - -
ProstateX 182 182 - -
ProstateNet 638 152 245 239
ProstateAll 959 473 245 239

Zones
Prostate158 139 139 - -
ProstateX 181 181 - -
ProstateNet 638 152 245 239
ProstateAll 958 472 245 239

Lesions
Prostate158 82 82 - -
ProstateX 190 190 - -
ProstateNet 461 136 184 136
ProstateAll 733 408 184 136
ProstateNet
mpMRI

417 131 178 107

Table 5.36: Stratification of samples by manufacturer for all four segmentation datasets per task. Both the
ProstateNet and ProstateAll datasets also include a very residual amount (≤ 5) of Toshiba scanners, which
were accounted for in the Total values.

All networks are implemented in Pytorch [67], and trained for 1000 (250 mini-batches per epoch) or 200
epochs, for the nnUnet and U-Net/U-Net + D.S., respectively. Training for U-Net and U-Net + D.S. was
performed using Lightning [24], a low-code and heavily customisable framework for neural network training
and testing in PyTorch.

To train the nnUNet models, we used the provided 3D Full Resolution architecture. This framework
uses stochastic gradient descent with Nesterov momentum (µ = 0.99), a maximum initial learning rate of
0.01, and polynomial [16] learning rate policy which reduced the learning rate by a factor of (1− epoch

epochmax
)0.9.

The loss function is a combination of Dice and cross-entropy losses.
nnUNet applies automatic preprocessing based on the dataset fingerprint, thus the models for each dataset

worked on data with slightly different spatial structures:

• ProstateX - spacing = 0.5x0.5x3.0mm and crop size = 320x320x16 voxels

• Prostate158 - spacing = 0.4x0.4x3.0mm and crop size = 256x256x28 voxels

• ProstateNet - spacing = 0.5x0.5x3.0mm and crop size = 256x256x28 voxels

• ProstateAll - spacing = 0.5x0.5x3.0mm and crop size = 256x256x26 voxels

Additionally, similar to the U-Net + D.S., nnUNet also employs deep supervision. All models were
trained with a batch size of 2.

To train the U-Net and U-Net + D.S. models, we used a stochastic gradient descent optimizer
with 0.99 momentum with a maximum learning rate of 0.01, weight decay of 0.005 [52] and cosine decay with
a minimum learning rate of 0. The encoder is composed of five regular convolutional layers with kernel size
[3,3,3] and increasing depths (32, 64, 128, 256, 320) intercalated with 2x2 max-pooling operations with strides
[2,2,1], [2,2,1], [2,2,1], [2,2,2], [2,2,2], similar to what is used in nnUNet [41], while the decoder replicates the
encoder but replaces the max-pooling operations with transpose convolutions. In any case, Swish activation
functions [71] and instance normalization operations are used after each convolution, with a dropout [83]
probability of 0.1. The anysotropic max-pooling allows for the preservation of a minimal resolution of 4
in the slice dimension. Using a batch-size of 2, we sampled 256x256x16 patches from the image such that
patches with and without positive samples (i.e. voxels belonging to the prostate gland) are sampled equally.
A combo loss [86] — the addition of the generalized Dice [98] and weighted focal losses [49] with alpha=0.5
— was used to train both U-Net and U-Net + D.S. models.

Deep supervision [99] for U-Net + D.S. was implemented using an additional classifier after each layer
decoder layer that classifies voxels at a decreased resolution. To calculate the loss for each deep supervision
output, the ground truth was downsampled to match the resolution at each decoder layer and the loss
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was calculated. All losses (for the original resolution and for the deep supervision) were combined using a
weighted average where the weight is parameterized as ( 12 )

ds−1, where ds is the downsampling level. For
instance, for the full resolution, this weight evaluates to 1, whereas for the lowest resolution (ds=4) this
evaluates to 1/8.

During U-Net and U-Net + D.S. training, we augment data in real time to increase the variability of
observed data by our model using MONAI [61], with each transform having a 0.1 probability of being applied.
Particularly we use:

• Random contrast adjustments (gamma multiplier between 0.5 and 1.5)

• Random intensity standard deviation shift (multiplier between 0.9 and 1.1)

• Random intensity shift (multiplier between 0.9 and 1.1)

• Random addition of Rician noise (with a standard deviation of 0.02)

• Random addition of Gibbs noise (alpha between 0.0 and 0.6 and standard deviation of 0.25)

• Random affine transform (translation range in voxels [(0,4),(0,4),(0,1)], rotation range in radians
[(0,π/16),(0,π/16),(0,π/16)])

• Random flipping along all axes

• Random shearing (shearing factor between 0.9 and 1.1 for all axes)

• Gaussian blurring (sigma between 0.25 and 1.5)

Model evaluation

Each model is evaluated by its Dice score (DS) using 5-fold cross-validation according to the best observed
DS during training, and its generalizability is assessed using the hold-out test set. To assess how models
perform on different subsets, we use the hold-out test set with different data subsets. Additionally, since DS
only provides an overlap score, we also include the Hausdorff Distance (HD), Average Symmetric Surface
distance (ASSD), and Relative Absolute Volume Difference (RAVD) during quality assessment of the model,
as these metrics provide a quantitative measure of the spatial accuracy by considering the shape and volume
of the segmented regions [97] (both distance metrics were calculated using MedPy [55]).

5.7.2 Results

Whole gland segmentation

For whole gland segmentation, we observe a relatively small range of performances in CV (Fig. 5.45 and
Tab. 5.37). For the hold-out test set, we observe the same but only when models were trained and tested on
data from the same distribution (i.e. same dataset; Fig. 5.46 and Tab. 5.38).

After training nnUNet models and simpler U-Net models (Figs. 5.45 and 5.46), we observed that per-
formance for the former was almost always better than for the latter - both for CV and for holdout - which
is on par with previous studies [73, 39]; this holds up for both in- and out-of-distribution data. Taking this
into consideration, we did not train any other models apart from nnUNet models for the remaining tasks.

When looking at the performance of the nnUNet models trained on Prostate158 and then evaluated
on ProstateX, it is possible to observe that it produces errors (HD) up to 100× higher than all other
models (Fig. 5.49 and Tab. 5.38). These relatively large shifts are considerably smaller when models are
trained on ProstateNet or ProstateAll, hinting that model-specific effects on performance decrease as
the amount and variety of data increases. Indeed, the model-specific effects on performance become
increasingly negligible as the amount and variability of data increases. Table 5.38 further shows this, as it
can be observed that the nnUNet model trained on the ProstateAll data produces far lower HD, RAVD and
ASSD scores over all datasets, which means overall lower errors.
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Figure 5.45: Whole gland segmentation CV results.

Figure 5.46: Whole gland segmentation hold-out test set Dice scores for the different models. Left: perfor-
mance stratified by dataset. Right: performance stratified by manufacturer.

