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A B S T R A C T

Despite being one of the most prevalent forms of cancer, prostate cancer (PCa) shows a significantly
high survival rate, provided there is timely detection and treatment. Computational methods can help
make this detection process considerably faster and more robust. However, some modern machine-learning
approaches require accurate segmentation of the prostate gland and the index lesion. Since performing manual
segmentations is a very time-consuming task, and highly prone to inter-observer variability, there is a need to
develop robust semi-automatic segmentation models. In this work, we leverage the large and highly diverse
ProstateNet dataset, which includes 638 whole gland and 461 lesion segmentation masks, from 3 different
scanner manufacturers provided by 14 institutions, in addition to other 3 independent public datasets, to train
accurate and robust segmentation models for the whole prostate gland, zones and lesions. We show that models
trained on large amounts of diverse data are better at generalizing to data from other institutions and obtained
with other manufacturers, outperforming models trained on single-institution single-manufacturer datasets in
all segmentation tasks. Furthermore, we show that lesion segmentation models trained on ProstateNet can be
reliably used as lesion detection models.
1. Introduction

According to the 2022 cancer statistics provided by the Ameri-
can Cancer Society, Prostate Cancer is the most prominent cancer in
males, and the second most prominent cancer overall, behind breast
cancer [1]. Despite the high prevalence, it has a low mortality rate of
≈ 12%, although early detection is key for optimal treatment outcomes.
Several computational methods for prostate cancer have been devel-
oped [2–6], but they oftentimes require segmentations of either the
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prostate or index lesions. While manual segmentations are currently the
most common practice, performing them is a highly time-consuming
task notably dependent on the expertise of the radiologists, with a
very high degree of inter- and intra-observer variability [7–9]. Thus,
there is a need to develop reliable and robust automatic segmen-
tation models that can help clinicians deliver timely and accurate
diagnoses.

Over the last few years, an extensive collection of models for
automatic segmentation of the whole prostate gland, zones and lesions
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have been proposed, using a wide variety of deep learning architec-
tures, from standard convolutional neural network variants to vision
transformers and object detectors [10–21]. Despite this abundance
of models, prior works have shown that several of these different
U-Net-based models have very similar capabilities when performing
prostate gland and zone segmentation, showing little to no statistical
difference [17,22].

However, similarly to many other studies, a common caveat is that
these models were trained on a reduced sample size acquired with a
single type of scanner. The effect of distribution shifts associated with
different scanners on the performance of segmentation and detection
models in biomedical images has been previously noted. This is par-
ticularly true for brain MRI segmentation [23,24], which may lead
to downstream errors in quantifying clinically relevant aspects of the
patient [25]. However, when it comes to prostate MRI, little is known
in terms of the impact that different scanners may have on the learning
and on how well these models generalize.

In this study, we make use of the ProstateNet image archive, which
was created under the scope of the ProCAncer-I project, which contains
large amounts of retrospective multi-vendor and multi-institution data
that were used to train segmentation models for three distinct tasks:
whole prostate gland, prostate zones (peripheral and transitional zones)
and index lesion segmentation. Additionally, we also make use of two
publicly available benchmark datasets: ProstateX, and Prostate158, to
compare to and enhance ProstateNet. An interesting and similar work
was done by Meglič et al. [26], where they joined the publicly available
ProstateX data with private internal data (both obtained from Siemens
scanners), to improve whole gland, peripheral and transitional zone
segmentation performance. Our experiments expand and complement
these experiments by including a significantly larger sample of data,
obtained from an extensive range of scanner and institutional providers.

The results show that for whole gland and zone segmentation, the
models benefit from data abundance and variability to be able to
generalize on out-of-institution data, becoming more robust to domain
shifts. For index lesion segmentation, we show that simply having
large amounts of data is not enough. Additionally, for index lesion
segmentation, we show that more intricate strategies, such as using
multiparametric MRI (mpMRI, a technique which uses anatomical and
functional MRI sequences) data or multi-resolution models, do not
yield better results than regular full-resolution models trained on T2 W
(anatomical) data. However, while the segmentation performance is
relatively poor, we show that some of these index lesion segmentation
models can be reliably used as robust index lesion detection models.