Prostate zone segmentation

During CV, zonal segmentation models present diverse levels of performance, both in terms of the segmented
zone (peripheral (PZ) and transitional (TZ)), and in terms of the different sets of data used during training
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Dice Hausdorf RAVD ASSD Recall p-value
Gland

ProstateX 0.93± 0.02 8.01± 4.36 0.01± 0.07 0.32± 0.1 1.0± 0.0 0.1745
Prostate158 0.91± 0.03 14.02± 11.81 0.0± 0.1 0.35± 0.19 1.0± 0.0 0.0758
ProstateNet 0.91± 0.09 12.48± 23.27 0.09± 1.78 0.43± 0.72 1.0± 0.0 0.2506
ProstateAll 0.92± 0.08 12.71± 27.82 0.06± 1.42 0.45± 1.79 1.0± 0.0 -

Zones PZ TZ

ProstateX
0.8± 0.08
0.88± 0.05

16.45± 9.75
14.97± 9.31

−0.0± 0.24
0.02± 0.17

0.64± 0.39
0.55± 0.22

1.0± 0.0
1.0± 0.0

0.009
0.0758

Prostate158
0.76± 0.09
0.88± 0.06

20.95± 18.13
22.09± 16.84

−0.01± 0.26
0.03± 0.14

0.64± 1.16
0.44± 0.35

1.0± 0.0
1.0± 0.0

0.009
0.0758

ProstateNet
0.81± 0.11
0.89± 0.08

15.7± 22.22
13.13± 11.9

0.08± 1.45
0.14± 2.2

0.56± 0.8
0.5± 0.62

1.0± 0.0
1.0± 0.0

0.4647
0.0758

ProstateAll
0.82± 0.1
0.9± 0.08

15.43± 19.97
14.61± 13.34

0.06± 1.24
0.09± 1.78

0.5± 0.81
0.44± 0.54

1.0± 0.0
1.0± 0.0

-
PZ
TZ

Lesions
ProstateX 0.17± 0.24 100.45± 89.78 2.22± 13.35 32.9± 51.24 0.4± 0.04 0.009
Prostate158 0.25± 0.27 95.44± 87.01 0.04± 1.17 24.5± 47.58 0.5± 0.06 0.1172
ProstateNet 0.38± 0.3 66.45± 66.83 0.33± 2.79 18.43± 35.56 0.7± 0.02 0.4647
ProstateAll 0.36± 0.3 77.3± 73.68 0.9± 9.75 22.74± 39.54 0.65± 0.02 -

ProstateAll
Cascade

0.36± 0.3 81.03± 73.59 0.68± 8.39 23.98± 40.4 0.65± 0.02 0.9168

ProstateNet
mpMRI

0.4± 0.28 71.3± 69.18 0.61± 3.16 15.37± 27.46 0.76± 0.02 0.1172

Table 5.37: nnUNet CV results stratified by segmentation task. For each dataset, the average Dice, Hausdorf,
RAVD and ASSD performance, along with their respective standard deviations, are presented. p-values for
Kruskal-Wallis significance test comparing the Dice score between ProstateAll results and each other model
are also shown, with significant results (p-value < 0.01 ) are marked as green.

Tested on

ProstateX Prostate158 ProstateNet ProstateAll

T
ra
in
ed

o
n

P
ro
st
a
te
X 0.93± 0.02 0.9± 0.04 0.84± 0.12 0.86± 0.11 Dice

8.8± 4.61 19.12± 35.05 47.99± 76.07 36.56± 65.85 Hausdorf

−0.03± 0.06 0.05± 0.11 0.24± 0.56 0.17± 0.48 RAVD

0.32± 0.08 0.48± 0.45 2.91± 5.75 2.08± 4.86 ASSD

P
ro
st
a
te
1
5
8 0.66± 0.18 0.92± 0.04 0.86± 0.11 0.83± 0.15

364.2± 87.76 13.04± 12.98 22.37± 42.1 85.29± 143.78

0.95± 0.84 0.03± 0.08 0.19± 0.62 0.31± 0.7

49.91± 24.9 0.31± 0.18 1.74± 5.76 10.59± 22.29

P
ro
st
a
te
N
et 0.91± 0.02 0.88± 0.04 0.92± 0.04 0.91± 0.04

8.64± 3.75 13.23± 6.88 9.88± 9.94 10.12± 8.8

−0.07± 0.07 −0.03± 0.08 −0.0± 0.08 −0.02± 0.08

0.39± 0.09 0.42± 0.14 0.34± 0.15 0.36± 0.14

P
ro
st
a
te
A
ll 0.93± 0.02 0.92± 0.03 0.92± 0.04 0.92± 0.04

9.01± 4.52 10.71± 8.28 9.62± 9.76 9.66± 8.81

−0.03± 0.06 0.02± 0.07 0.01± 0.08 0.0± 0.08

0.31± 0.07 0.27± 0.1 0.34± 0.14 0.33± 0.13

Table 5.38: nnUNet whole gland segmentation hold-out test set results. For each pairwise evaluation, the
average Dice, Hausdorf, RAVD and ASSD performance, along with their respective standard deviations, are
presented.

(Fig. 5.47 and Tab. 5.37) — both ProstateX and Prostate158 models yield Dice scores significantly worse
than those of ProstateAll in the context of PZ segmentation. Apart from the lower Dice, it can be noted
that Prostate158 produces maximum errors (Hausdorf) 5− 8mm bigger than the remaining models.

Considering the hold-out test performance, and similarly to what was shown for the whole gland seg-
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Figure 5.47: Multi-metric analysis of the CV performance of the nnUNet models, stratified by segmentation
task. Each circle represents the mean and the horizontal lines represent the standard error around the mean.

mentation, it can be seen that the performance is similar between CV and hold-out test set (Tab. 5.37
and 5.39). On par with what was observed during whole gland segmentation, it can be seen that the trend
of producing very large maximum errors (HD) - on average 100× (PZ) and 200× (TZ) larger than all other
models (Fig. 5.49) - is kept, when evaluating the Prostate158 models on ProstateX data.

Learning curve analysis

To better understand how data variety and size impact performance, we conducted a simple learning
curve analysis by training the nnUNet model on different proportions of the ProstateAll training dataset
([0.1, 0.5, 0.7, 1.0]). Initially, our conceptual understanding focused on data variability, rather than on the
amount of data — i.e. having data from more diverse sources would lead to improved performance. However,
it was also possible that simply increasing the amount of data could lead to better performance. The CV
results allow us to validate the expected outcome of this analysis (Fig. 5.48 B) — performance increases
as the amount of data increases. Extending this analysis to the hold-out test set and stratifying by testing
dataset (Fig. 5.48 C) while comparing the learning curve performance with that of models trained and tested
on the same dataset reveals something striking — for starters, even at relatively low amounts of ProstateAll
data (0.1 — corresponding to 65 cases) the performance is at least comparable to that of models trained and
tested on the same dataset, suggesting that data variability does indeed play a role in increasing performance.
The additional insight is that increasing the size of the training dataset — which inevitably increases the
variability of the data as well — also leads to improved performance which is oftentimes better than that
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Tested on

ProstateX Prostate158 ProstateNet ProstateAll
T
ra
in
ed

o
n

P
ro
st
a
te
X 0.82± 0.06 0.87± 0.07 0.72± 0.1 0.84± 0.05 0.72± 0.17 0.77± 0.19 0.74± 0.15 0.8± 0.17 Dice

15.66± 8.74 15.73± 11.06 17.73± 8.4 33.21± 20.62 20.46± 18.72 56.17± 85.67 19.2± 16.3 45.56± 73.0 Hausdorf

−0.04± 0.11 0.01± 0.31 0.32± 0.24 −0.1± 0.17 0.12± 0.54 0.54± 1.23 0.12± 0.47 0.35± 1.06 RAVD

0.61± 0.48 0.57± 0.35 0.59± 0.3 0.71± 0.22 1.14± 1.65 4.28± 9.5 0.97± 1.4 3.11± 8.01 ASSD

P
ro
st
a
te
1
5
8 0.7± 0.1 0.68± 0.2 0.79± 0.11 0.89± 0.06 0.7± 0.15 0.79± 0.18 0.71± 0.14 0.78± 0.18

296.17± 101.81 353.73± 115.13 19.48± 13.78 20.96± 18.05 23.92± 35.72 27.65± 51.67 73.94± 118.74 87.37± 143.28

−0.08± 0.28 0.96± 1.46 0.07± 0.16 0.06± 0.16 −0.12± 0.41 0.59± 1.6 −0.09± 0.37 0.59± 1.49

19.69± 15.82 51.68± 34.68 0.51± 0.48 0.36± 0.15 1.16± 2.13 2.78± 9.16 4.51± 10.11 11.55± 25.48

P
ro
st
a
te
N
et 0.81± 0.05 0.85± 0.08 0.74± 0.09 0.84± 0.05 0.8± 0.15 0.86± 0.16 0.79± 0.13 0.86± 0.13

16.73± 8.43 16.52± 8.18 17.49± 6.84 31.48± 22.19 15.02± 11.23 14.77± 19.17 15.67± 10.3 17.34± 18.97

−0.09± 0.1 −0.09± 0.21 0.27± 0.23 −0.17± 0.1 0.03± 0.37 0.1± 0.73 0.04± 0.34 0.03± 0.62

0.59± 0.3 0.66± 0.41 0.58± 0.26 0.66± 0.29 0.63± 1.15 1.24± 7.34 0.62± 0.96 1.06± 6.06

P
ro
st
a
te
A
ll 0.83± 0.05 0.88± 0.07 0.81± 0.08 0.9± 0.04 0.8± 0.15 0.86± 0.16 0.81± 0.13 0.87± 0.14

15.19± 7.79 15.17± 8.3 17.05± 6.94 23.98± 19.29 14.69± 11.55 14.64± 20.05 15.1± 10.44 15.99± 18.6

−0.04± 0.12 −0.01± 0.25 0.08± 0.13 −0.01± 0.1 0.03± 0.37 0.11± 0.7 0.03± 0.31 0.07± 0.59

0.56± 0.45 0.55± 0.35 0.43± 0.25 0.36± 0.13 0.62± 1.13 1.31± 7.51 0.58± 0.96 1.04± 6.21

PZ TZ

Table 5.39: nnUNet PZ and TZ segmentation hold-out test set results. For each pairwise evaluation, the
average Dice, Hausdorf, RAVD and ASSD performance, along with their respective standard deviations, are
presented.

observed in models trained and tested on the same data. For this reason, we suggest here that this increase
in performance is driven by a combination of increased data size and increased variability, highlighting the
importance of initiatives such as ProstateNet in training algorithms that can be clinically deployable and
robust to large shifts in performance at test and inference time.
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Figure 5.48: Learning curves performance scores for the data partitions of ProstateAll. A: Cross-validation
performance. B: Test set performance stratified by dataset.

Lesion detection improves with larger/more diverse datasets

The performance of lesion segmentation models is generally worse when compared with that of other prostate
segmentation tasks, mostly due to the small nature and highly irregular shape of the ROIs (Fig. 5.47 and
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Tab. 5.37). Using data which is both more abundant and more diverse — ProstateNet/ProstateAll — leads
to improved results when compared with ProstateX and Prostate158, two small, single-institution datasets.
This is true not only of Dice scores, but also of HD and ASSD (both generally lower for both ProstateNet
and ProstateAll). Additionally, as demonstrated by the precision-recall curves, ProstateNet and ProstateAll
models are better at detecting lesions.

Apart from the standard single modality full-resolution models, we also trained a cascade model for
the ProstateAll T2W data (in theory more capable of capturing small objects) and a full-resolution model
using ProstateNet T2W, DWI and ADC (mpMRI) images (DWI and ADC are more appropriate than T2W,
as they hyper- and hypo- saturate in the areas where lesions exist). While the cascade model provided
minimal differences - with a p-value of almost 1 - apart from slightly smaller errors, the ProstateNet model
using the three modalities showed some improvements, most notably in terms of dice and recall, albeit these
improvements were not statisticaly significant.

Similarly to what was shown for whole gland and zone segmentation models, the majority of in-distribution
hold-out results are similar to those obtained during CV. Regarding out-of-distribution performance, both
ProstateX and Prostate158 show a steep performance drop, while ProstateAll provides consistent results
all throughout. Additionally, the performance drops significantly when testing the Prostate158 model on
the ProstateX dataset. Contrary to what was hypothesised, the mpMRI ProstateNet and the Cascade
ProstateAll models showed a poor generalization performance, showing a greater decrease when com-
pared to its T2W-only counterpart, in both Dice and recall. Overall, the best model turned out to
be the ProstateAll T2W-only model, particularly when considering the average precision for each model
(Fig. 5.50). To calculate this, we first identified the lesion candidates as described in [9] at different
IoU thresholds ([0.1, 0.25, 0.50, 0.75]) and calculated the precision-recall curve for each of these thresholds
(Figs. 5.51, 5.52, 5.53).

Here, we can again observe that the ProstateAll model is the one that better generalizes, achieving
relatively high AP scores up until IoUs of 0.50. For higher values (@75) however, the AP becomes lower or
even 0 simply due to the fact that very few, or even none, of the samples achieve such high IoU values. Fig.
X shows some of the heatmaps for lesion detection, showcasing that despite not being accurate in regards to
segmentation, they are capable of gathering information from the area where the lesions are located.

These results further strengthen our findings that increasing variability within leads to models that are
far more robust, not only for segmentation but also for detection tasks.
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Tested on