2. Methods

2.1. Data

Four different datasets were used in this study:

• Prostate158 is a collection of biparametric MRI volumes that
include T2 W, DWI and ADC modalities. These volumes were
obtained by the German university hospital - Charité University
Hospital Berlin, using Siemens 3T MR scanners (VIDA and Skyra).
Regarding the acquisition of the images, the following description
was provided by the authors of the paper: "T2w sequences were
acquired with the following parameters: slice thickness 3 mm, no
interslice gap, in-plane resolution 0.47 × 0.47 mm, field of view
(FOV) size 180 × 180 mm, time to echo (TE)/repetition time (TR)
116 ms/4040 ms, turbo factor 25, flip angle 160◦, acquisition
time 3 min and 56s". [27]

• ProstateX is a collection of prostate MRI volumes that include
T2 W, DWI and ADC modalities. These volumes were obtained by
the Prostate MR Reference Center — Radboud University Medical
Centre (Radboudumc) in the Netherlands, using two Siemens
2

3T MR scanners (MAGNETOM Trio and Skyra). Regarding the
Table 1
Stratification of samples by manufacturer for all four segmentation
datasets per task. Both the ProstateNet and ProstateAll datasets also
include a very residual amount (≤ 5) of Toshiba scanner samples,
which were accounted for in the total values.
Gland

Total Siemens Philips GE
Prostate158 139 139 – –
ProstateX 182 182 – –
ProstateNet 638 152 245 239
ProstateAll 959 473 245 239

Zones

Prostate158 139 139 – –
ProstateX 181 181 – –
ProstateNet 638 152 245 239
ProstateAll 958 472 245 239

Lesions

Prostate158 82 82 – –
ProstateX 190 190 – –
ProstateNet 461 136 184 136
ProstateAll 733 408 184 136
ProstateNet
mpMRI

417 131 178 107

acquisition of the images, the following description was provided
by the challenge’s organizers: "T2-weighted images were acquired
using a turbo spin echo sequence and had a resolution of around
0.5 mm in plane and a slice thickness of 3.6 mm’’ [28]. The
manual segmentations used as ground truth for both the prostate
gland and the lesions were performed independently by an ex-
pert radiologist (M.L., 10 years of experience) on T2 W and
DWI sequences separately (153 volumes total for each sequence),
while the transition and peripheral zone ground truth masks were
obtained from the public dataset repository (139 T2 W volumes).

• ProstateNet is a collection of multiparametric MRI volumes, that
include T2 W, DWI and ADC modalities. These volumes were
obtained by 12 clinical partners of the Procancer-I project. These
partners used Siemens (Aera, Skyra, Sola, Avanto, VIDA, Tim,
Prisma, Veri, Symphony, Osirix), Philips (Ingenia, Achieva, Mul-
tiva) and GE scanners (Optima, Signa, DISCOVERY). Given that
each centre has specific acquisition protocols, no single one was
used across all mpMRI studies done. Given that labels could be
defined automatically (using the QUIBIM-developed ProCAncer-I
prostate region segmentation tool), and could either be manually
corrected but not validated and manually corrected and validated,
we define a hierarchy of annotations, selecting the whichever
one is available first: (1) manually corrected and validated (𝑛 =
610), (2) manually corrected but not validated (𝑛 = 30), (3)
automatically generated (𝑛 = 65).

• ProstateAll is a combination of all the previous datasets. It was
created with the purpose of increasing the data pool used to train
the models, regarding both the total number of samples, as well as
regarding data variability, with the aim of producing more robust
models.

Table 1 shows the composition of the different datasets. for each
egmentation task (gland, zones and lesion) stratified by scanner man-
facturer. From these numbers, 15% of the samples were used as a
old-out test set, and the remaining were used for training, following a
-fold cross-validation strategy. For the mpMRI study, a total of 417
ases were used (354 for training and 64 for hold-out). Details on
he distribution of scanner model per data partition of the ProstateNet
ataset are available in the Supplementary Methods (Fig. B.1).

.2. Experiments

For this study, we focus on three different tasks:
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• Whole prostate gland segmentation is the simplest task of the
three and consists in producing a binary map where the positive
values correspond to pixels belonging to the whole prostate gland.
For this, exclusively T2 W sequences were used;

• Prostate zone segmentation can be seen as a slightly harder
subset of the whole gland segmentation and consists of the seman-
tic segmentation of the peripheral zone (PZ) and the transitional
zone with the central zone (TZ). Similarly to the previous task,
exclusively T2 W sequences were used;

• Lesion segmentation is the hardest segmentation task regarding
the prostate due to the small size, low visibility and irregular
shape of the lesions. For this task, all annotated lesions were pre-
dicted for each study. Additionally, for the ProstateNet dataset,
apart from using T2 W data, we assessed whether using a combi-
nation of T2 W, DWI and ADC (mpMRI) sequences could improve
segmentation performance.