ProstateX Prostate158 ProstateNet ProstateAll

T
ra
in
ed

o
n

P
ro
st
a
te
X

0.17± 0.25 0.28± 0.28 0.12± 0.21 0.15± 0.23 Dice

90.33± 70.94 69.41± 41.86 89.95± 59.44 88.11± 62.67 Hausdorf

1.49± 5.37 −0.19± 0.6 13.98± 100.1 8.22± 74.71 RAVD

35.34± 43.29 21.98± 26.6 33.03± 35.23 32.78± 37.76 ASSD

0.39± 0.07 0.58± 0.14 0.33± 0.06 0.38± 0.04 Recall

P
ro
st
a
te
1
5
8 0.04± 0.13 0.21± 0.34 0.14± 0.23 0.11± 0.22

207.98± 171.3 30.94± 53.34 69.03± 96.71 114.29± 143.71

12.97± 78.73 0.04± 0.65 0.06± 2.14 4.6± 47.14

107.81± 123.17 2.97± 6.7 24.09± 48.69 51.53± 91.71

0.11± 0.05 0.33± 0.14 0.3± 0.06 0.24± 0.04

P
ro
st
a
te
N
et 0.1± 0.2 0.25± 0.28 0.33± 0.3 0.24± 0.29

98.97± 122.66 69.69± 57.29 54.52± 62.22 71.62± 90.4

0.31± 2.21 −0.25± 0.77 0.26± 1.59 0.23± 1.79

50.86± 88.74 21.07± 36.2 14.32± 35.78 27.83± 62.42

0.23± 0.06 0.58± 0.14 0.62± 0.06 0.48± 0.04

P
ro
st
a
te
A
ll 0.21± 0.26 0.45± 0.3 0.39± 0.3 0.33± 0.3

76.23± 54.67 65.81± 43.74 67.3± 65.2 67.55± 59.25

1.24± 4.54 −0.07± 0.56 1.39± 5.96 1.18± 5.22

22.91± 28.61 11.69± 15.09 18.73± 34.38 19.15± 30.3

0.45± 0.08 0.83± 0.11 0.7± 0.06 0.63± 0.04

P
ro
st
a
te
A
ll

C
a
sc
a
d
e

0.21± 0.26 0.45± 0.32 0.4± 0.3 0.33± 0.3

68.42± 52.75 52.56± 53.6 78.81± 70.46 75.38± 64.22

1.21± 4.61 0.06± 0.71 2.92± 21.38 2.06± 16.14

21.85± 25.89 6.97± 10.84 22.25± 39.89 21.02± 34.62

0.48± 0.08 0.75± 0.12 0.7± 0.06 0.62± 0.04

P
ro
st
a
te
N
et

m
p
M
R
I

− − 0.34± 0.28 −
− − 80.16± 80.62 −
− − 0.16± 1.32 −
− − 28.52± 47.19 −
− − 0.71± 0.03 −

Table 5.40: nnUNet lesion segmentation hold-out test set results. For each pairwise evaluation, the average
Dice, Hausdorf, RAVD, ASSD and Recall performance, along with their respective standard deviations, are
presented.
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Figure 5.49: Multi-metric analysis of the hold-test performance of the nnUNet models, in- and out- of
distribution, stratified by segmentation task.
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Figure 5.50: Test set ROI detection analysis based on Recall at different Dice levels (10% and 50%)
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Figure 5.51: Test set precision-recall scores @ different IoU thresholds percentages ([0.1, 0.25, 0.50, 0.75]) for
the full-resolution nnUNet models. Right: Models trained on those datasets; Top: Models tested on those
datasets.
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Figure 5.52: Test set precision-recall scores @ different IoU thresholds percentages ([0.1, 0.25, 0.50, 0.75]) for
the Cascade ProstateAll nnUNet model.
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Figure 5.53: Test set precision-recall scores @ different IoU thresholds percentages ([0.1, 0.25, 0.50, 0.75]) for
the mpMRI full-resolution ProstateNet nnUNet model.
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Qualitative analysis

Finally, to better understand failure cases — here defined as cases where the Dice score was inferior to 90% —
we individually inspected each case that fit this criterion in ProstateNet with the assistance of a radiologist
with 6.5 years of experience (RM). Interestingly, the outcome of this analysis is not associated with the failure
of the model — rather, it is associated with low quality labels. Particularly, this is associated with cases
where labels were automatically generated using the ProCAncer-I tool or when the corrections provided by
clinicians contained mistakes. Additionally, through the analysis or large (≈> 20) Hausdorf errors, an issue
became apparent — some of the errors stemmed from the existence of more than one connected component
(given that the prostate gland is a single continuous object in 3 dimensions, there can be no more than one
component corresponding to the prostate gland). To understand this quantitatively, we isolated the largest
connected component for all masks and calculated the IoU score between the largest connected component
and the totality of the ground truth (if there is no more than one connected component, the IoU score
should be 100%). As shown in Table 5.41, approximately 1% of ground truths have a large spurious object
not belonging to the prostate gland, while most detected abnormalities (74%) are relatively small. In other
words, there are cases where the calculated IoU score will be relatively worse than expected due to the
quality of the labels as shown by our visual inspection and annotation. Taking the aforementioned aspects
into account, it becomes evident that this approach for prostate gland segmentation — training a nnUNet
on the ProstateAll dataset — is of high value and can be safely deployed across several different centres.

Conclusively, the segmentations inferred by our model were of considerable quality and the failure cases
were typically associated with poor annotation.

IoU interval [0%,90%[ [90%,99%[ [99%,100%[ 100% Total
Number of cases 7 21 82 524 637

Table 5.41: Number of ground truths for different IoU scores between the largest connected component and
the entire ground truth.

5.8 ProstateNet Lesion Segmentation with Deep Learning

The emphasis of this report revolves around the delineation of lesions within the prostate gland via the
segmentation of T2-weighted axial images sourced from the ProstateNet dataset, employing advanced deep
learning methods. The initial phase of this research involves a data curation process, selecting 419 T2-Ax
segmented monochromatic series from the ProstateNet dataset. Subsequently, preprocessing was performed
consisting in analyzing spatial resolutions, standardizing dataset spacing, and employing techniques like
image cropping, denoising, and intensity normalization. The report offers insights in the distinct approaches
adopted for the 2D and 3D models, outlining their architectures, and the solutions applied to counter issues
of prediction discrepancies observed in the 2D model and overfitting, such as adjustments in layer complexity
and the application of regularization techniques.

5.8.1 Methods

Data extraction

From all the ProstateNet series, an initial selection of compatible 420 T2-Ax segmented monochromatic
series was used, in which 1 was discarded due to insufficient pixels in the segmentation. No further manual
evaluation was done for the images. From those cases, 47 with a second segmented lesion were found and
10 with a third segmented lesion as well, in all those cases the segmentation masks were added together in
a final binary mask.

Data Preprocessing

Initially, an analysis of the spatial resolution and spacing of the images was performed (see Fig. 5.55).
Values close to the median were selected to achieve a uniform dataset spacing, using the values [0.5, 0.5, 3.4].
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Considering the size and position of the organ within the images, a strategy of central cropping was adopted
to standardize and reduce the dataset’s resolution to 320× 320 pixels.

Figure 5.55: Dataset resolution (top) and spacing distribution (bottom) for x, y (left), and z coordinates
(right).

Two additional preprocessing steps were applied to the images: a denoising process utilizing anisotropic
diffusion with 2 iterations and a conductance value of 1.5, followed by final Z-score intensity normalization.

The images used for the 2D model were not subjected to a denoising process. The input configuration
comprised a sequence of 3 frames corresponding to a resolution of 320 × 320 × 3: the preceding frame, the
frame of interest, and the subsequent frame. These frames were overlapped, and this sequence was utilized
to predict a final 2D segmentation mask corresponding to the frame of interest. Due to over-representation
of the background labels a ratio of 0.6 of background outputs and their respective input were removed.

Regarding the input configuration for the 3D model, a frame depth of 16 was selected, aligning with the
smallest number of frames among the 419 cases. Utilizing an overlapping approach, this frame depth pro-
duced an input size of 320× 320× 16 elements.