.3. Deep learning model specification

Three distinct 3D deep-learning (DL) segmentation models were
rained - a simple U-Net model [29] (U-Net), a U-Net model with deep
upervision [30] (U-Net + D.S.), and a full resolution nnUNet model
nnUNet) [31], which also uses deep supervision. Deep supervision is
technique that uses intermediate predictions, generated at each step

f the decoder to ensure that the model is learning at all stages of
he encoder and decoder rather than taking shortcuts through its skip
onnections. All networks are implemented in Pytorch [32] and were
rained for 1000 epochs (250 mini-batches per epoch) and 200 epochs,
or the nnUnet and U-Net/U-Net + D.S., respectively. Training for U-
et and U-Net + D.S. was performed using Lightning [33], a low-code
nd heavily customizable framework for neural network training and
esting in PyTorch.

To train the nnUNet models, we used the provided 3D full reso-
ution architecture. This framework uses stochastic gradient descent
ith Nesterov momentum (𝜇 = 0.99), a maximum initial learning rate
f 0.01, and polynomial [34] learning rate policy which reduces the
earning rate by a factor of (1 − 𝑒𝑝𝑜𝑐ℎ∕𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥)0.9 in each epoch.
he loss function is an equal combination of Dice and cross-entropy

osses and the batch size was 2 sequences per iteration. nnUNet applies
utomatic preprocessing based on the dataset fingerprint, and therefore
he models for each dataset worked on data with slightly different
patial structures:

• ProstateX: spacing = 0.5×0.5×3.0 mm; crop size = 320 × 320 × 16
voxels

• Prostate158: spacing = 0.4 × 0.4 × 3.0 mm; crop size = 256 × 256
× 28 voxels

• ProstateNet: spacing = 0.5 × 0.5 × 3.0 mm; crop size = 256 × 256
× 28 voxels

• ProstateAll: spacing = 0.5 × 0.5 × 3.0 mm; crop size = 256 × 256
× 26 voxels

Details on training the remaining U-Net models are available in the
upplementary Methods (E.1).

Additionally, we perform a self-contained study on whole gland
egmentation using transformed-based models (i.e. UNETR [35], Swin-
NETR [36]), showing how they perform worse than nnUNet models

Supplementary Methods (E.2 and E.3)).

.4. Model evaluation

Each model is evaluated by its Dice score (DS) using 5-fold cross-
alidation (CV) according to the best observed DS during training, and
ts generalizability is assessed using the hold-out test set. To assess
ow models perform on different datasets, we test each model on the
old-out test set of each different dataset. Additionally, since DS only
3

Table 2
Stratification of prospective samples by manufacturer for Gland (PZ
and TZ included) and index Lesion segmentation.

Total Siemens Philips GE

Gland 211 29 176 6
Lesions 19 7 8 4

provides an overlap score, we also include the Hausdorff Distance (HD),
Average Symmetric Surface distance (ASSD), and Relative Absolute
Volume Difference (RAVD) during quality assessment of the model, as
these metrics provide a quantitative measure of the spatial accuracy by
considering the shape and volume of the segmented regions [37] (both
distance metrics were calculated using MedPy [38]). Details on each
metric are available in the Supplementary Methods (E.4).

2.5. Prospective validation

Lastly, to further assess how the developed models perform on
contemporary data, a prospective validation is performed on a smaller
cohort of patients. The prospective cases were downloaded from the
ProstateNet platform on October 11th 2023. An overview of the data,
stratified by manufacturer, can be seen in Table 2. Since whole gland
masks are generated by merging both Peripheral (PZ) and Transi-
tional+Center (TZ) masks, they share the same data composition.

3. Results

3.1. Data variety and size are associated with better performance in whole
prostate and zone segmentation

Whole gland segmentation
For whole gland segmentation, we observe a relatively small range

of performances in CV, with both U-Net variants achieving Dice scores
between 0.89 and 0.91, and the nnUNet between 0.91 and 0.93 (Fig. 1
and Table 3).

For the hold-out test set, the same behaviour is observed but only
when models are trained and tested on data from the same distribution
(i.e. same dataset; Fig. 1A and Table 4).

We observe that the performance of nnUNet was almost always
better than the one of other U-Net models (Fig. 1B), both for CV and
for the hold-out test set. This is on par with previous studies [17,31]
and holds up for both in- and out-of-distribution data. Taking this into
consideration, we did not use any other models apart from nnUNet for
the remaining tasks.