The division of cases within the dataset was structured as follows:

• 346 patients were allocated for training (constituting 81.3% of the dataset).

• 42 patients for validation (9.9% of the dataset).

• 31 patients for testing (8.8% of the dataset).
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5.8.2 Models

2D prediction

In the 2D prediction model, two main parts were joined together: a Conv3D encoder and a U-Net model
for predicting masks. The Conv3D encoder starts with smaller 3D data in a 32× 32× 3× 1 shape and uses
layers that focus on 3x3x3 filters to transform the data into a more detailed form. It builds up to a global
max-pooling layer, which gathers and refines the key features before output.

On the other side, the U-Net model for mask prediction starts with larger 160 × 160 × 1 input data. It
works through a classical U-Net style with Conv2D layers using 3×3 filters and 64 filters in each layer. After
moving through a bottleneck, it expands through the network with convolutional and upscaling layers.

The output from the Conv3D encoder gets reshaped and adjusted to fit the U-Net model’s requirements,
now at 160× 160× 1. Then, the U-Net’s upsampling layers finally produce the 320× 320 prediction mask.
This combined model brings together both the Conv3D and U-Net models to create predictions for binary
masks.

3D prediction

Two 3D mask prediction models were employed:

• Model 1: A 3D Unet architecture model that employs a Leaky ReLU activation function with an
alpha value of 0.1 to prevent gradient banishing. The U-Net structure consists of an encoder-decoder
layout, employing convolutional blocks from 6 to 30 filters for feature extraction, batch normalization,
and Leaky ReLU activation. The encoder segment downsamples the spatial dimensions via max-
pooling, while the decoder section uses up-sampling to restore the spatial resolution and integrates
high-resolution features from the encoder through skip connections. The output is generated through
a final 3D convolutional layer with a sigmoid activation function, producing a segmentation mask.

This U-Net architecture, configured to accept input shapes of (320, 320, 16, 1), is crafted to generate
segmentation masks of the same dimensions as the input. The number of units and parameters was
kept low due to a consistent observation of over-fitting across the models as it will be discussed later.

• Model 2: This model follows the same structure as Model 1 but adding complexity in the convolutional
layers using 16 to 80 filters and adding three multi-head attention layers between the middle convo-
lutional blocks of the model. L2 kernel regularization of 0.01 and drop out of 0.15 in the multi-head
attention layers were added to reduce over-fitting.

5.8.3 Results

For the evaluation of the models the following metrics and loss was used:

• 2D and 3D Dice Coefficient: Employed to measure overlap between predicted and ground truth
masks in both 2D and 3D models.

• Jaccard Distance: Used to measure dissimilarity between predicted and ground truth masks, em-
phasizing its usefulness for unbalanced datasets.

• Binary Cross Entropy: Employed to measure the dissimilarity between the predicted and actual
masks in the models.

• Precision: Used to evaluate the model’s accuracy in predicting positive instances (correctly identified
lesions) among all predicted positive instances using a 0.5 threshold.

• Dice Jaccard Cross Loss: The combined loss function integrating Dice coefficient, Binary Cross
Entropy, and Jaccard distance to optimize the model predictions.
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2D prediction results

The 2D model was trained for 100 epochs, and the loss and Dice metric data can be found in Figure 5.56.

Figure 5.56: Training and validation loss and Dice coefficient metric for the 2D model.

An important observation is the consistent values for the validation loss and metrics, attributed to void
predictions made by the model. The seemingly high Dice coefficient values can be traced back to the
class imbalance within the dataset. Notably, precision across training, validation, and testing remained null.
Addressing class imbalance through an expanded dataset and data augmentation would be needed for further
testing of 2D models.

3D prediction results

Figure 5.57: Training and validation loss and metrics for the 3D Model 1 for 55 epochs.
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Figure 5.58: Training and validation loss and metrics for the 3D Model 2 for 150 epochs.

Figure 5.57 and 5.58 depict the learning curves for Model 1 and Model 2, respectively. Both models exhibit
signs of overfitting. Despite rapid learning observed in background regions indicated by the steep decline in
loss and BCE, this swift learning does not translate into favorable validation results.

Model 2, designed with additional regularizers and dropout to address the overfitting witnessed in Model 1,
displays lower training metrics and improved validation outcomes. However, it’s apparent that the model
keeps struggling beyond the training dataset, especially from the initial epochs.

This behavior becomes more evident during the final evaluation of the training and test sets (5.42). While
both models effectively learn the lesion features and segmentation within the training set, as evident from
the Dice, Jaccard, and Precision metrics, this proficiency is not mirrored in the test set. Instead, the models
seem to primarily learn the background.

Loss Dice BCE Jaccard Precision
Train Model 1 -0.1939 0.6101 0.0139 0.5976 0.8147

Model 2 1.2767 0.5289 0.0291 0.4406 0.7116
Test Model 1 1.0407 0.0920 0.0702 0.2007 0.6168

Model 2 2.1692 0.1168 0.1512 0.0812 0.3706

Table 5.42: Loss and metrics of the training and testing set for Model 1 and 2.

The added complexity and regularizers added in Model 2 did not help the inference for the datasets
outside training. The outcomes strongly suggest the necessity for more data and consideration of data
augmentation techniques.

5.8.4 Discussion

In this investigation we focused on lesion segmentation within the ProstateNet’s T2-weighted axial images
using deep learning, and several key findings have emerged. Both 2D and 3D models were developed and
tailored to accurately identify and delineate lesions within the prostate gland. However, despite initial
promise, several challenges were encountered during the development and evaluation stages.
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The preprocessing steps, including image denoising, resolution standardization, and cropping, laid the
groundwork for the model development. Notably, the 2D model’s configuration and training resulted in
seemingly good losses and dice validation metrics, yet this masked a significant issue related to class imbal-
ance. The over-representation of background labels skewed the model’s predictions, highlighting the need
for dataset expansion and careful consideration of class balance for improved testing accuracy.

The 3D models showed better results but still encountered challenges beyond the training dataset. Both
3D models demonstrated proficiency in learning lesion features during training but struggled to replicate
this performance in the test set. Overfitting remained a persistent issue, even with the introduction of
regularization techniques and dropout in Model 2.

For further development of the models with this dataset, there are several next steps and considerations
to make:

• Dataset expansion: To explore data augmentation techniques and additional image sources to build
a more robust model.

• Addressing class imbalance: Explore various techniques like oversampling, undersampling, or ad-
vanced methods such as SMOTE to rectify class imbalance issues.

• Model improvements: Investigate more complex and deeper 3D architectures, advanced regulariza-
tion techniques, or hyperparameter tuning to improve model performance.

• Ensemble learning and transfer learning: Introducing ensemble learning methodologies and trans-
fer learning from pre-trained models help inference in limited datasets such as this one.

Finally, it’s also important to note that the current models were exclusively trained with T2 axial images.
There exists potential in exploring additional modalities like Diffusion Weighted Imaging (DWI) or Apparent
Diffusion Coefficient (ADC) channels found in a subset of the segementations. These additional channels
might contribute to a more comprehensive understanding of prostate lesions and potentially mitigate over-
fitting observed in the current models. Thus, future work could explore and incorporate these modalities to
enhance the segmentation performance and robustness of the models.
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Chapter 6

Repurposing orphan data with
self-supervision

Chapter summary

Conceptually, orphan data is data which does not necessarily have the necessary metadata for its correct
cataloguing. For instance, a prostate mpMRI study which does not have an associated ISUP could be con-
sidered orphan for use case 2. In ethical and organizational terms, it may also be complicated to have access
to clinical features which would allow computational models to be trained on these data, thus ”creating”
large volumes of data which lack appropriate annotations and/or metadata for supervised learning. However,
self-supervised learning (SSL), which does not require annotations or metadata, could be a helpful solution
for this as it enables the training of rich feature extraction methods without the need for any form of image
annotation. Here, we show how having relatively large amounts of ”orphan data” (here we simulate the
orphan data by assuming that only part of the images in ProstateNet are annotated) can lead to models
which outperform fully supervised classification learning models. We also show how SSL can be trained on
2D data and then applied to downstream supervised tasks using 3D volumes using multiple instance learning,
making it ideal for radiology data.

6.1 Methods

6.1.1 Dataset

All retrospective ProstateNet cases avaliable on July 28th, 2023 were retrieved, constituting a total of 8,891
studies. 6,798 studies were used for SSL (1,722,978 DICOM files across 49,808 series). The remaining 2,093
studies were used for empirical validation of the SSL models with supervised learning and split into training
(75%) and hold-out test sets (25%), and the training data was further divided into 5 folds for cross-validation.
The empirical validation set contained all UC5 (biochemical recurrence) cases.

Supervised learning tasks for empirical validation

For the validation of self-supervised learning models, three binary tasks are considered (counts in Table 6.1):

• PCa prediction — confirmatory biopsy following mpMRI (a soft proxy for use case 1 — UC1)

• PCa aggressiveness — International Society of Urology Pathology (ISUP) grading [23] was split
between ISUP=1 (clinically non-significant) and ISUP=2,3,4,5 (clinically significant; use case 2 —
UC2)

• Biochemical relapse — prostate specific antigen concentration greater than 0.05ng/mL six months
after radical prostatectomy (use case 5 — UC5)

156



Deep Learning Master models and Radiomic Signatures
CHAPTER 6. REPURPOSING ORPHAN DATA WITH SELF-SUPERVISION

Task Sequences Classification Count

PCa prediction
T2

False 378
True 1647

mpMRI
False 343
True 1467

csPCa prediction

T2

ISUP=1 397
ISUP=2 667
ISUP=3 314
ISUP=4 126
ISUP=5 126

mpMRI

ISUP=1 324
ISUP=2 614
ISUP=3 286
ISUP=4 113
ISUP=5 114

Biochemical relapse prediction
T2

False 776
True 127

mpMRI
False 736
True 96

Table 6.1: Case count for binary classification tasks.

DICOM processing

During SSL training (details below) DICOM image intensity values are normalised to be between 0 and 1.
A random crop with at least 64× 64 pixels is then extracted and resized to 128× 128.

Volume conversion and processing for supervision tasks

DICOM files were converted to T2/DWI/ADC files as in chapter 5. A central crop with size [128, 128, 20] is
then used in training all models.

6.1.2 Self-supervised learning

Two different SSL methods are used — simple framework for contrastive learning of visual representations
(SimCLR, which is contrastive) [17] and image-based joint-embedding predictive architecture (I-JEPA, which
is generative) [6]. SimCLR is a contrastive learning approach trained by minimising the distance between
the features of two views of the same image (the same image augmented in different ways). I-JEPA is a
recent method based on the vision transformer (ViT) architecture [21] and the optimiziation is similar to
that of the masked autoencoder (MAE) [29] — both I-JEPA and MAE train an encoder while trying to
restore parts of the input which were masked; however, while the training protocol of MAE masks parts of
the image and trains an auxiliary decoder model capable of predicting the masked parts, the I-JEPA training
protocol masks parts of the encoded feature space and optimises an auxiliary model capable of predicting the
masked parts in the feature space.

SimCLR

Encoder architecture. Two different architectures were tested with SimCLR — ResNet [30] and Con-
vNeXt [51].

The used ResNet architecture had 4 residual blocks, each consisting of increasing depth ([64, 128, 256, 512])
and each having a set number of residual layers ([3, 3, 3, 2]+ 1 input layer, 12 layers in total). At each block,
the input is processed by two sequential convolutional layers which first duplicate and the reduce the number
of features to the original input size (similarly to ConvNeXt). After each residual block the resolution is
halved using a 2 × 2 maximum pooling operation. Each convolutional operation is followed by a batch
normalization operation [38] and a leaky ReLU activation [95]. The ConvNeXt architecture comprised of
4 ConvNeXt blocks with the same depths as the ResNet and each containing a set of ConvNeXt layers
([3, 3, 9, 3] + 1 input layer, 19 layers in total). Within each block, the number of features is quadruplicated
as suggested by [51]. A 2× 2 maximum pooling operation was performed after each ConvNeXt block.
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Predictor architecture. Encoder (ResNet/ConvNeXt) outputs are linearly transformed using a linear
predictor with structure [512, 4096, 4096, 512], with batch normalization and leaky ReLU activations before
each layer (the output is not transformed). This large predictor architecture is motivated in large part by
the work of Garrido et al. stating that larger predictors are more beneficial for downstream performance
[26].

Training and DICOM image sampling and augmentation. Each SimCLR model is trained with an
AdamW optimizer [52] with weight decay of 0.00001 and a batch size of 256 (128 per GPU) for 100 epochs.
The learning rate (0.0005 for ResNet and 0.0001 for ConvNeXt) was linearly increased over 5 epochs and was
decreased using cosine decay during training. To generate batches, series were randomly sorted and a single
image was sampled from each series and used to produce batches — this constitutes a ”series iteration”,
and each epoch has 4 series iterations, i.e. in each epoch the model ”sees” 4 images from each series. The
NT-Xent loss was used as suggested in [17] with a temperature of 0.1. To reduce the memory requirements
of these models, FP16 mixed-precision was used during training.

View generation for SimCLR is achieved through the independent augmentation of the same image patch
twice, each with two random augmentations (specified in Table 6.2). Originally, SimCLR extracts two non-
overlapping patches from the input image [17]. However, we avoid doing this as it may lead to cases where
one view has a lesion and the other does not, which may lead to mismatched information during training.

Augmentation Parameters
Gaussian noise σ = 0.5

Intensity shifting offset = [−0.25, 0.25]
Intensity scaling scale = [−0.25, 0.25]
Random bias field coefficient = [0, 0.15]

Contrast maximum γ = 1.5
Gaussian smoothing (indep. axes) maximum σ = 0.15

Gibbs noise α = [0, 0.5]
Spike noise intensity = [−0.25, 0.25]
Rician noise σ = 0.1

Coarse dropout Max. number of holes = 16;Max. size of holes = [12, 12]
Translation (indep. axes) [−15, 15]
Rotation (indep. axes) [− π

12
, π
12

]
Shearing (indep. axes) [−0.25, 0.25]
Scaling (indep. axes) [−0.15, 0, 15]

Table 6.2: List of augmentations used during SimCLR training. ”indep. axes” means that this transform is
applied independently for each axis.