When looking at the performance of the nnUNet models trained
on Prostate158 and then evaluated on ProstateX, it is possible to
observe that it produces errors (HD) up to 100× larger than all other
models (Fig. 2 and Table 4). While unexpected – both datasets were
obtained using Siemens scanners – the performance differences may
be associated with the specific scanner model or centre. These shifts
in performance are considerably smaller when models are trained
on ProstateNet, hinting that model-specific effects on performance
decrease as the amount and variety of data increases. This effect is
extendable from datasets to scanner manufacturers (Fig. 1B right).
Indeed, the model-specific effects on performance become increasingly
negligible as the amount and variability of data increases. Table 4
highlights the benefits of applying models to data which is similar to
the training data — the nnUNet model trained on the ProstateAll data
produces far better distance metrics across all datasets. To better under-
stand where these models failed, a qualitative analysis was performed;
this showed that most errors were actually poor quality annotations
(details in the Supplementary Results C).
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Fig. 1. Whole gland segmentation performance of the nnUNet and U-Net models. (A) CV Dice scores. (B) Hold-out test set Dice scores. Left: performance stratified by dataset.
Right: performance stratified by manufacturer.
Prostate zone segmentation. During CV, zonal segmentation models
present diverse levels of performance, in terms of both the segmented
zone and different sets of data used during training (Fig. 3 and Table 3)
— both ProstateX and Prostate158 models yield Dice scores signifi-
cantly worse than those of ProstateAll in the context of PZ segmenta-
tion. Apart from the lower Dice, it can be noted that Prostate158 pro-
duces maximum errors (Hausdorf) 5 − 8 mm bigger than the remaining
models.

Considering the hold-out test performance, and similarly to what
was shown for the whole gland segmentation, it can be seen that the
performance is similar between CV and hold-out test set (Tables 3 and
5). As expected, based on the previous results, both ProstateX and
Prostate158 models fail to generalize to multi-vendor data, suffering
a severe drop in performance when tested on ProstateNet/ProstateAll
data. On par with what was observed during whole gland segmentation,
both ProstateX and Prostate158 models fail to generalize to each other
despite having been acquired with scanners produced by the same
manufacturer. Additionally, it can be seen that the trend of producing
very large maximum errors (HD) - on average 100× (PZ) and 200× (TZ)
larger than all other models (Fig. 2) - is kept, when evaluating the
Prostate158 models on ProstateX data.

Learning curve analysis. To better understand how data variety and size
impact performance, we conducted a simple learning curve analysis by
training the nnUNet model on different proportions of the ProstateAll
training dataset ([0.1, 0.5, 0.7, 1.0]). Initially, our conceptual understand-
ing focused on data variability, rather than on the amount of data —
i.e. having data from more diverse sources would lead to improved
4

performance. However, it was also possible that simply increasing the
amount of data could lead to better performance. The CV results allow
us to validate the expected outcome of this analysis (Fig. 4 B) —
performance increases as the amount of data increases. Extending this
analysis to the hold-out test set and stratifying by testing dataset (Fig. 4
C) while comparing the learning curve performance with that of models
trained and tested on the same dataset reveals something striking –
for starters, even at relatively low amounts of ProstateAll data (0.1 –
corresponding to 65 cases) the performance is at least comparable to
that of models trained and tested on the same dataset, suggesting that
data variability leads to improved performance. The additional insight
is that increasing the size of the training set – which inevitably increases
the variability of the data as well – also leads to improved performance
which is oftentimes better than that observed in models trained and
tested on the same data. For this reason, we suggest here that this
increase in performance is driven by a combination of increased data
size and increased variability, highlighting the importance of initiatives
such as ProstateNet in training algorithms that can be clinically de-
ployable and robust to large shifts in performance at test and inference
time.

3.2. Increasing dataset size and diversity improves index lesion detection

The performance of index lesion segmentation models is generally
worse when compared with that of other prostate segmentation tasks
(Fig. 3 and Table 3), mostly due to the small size and irregular shape of
the lesions. Using data which is both more abundant and more diverse –
ProstateNet/ProstateAll – improves performance when compared with
ProstateX and Prostate158, two small, single-institution datasets. This
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Table 3
nnUNet CV results stratified by segmentation task. For each dataset, the average Dice, Hausdorf, RAVD, ASSD and Recall
performance, along with their respective standard deviations, are presented. p-values for Kruskal–Wallis significance test
comparing the Dice score between ProstateAll results and each other model are also shown, with significant results (𝑝-value
< 0.01) are marked as green.

Dice Hausdorf RAVD ASSD Recall 𝑝-value

Gland

ProstateX 0.93 ± 0.02 8.01 ± 4.36 0.01 ± 0.07 0.32 ± 0.1 1.0 ± 0.0 0.1745

Prostate158 0.91 ± 0.03 14.02 ± 11.81 0.0 ± 0.1 0.35 ± 0.19 1.0 ± 0.0 0.0758

ProstateNet 0.91 ± 0.09 12.48 ± 23.27 0.09 ± 1.78 0.43 ± 0.72 1.0 ± 0.0 0.2506

ProstateAll 0.92 ± 0.08 12.71 ± 27.82 0.06 ± 1.42 0.45 ± 1.79 1.0 ± 0.0 –

Zones PZ TZ

ProstateX 0.8 ± 0.08
0.88 ± 0.05

16.45 ± 9.75
14.97 ± 9.31

−0.0 ± 0.24
0.02 ± 0.17

0.64 ± 0.39
0.55 ± 0.22

1.0 ± 0.0
1.0 ± 0.0

0.009
0.0758

Prostate158 0.76 ± 0.09
0.88 ± 0.06

20.95 ± 18.13
22.09 ± 16.84

−0.01 ± 0.26
0.03 ± 0.14

0.64 ± 1.16
0.44 ± 0.35

1.0 ± 0.0
1.0 ± 0.0

0.009
0.0758

ProstateNet 0.81 ± 0.11
0.89 ± 0.08

15.7 ± 22.22
13.13 ± 11.9

0.08 ± 1.45
0.14 ± 2.2

0.56 ± 0.8
0.5 ± 0.62

1.0 ± 0.0
1.0 ± 0.0

0.4647
0.0758

ProstateAll 0.82 ± 0.1
0.9 ± 0.08

15.43 ± 19.97
14.61 ± 13.34

0.06 ± 1.24
0.09 ± 1.78

0.5 ± 0.81
0.44 ± 0.54

1.0 ± 0.0
1.0 ± 0.0

– PZ
TZ

Lesions

ProstateX 0.17 ± 0.24 100.45 ± 89.78 2.22 ± 13.35 32.9 ± 51.24 0.4 ± 0.04 0.009

Prostate158 0.25 ± 0.27 95.44 ± 87.01 0.04 ± 1.17 24.5 ± 47.58 0.5 ± 0.06 0.1172

ProstateNet 0.38 ± 0.3 66.45 ± 66.83 0.33 ± 2.79 18.43 ± 35.56 0.7 ± 0.02 0.4647

ProstateAll 0.36 ± 0.3 77.3 ± 73.68 0.9 ± 9.75 22.74 ± 39.54 0.65 ± 0.02 –

ProstateAll
Cascade

0.36 ± 0.3 81.03 ± 73.59 0.68 ± 8.39 23.98 ± 40.4 0.65 ± 0.02 0.9168

ProstateNet
mpMRI

0.4 ± 0.28 71.3 ± 69.18 0.61 ± 3.16 15.37 ± 27.46 0.76 ± 0.02 0.1172
Table 4
nnUNet whole gland segmentation hold-out test set results. For each pairwise evaluation, the average Dice,

Hausdorf, RAVD and ASSD performance, along with their respective standard deviations, are presented.
Tested on

ProstateX Prostate158 ProstateNet ProstateAll

Trained on

ProstateX

0.93 ± 0.02 0.9 ± 0.04 0.84 ± 0.12 0.86 ± 0.11 Dice
8.8 ± 4.61 19.12 ± 35.05 47.99 ± 76.07 36.56 ± 65.85 Hausdorf
−0.03 ± 0.06 0.05 ± 0.11 0.24 ± 0.56 0.17 ± 0.48 RAVD
0.32 ± 0.08 0.48 ± 0.45 2.91 ± 5.75 2.08 ± 4.86 ASSD

Prostate158

0.66 ± 0.18 0.92 ± 0.04 0.86 ± 0.11 0.83 ± 0.15
364.2 ± 87.76 13.04 ± 12.98 22.37 ± 42.1 85.29 ± 143.78
0.95 ± 0.84 0.03 ± 0.08 0.19 ± 0.62 0.31 ± 0.7
49.91 ± 24.9 0.31 ± 0.18 1.74 ± 5.76 10.59 ± 22.29

ProstateNet

0.91 ± 0.02 0.88 ± 0.04 0.92 ± 0.04 0.91 ± 0.04
8.64 ± 3.75 13.23 ± 6.88 9.88 ± 9.94 10.12 ± 8.8
−0.07 ± 0.07 −0.03 ± 0.08 −0.0 ± 0.08 −0.02 ± 0.08
0.39 ± 0.09 0.42 ± 0.14 0.34 ± 0.15 0.36 ± 0.14

ProstateAll

0.93 ± 0.02 0.92 ± 0.03 0.92 ± 0.04 0.92 ± 0.04
9.01 ± 4.52 10.71 ± 8.28 9.62 ± 9.76 9.66 ± 8.81
−0.03 ± 0.06 0.02 ± 0.07 0.01 ± 0.08 0.0 ± 0.08
0.31 ± 0.07 0.27 ± 0.1 0.34 ± 0.14 0.33 ± 0.13
is true not only of Dice scores, but also of HD and ASSD (both generally
lower for both ProstateNet and ProstateAll).