I-JEPA

Encoder and decoder architecture. We follow the original paper for the encoder and decoder architec-
tures [6], which are based on the ViT architecture [21] — the encoder and predictor are composed of 8 and 4
transformer blocks, respectively, and each transformer block has an embedding size of 512, 8 multi-attention
heads and a multi-layer perceptron (MLP) with structure [512, 1024, 512]. A patch size of [16, 16] was used.

Training and DICOM image sampling and augmentation. I-JEPA was trained with hyperparam-
eters and image sampling routine identical to that of SimCLR, with a few exceptions — the learning rate
was 0.001, and given that one the advantages of I-JEPA is that no augmentations are necessary, we have
maintained this when training our models. For masking, we note that [16, 16] patches for [128, 128] images
yield a total of 64 blocks. With this in mind, we mask 1-3 parts of the image, where each part has sides
with 1-2 patches in length for reconstruction. As recommended, we mask an additional patch which is not
reconstructed but is simply representative of missing information in the input image.
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6.1.3 Supervised learning with multiple instance learning

Model specification

Each study S ∈ Rn,h,w,c is characterized as having n slices, height h, width w and c channels. To obtain a
prediction p for S (Equation 6.1), it is necessary to apply a given feature extraction function F (Equation 6.2)
producing a vector of size f to each slice and aggregate each score with function G to produce a vector
(Equation 6.4). Prior to aggregation, a function A (Equation 6.3) can be used to produce an attention
vector which is used to change the impact of different elements of F (S) when aggregating (this vector sums
to 1: in other words it is a simplex in Rn,1). Finally, a binary prediction can be obtained using the prediction
function P on the aggregation output (Equation 6.5; while other target specifications — namely multi-target,
multiclass and regression targets — are possible, here only binary classification problems are considered).

p = P (A(F (S))⊙G(F (S))) (6.1)

F : Rn,h,w,c → Rn,f (6.2)

A : Rn,f → Rn,1 (6.3)

G : Rn,f → R1,f (6.4)

P : R1,f → R (6.5)

In this deliverable, F and P are parameterized as the fitted SSL models and an MLP followed by a
sigmoid activation function, respectively, while A is parameterized in 4 distinct manners (we define here f
as the output of F (S), and fi and ai for a given slice Si as the the output of F (Si) and A(Si), respectively):

• mean — the simplest formulation of G is Gmean(f) =
1∑n
i ai

∑n
i ai ⊙ fi. In other words, Gmean is the

weighted mean of F (S), where each weight is produce by A(f);

• max — Gmax is similar to Gmean, but rather than summing over all aifi, the maximum value of each
feature along the slice dimension is extracted;

• vocabulary — here, G is split into a two-step process: Gclass, parameterized as an MLP followed
by a softmax layer M , first classifies fi into a term vi in a k-sized vocabulary. All term predictions
vi are summed after being multiplied by ai and divided by

∑n
i ai. In other words, Gvocabulary(f) =

1∑n
i ai

∑n
i ai⊙Gclass(fi), where Gclass(fi) = softmaxM(fi). Here, k is a hyperparameter and 3 different

values are tested: 10, 25 and 50.

• transformer — Gtransformer is a 2 block transformer which uses the 512-sized embeddings produced
by the SSL models for each slice as tokens. The multi-head attention consists of 4 heads (128 features
per head), a MLP with structure [1024, 512] and using a classification token.

For the mean, max and vocabulary models, F was an MLP with structure [1024, 512]. All models used
an 512 layer MLP as P , and all MLP layers excluding the last are followed by layer normalization, GELU
activations and a dropout layer with 25% probability.

Model training

Models were trained using AdamW [52] with a weight decay of 0.05 (mean, max, vocabulary) or 0.3 (trans-
former) and a maximum learning rate of 0.00001 for 50 epochs with a batch-size of 8. Learning rate was
increased linearly for 5 epochs and decreased with cosine decay during training. Images were randomly
augmented during training with random flips, affine, intensity and Rician noise transforms (Table 6.3). The
best performing model according to its validation loss was used for evaluation on the hold-out test set.
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Augmentation Parameters
Rician noise σ = 0.02

Affine transform
Translation range = [4, 4, 1]
Rotation range = [ π

16
, π
16

, π
16

]

Flip Along all axes (x, y, z)
Contrast maximum γ = 1.5

Intensity shifting offset = [−0.1, 0.1]
Intensity scaling scale = [−0.1, 0.1]

Table 6.3: List of augmentations used during fully supervised and multiple instance learning.

6.1.4 Fully supervised learning

To better understand the benefits of MIL-SSL, we train a VGG-based model [80] from scratch using the
same training and validation protocol as other models. The architecture and training parameters of this
model are identical with those specified in Cchapter 5 and a batch size of 16.

6.1.5 Model validation

The AUC of all models is estimated using the area under the receiver-operating characteristic (AUROC/AUC)
as a metric and 5-fold cross validation. A 25% hold-out test set is then used to evaluate the generalisability
of all models.

6.1.6 Learning curve analysis

To better understand the data requirements of each model, we subsample the training data during cross-
validation to yield datasets with 10%, 25%, 50% and 70% of all training data. Models are then trained with
these data subsets to determine how performance evolves as the amount of training data is increased.

6.2 Results

Here, the focus of this analysis will be on the empirical assessment (the three enunciated classification tasks).

6.2.1 Cross-validation performance

Cross-validation performance (Figure 6.1) — the AUC for the lowest training loss observed during training —
shows that UC5 is a particularly complicated problem, with average AUC values of 66% and a considerable
amount of variability in the performance (VGG model).

Regarding SSL models, it is clear the I-JEPA is not capable of learning aspects of the image which
are relevant for classification (we further elaborate on this in the Discussion of this chapter). Nonetheless,
performance for both SimCLR-based encoders appears to be consistent for both UC1 and UC2, where little
differences between both can be detected. In terms of the performance of MIL methods, we note that few
fluctuations are observed when it comes to the choice of the method. Indeed, much like what has been
exposed in Chapter 5, performance is mostly determined by the sequences used in classification.

6.2.2 Hold-out test set performance

Given that CV performance is a biased estimate (the reported CV performance is calculated for the model
corresponding to the best observed validation loss), a hold-out test set was used to produce more realistic
estimates of performance and generalisability. We note here that, unlike VGG models, SSL-MIL-based
methods are capable of generalization when compared with FSL methods across all use cases — as visible
in Figure 6.3a and Figure 6.2, VGG models consistently suffer drops in performance (particularly for UC5),
whereas SSL-MIL models are capable of maintaining their performance. To further understand the unbiased
model performance of SSL-MIL methods, the performing model/fold from the set of SSL-MIL models and
the best FSL fold was picked for each use case. As demonstrated in Figure 6.3b, the best performing
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Figure 6.1: Cross-validation performance for different SSL-MIL models and comparison with a baseline VGG
fully supervised model. Points represent the average AUC, colourful horizontal lines represent the standard
error range, and the black horizontal lines represent the full performance range (minimum and maximum).