Apart from the standard single modality full-resolution models,
we also trained a cascade model for the ProstateAll T2 W data (in
theory more capable of capturing small objects) and a full-resolution
model using ProstateNet T2 W, DWI and ADC (mpMRI) images (DWI
and ADC are more appropriate than T2 W, as they hyper- and hypo-
saturate in the areas where index lesions exist). During CV, while the
cascade model provided minimal differences apart from slightly smaller
errors, the ProstateNet model using the three modalities showed some
improvements, most notably in terms of dice and recall, albeit these
improvements were not statistically significant.

Similarly to what was shown for whole gland and zone segmen-
tation models, the majority of in-distribution hold-out results (Ta-
5

ble D.4) are similar to those obtained during CV. Regarding out-
of-distribution performance, both single-manufacturer and institution
models (ProstateX and Prostate158) show a performance drop on multi-
centric multi-manufacturer data, while ProstateAll provides consistent
results all throughout. Additionally, the performance drops signifi-
cantly when testing the Prostate158 model on the ProstateX dataset.
Contrary to what was hypothesized, the mpMRI ProstateNet and the
Cascade ProstateAll models showed a poor generalization performance,
decreasing more when compared to its T2W-only counterpart, in both
Dice and recall. Overall, the best model turned out to be the ProstateAll
T2W-only model, particularly when considering the average precision
for each model (Fig. 5) — this is further highlighted in Fig. 6, showing
the co-localization of index lesions and voxels predicted as having high
index lesion probability(see Table 6).
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Fig. 2. Multi-metric analysis of the hold-test performance of the nnUNet models, in- and out-of-distribution, stratified by segmentation task.
Table 5
nnUNet PZ and TZ segmentation hold-out test set results. For each pairwise evaluation, the average Dice, Hausdorf, RAVD and ASSD performance, along with their respective

standard deviations, are presented.
Tested on

ProstateX Prostate158 ProstateNet ProstateAll

Trained on

ProstateX

0.82 ± 0.06 0.87 ± 0.07 0.72 ± 0.1 0.84 ± 0.05 0.72 ± 0.17 0.77 ± 0.19 0.74 ± 0.15 0.8 ± 0.17 Dice
15.66 ± 8.74 15.73 ± 11.06 17.73 ± 8.4 33.21 ± 20.62 20.46 ± 18.72 56.17 ± 85.67 19.2 ± 16.3 45.56 ± 73.0 Hausdorf
−0.04 ± 0.11 0.01 ± 0.31 0.32 ± 0.24 −0.1 ± 0.17 0.12 ± 0.54 0.54 ± 1.23 0.12 ± 0.47 0.35 ± 1.06 RAVD
0.61 ± 0.48 0.57 ± 0.35 0.59 ± 0.3 0.71 ± 0.22 1.14 ± 1.65 4.28 ± 9.5 0.97 ± 1.4 3.11 ± 8.01 ASSD

Prostate158

0.7 ± 0.1 0.68 ± 0.2 0.79 ± 0.11 0.89 ± 0.06 0.7 ± 0.15 0.79 ± 0.18 0.71 ± 0.14 0.78 ± 0.18
296.17 ± 101.81 353.73 ± 115.13 19.48 ± 13.78 20.96 ± 18.05 23.92 ± 35.72 27.65 ± 51.67 73.94 ± 118.74 87.37 ± 143.28
−0.08 ± 0.28 0.96 ± 1.46 0.07 ± 0.16 0.06 ± 0.16 −0.12 ± 0.41 0.59 ± 1.6 −0.09 ± 0.37 0.59 ± 1.49
19.69 ± 15.82 51.68 ± 34.68 0.51 ± 0.48 0.36 ± 0.15 1.16 ± 2.13 2.78 ± 9.16 4.51 ± 10.11 11.55 ± 25.48