SSL-MIL models (TTable 6.4) are at least as good as the best FSL models, with superior AUC in both
UC1-T2W models and UC2-mpMRI models (it should be noted that, despite being large, this difference is
not statistically significant for the latter). This last case — selecting the best performing models — is a
more realistic scenario and is closer to a real application scenario, where developers would select the best
performing model and use it on their data.

Use case Sequences SSL method MIL method Test value Fold
UC1 T2W SimCLR (ResNet) MIL (max) 0.7652 2
UC1 mpMRI SimCLR (ConvNeXt) MIL (mean) 0.7715 1
UC2 T2W SimCLR (ResNet) MIL (voc10) 0.5737 0
UC2 mpMRI SimCLR (ConvNeXt) MIL (mean) 0.6932 1

Table 6.4: Best performing SSL-MIL models.

6.2.3 Learning curve analysis

To better understand the data requirements of SSL-MIL and FSL, learning curves were calculated using
different amounts of training data — 10%, 25%, 50% and 75%. For this we focused on two well performing
models from previous tasks (SimCLR ResNet with MIL (mean) or MIL (max)). As visible in Figure 6.4a,
the average performance of these models — particularly the MIL (mean) models — is generally better than
the FSL VGG models. If the best folds are selected, as earlier, it is clear that MIL-SSL outperforms the FSL
VGG models both in terms of data efficiency and performance and this is particularly true for T2W models
(Figure 6.4b). Finally, it should be noted that in all cases the capacity of the models has not been achieve
— in other words, more annotated data can be beneficial.
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Figure 6.2: Comparison of CV and hold-out test set AUC for different folds. Both vertical and horizontal
lines represent the standard error and points represent the average performance.
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Figure 6.3: A. Hold-out test set performance for different SSL-MIL models and comparison with a baseline
VGG fully supervised model. Points represent the average AUC, colourful horizontal lines represent the
standard error range, and the black horizontal lines represent the full performance range (minimum and
maximum). Crosses represent the test AUC for the best performing model during CV. B Receiver operating
curves for the best performing SSL-MIL (dark blue) and FSL models (light blue). The p-values were
calculated using a 2,000 sample bootstrap.
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Figure 6.4: A. Learning curve for the average testing AUC for different use cases and sequence inputs.
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6.3 Discussion

In this chapter, it is shown that self-supervised learning, as a paradigm, can lead to performance improve-
ments even when annotated data is scarce.

In particular, we show how training models in 2D is sufficient to achieve good performance in 3D models.
This creates new possibilities, as most of the available image data is two-dimensional. While an important
assessment — showing that natural image models can be transferred in this setting — previous works, such as
those developed around the Segment Anything Model [45] have shown that models trained on natural images
can perform well on medical images but do not surpass models trained specifically for these tasks [54, 57].
This similar to what was shown previously for histopathology, where models pre-trained on histopathology
outperformed those pre-trained on much larger natural image datasets [72]. In essence, while pre-training
on large image datasets may be helpful, previous works do not point in this direction.

The case of UC5 — detection of biochemical recurrence from mpMRI data — remains a complicated
challenge. While some demonstrations that there exists some discriminatory power are offered here (T2W
+ mean MIL models, for instance; Figure 6.2), the performance is remarkably low. From these data and the
analysis here offered, it is unlikely that deep learning models will overcome this.

While both contrastive encoders worked relatively well, an important failure case is I-JEPA, a method
based on masking. As suggested by Huang et al. and demonstrated here, it is possible that using models
which assume redundancy in the feature space of different patches in the same image is not useful in medical
imaging applications where lesions are relatively small [36] — if the lesion is masked, there is no good reason
to assume that the rest of the prostate should have sufficient information to predict the presence of a lesion.
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Discussion

In this deliverable, we have outlined a number of predictive strategies which depend on different types and
qualities of data and provided a comprehensive analysis of the failings of these models. We also detail how
different unforeseen obstacles — particularly the lack of strict adherence to the data quality requirements
initially defined, which resulted in several issues, as reported at the start of this deliverable — were handled
and in which way this affected the expected course of this process.

Arriving at automatic data curation as an iterative and collaborative process. Starting from a
disorganised dataset proved challenging for a number of reasons — firstly, the development of an automatic
sequence classification algorithm was necessary, and the development of several heuristics was also a necessity
to faithfully convert DICOM to volume files which are usable in downstream model development. This was
possible mostly due to an iterative process (several different attempts had to be made to ensure that a robust
protocol had been achieved) relying on inter-institutional collaboration (the identification of different issues
with the images depended heavily on the pooled past experiences of different collaborators, allowing us to
arrive to more concrete and usable solutions).

Both radiomics and deep-learning classification models generalise well but show relatively
poor performance. We present here important trends and a reasonable starting point for more ambitious
models, but it should be noted that, in their current state, there is very limited application to a clinical context
due to the low exhibited performance. However, and as mentioned, we hope that this constitutes a good
starting point for the development of better performing models by providing concrete research directions.

Self-supervsion can lead to more robust and data-efficient models. Self-supervision is a relatively
recent paradigm and we show here that it can be used to create models which generalise better and are more
data efficient. This should motivate the collection of orphan data, which could be used to create more robust
models.

Prostate segmentation models are robust but lesion segmentation/detection is still problem-
atic. While prostate segmentation (whole gland and by zone) is relatively easy, we show here that le-
sion segmentation/detection models underperform; this creates significant hurdles in terms of what can be
achieved by other approaches which require the existence of relatively detailed segmentation models (i.e.
radiomics using lesion segmentations; deep-learning models which use the lesion region-of-interest as input).

7.1 Limitations and setbacks

The main limitation we identified was the relatively low abundance of lesion segmentations, which prevented
the development of good lesion segmentation models which could have greatly improved the performance
of machine-learning models. Additionally, it should be noted that some of these annotations are of low
quality and contain obvious mistakes, highlighting an unforeseen necessity — a laborious process of quality
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control which was not anticipated by our team. While we tried to overcome this through manual inspection
of annotations, the time spent doing so was significant, similarly to the time spent creating an automatic
curation pipeline.

7.2 Future steps

Moving forward, it should be noted that, while lesion segmentation models do not perform particularly well,
lesion detection for some instances is possible — indeed, we are able to detect approximately 78% of all
lesions in the testing data at an IoU of 10% as illustrated in section 5.7. Taking this into account, it should
be possible to use a protocol similar to that described in Bosma et al. — in this work, the authors used a
similar lesion detection model to propagate annotations in data which had no segmentation maps but had
information on the number of lesions per case [10]. Given that we are particularly interested in the index
lesion, it would be possible to keep the highest probability lesion on each weak prediction for all studies
belonging to use case 2 and create a relatively large dataset of low quality segmentation annotations which
could lead to the training of better radiomics and deep-learning models.

Concerning the self-supervised learning avenue, there should also be benefit to moving the pre-training
from two-dimensions to three-dimensions as this would allow us to capture higher order relationships in these
models. This would have the added benefit of also making the models more easy to transfer and would make
more complicated multiple-instance learning-based approaches unnecessary.
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