ProstateNet

0.81 ± 0.05 0.85 ± 0.08 0.74 ± 0.09 0.84 ± 0.05 0.8 ± 0.15 0.86 ± 0.16 0.79 ± 0.13 0.86 ± 0.13
16.73 ± 8.43 16.52 ± 8.18 17.49 ± 6.84 31.48 ± 22.19 15.02 ± 11.23 14.77 ± 19.17 15.67 ± 10.3 17.34 ± 18.97
−0.09 ± 0.1 −0.09 ± 0.21 0.27 ± 0.23 −0.17 ± 0.1 0.03 ± 0.37 0.1 ± 0.73 0.04 ± 0.34 0.03 ± 0.62
0.59 ± 0.3 0.66 ± 0.41 0.58 ± 0.26 0.66 ± 0.29 0.63 ± 1.15 1.24 ± 7.34 0.62 ± 0.96 1.06 ± 6.06

ProstateAll

0.83 ± 0.05 0.88 ± 0.07 0.81 ± 0.08 0.9 ± 0.04 0.8 ± 0.15 0.86 ± 0.16 0.81 ± 0.13 0.87 ± 0.14
15.19 ± 7.79 15.17 ± 8.3 17.05 ± 6.94 23.98 ± 19.29 14.69 ± 11.55 14.64 ± 20.05 15.1 ± 10.44 15.99 ± 18.6
−0.04 ± 0.12 −0.01 ± 0.25 0.08 ± 0.13 −0.01 ± 0.1 0.03 ± 0.37 0.11 ± 0.7 0.03 ± 0.31 0.07 ± 0.59
0.56 ± 0.45 0.55 ± 0.35 0.43 ± 0.25 0.36 ± 0.13 0.62 ± 1.13 1.31 ± 7.51 0.58 ± 0.96 1.04 ± 6.21
PZ TZ
6
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Fig. 3. Multi-metric analysis of the CV performance of the nnUNet models, stratified by segmentation task. Each circle represents the mean and the horizontal lines represent the
tandard error around the mean.
Fig. 4. Learning curves performance scores for the data partitions of ProstateAll. A:
ross-validation performance. B: Test set performance stratified by dataset.C: Test set
erformance stratified by dataset and manufacturer.
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3.3. Data diversity and size may not guarantee generalization

To understand how performance is affected by changes to the testing
conditions, we also analyse the differences in performance at the centre
level (Figs. 7, B.4, B.2 and B.3). We note that for most cases, there are
no large performance drops, even in instances where data comes from
centres with a high prevalence of endorectal coil use (UNIPI, FPO).
It can also be noted that Philips data produces a very diverse set of
results on a wide variety of institutions, unlike other scanners, leading
us to believe these differences are most likely dependent on the specific
model of the scanners, rather than the institutions. Additionally, it
should be noted that models trained on datasets with lower amounts
of data variability (Prostate158 or ProstateX, both single-institution
datasets with data acquired using Siemens scanners) tend to perform
worse across most data centres. However, it should be highlighted
that for some datasets, performance is relatively poor for index lesion
detection 7.

Indeed, while we observe good performance in both ProstateNet and
ProstateAll, it is evident that ProstateNet still does not generalize as
well as ProstateAll to ProstateX or Prostate158. Indeed, the fact that
ProstateAll models had access to data from all datasets during training
is likely what led to their better performance across different tasks. As
expected, while we still observe an improvement in out-of-distribution
performance when considering ProstateNet models, it is likely that the
larger benefit lies in training not only with diverse data, but also with
data which is more similar to that used during testing and real-world
applications.

3.4. Prospective validation

In order to understand if our segmentation models were capable of
generalizing to new, prospective data, we tested models that performed
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Table 6
nnUNet lesion segmentation hold-out test set results. For each pairwise evaluation, the average Dice, Hausdorf, RAVD, ASSD

and Recall performance, along with their respective standard deviations, are presented.
Tested on

ProstateX Prostate158 ProstateNet ProstateAll

Trained on

ProstateX

0.17 ± 0.25 0.28 ± 0.28 0.12 ± 0.21 0.15 ± 0.23 Dice
90.33 ± 70.94 69.41 ± 41.86 89.95 ± 59.44 88.11 ± 62.67 Hausdorf
1.49 ± 5.37 −0.19 ± 0.6 13.98 ± 100.1 8.22 ± 74.71 RAVD
35.34 ± 43.29 21.98 ± 26.6 33.03 ± 35.23 32.78 ± 37.76 ASSD
0.39 ± 0.07 0.58 ± 0.14 0.33 ± 0.06 0.38 ± 0.04 Recall

Prostate158

0.04 ± 0.13 0.21 ± 0.34 0.14 ± 0.23 0.11 ± 0.22
207.98 ± 171.3 30.94 ± 53.34 69.03 ± 96.71 114.29 ± 143.71
12.97 ± 78.73 0.04 ± 0.65 0.06 ± 2.14 4.6 ± 47.14
107.81 ± 123.17 2.97 ± 6.7 24.09 ± 48.69 51.53 ± 91.71
0.11 ± 0.05 0.33 ± 0.14 0.3 ± 0.06 0.24 ± 0.04

ProstateNet

0.1 ± 0.2 0.25 ± 0.28 0.33 ± 0.3 0.24 ± 0.29
98.97 ± 122.66 69.69 ± 57.29 54.52 ± 62.22 71.62 ± 90.4
0.31 ± 2.21 −0.25 ± 0.77 0.26 ± 1.59 0.23 ± 1.79
50.86 ± 88.74 21.07 ± 36.2 14.32 ± 35.78 27.83 ± 62.42
0.23 ± 0.06 0.58 ± 0.14 0.62 ± 0.06 0.48 ± 0.04

ProstateAll

0.21 ± 0.26 0.45 ± 0.3 0.39 ± 0.3 0.33 ± 0.3
76.23 ± 54.67 65.81 ± 43.74 67.3 ± 65.2 67.55 ± 59.25
1.24 ± 4.54 −0.07 ± 0.56 1.39 ± 5.96 1.18 ± 5.22
22.91 ± 28.61 11.69 ± 15.09 18.73 ± 34.38 19.15 ± 30.3
0.45 ± 0.08 0.83 ± 0.11 0.7 ± 0.06 0.63 ± 0.04

ProstateAll
Cascade

0.21 ± 0.26 0.45 ± 0.32 0.4 ± 0.3 0.33 ± 0.3
68.42 ± 52.75 52.56 ± 53.6 78.81 ± 70.46 75.38 ± 64.22
1.21 ± 4.61 0.06 ± 0.71 2.92 ± 21.38 2.06 ± 16.14
21.85 ± 25.89 6.97 ± 10.84 22.25 ± 39.89 21.02 ± 34.62
0.48 ± 0.08 0.75 ± 0.12 0.7 ± 0.06 0.62 ± 0.04

ProstateNet
mpMRI

– − 0.34 ± 0.28 –
– − 80.16 ± 80.62 –
– − 0.16 ± 1.32 –
– − 28.52 ± 47.19 –
– − 0.71 ± 0.03 –
the best on the retrospective data – Full resolution ProstateAll nnUNets
– on 211 cases, for both Whole Gland and Zone segmentations, and 19
cases for index lesions segmentation.

Table 7 and Fig. 8 show the obtained results. As it can be observed,
the results are fairly similar to the ones obtained during retrospective
evaluation, with Whole Gland showing the largest performance drop of
≈ 4%, Peripheral Zone dropping ≈ 2%, Transitional Zone gaining ≈ 1%,
and lastly, Index lesion segmentation showing a huge performance
increase, of ≈ 27%. Analysing Fig. 8, it is clear that the performance
of the index lesion segmentation model is quite broad, both failing to
segment anything in 3 out of 19 cases, and producing Dice scores above
0.8 for 9 out of 19 cases.

When comparing the performance for each of the providers (Fig. 9)
it can be observed that overall, regardless of the segmentation task,
all providers show similar scores, that is, apart from RMH, that shows
considerably worse performance for all metrics regarding index lesion
segmentation. All zero and low scores obtained are in cases provided by
that institution. Considering the scanner models associated with these
images (2 Aera, 1 Vida, 1 Sola, 1 Avanto, 1 Skyra and 1 Ingenia),
and looking back at the scanner model distribution (Fig. B.1), one
possible cause could be due to the low prevalence of these models
during training, however, this turned out to be a false assumption,
given that 3∕4 cases that failed came from either Aera or Skyra, which
were very prevalent in the training set.

Additionally, it is also possible to show that the index lesion segmen-
tation models are capable of detecting the index lesions, presenting a
very high Recall, of 0.86, for predictions above an IoU of 10%. In fact,
if not for the outlier performance solely on RMH data (2 cases with 0
Dice), they would have a perfect Recall of 1.

4. Discussion

In this work, we develop and analyse multi-institution and multi-
vendor segmentation models for prostate whole gland, zones and index
8

Table 7
Mean prospective results stratified by segmentation task.

Gland PZ TZ Lesions

Dice 0.88 ± 0.01 0.78 ± 0.01 0.87 ± 0.01 0.66 ± 0.06
HD 15.7 ± 1.36 19.19 ± 1.35 12.65 ± 0.88 30.15 ± 10.77
ASSD 0.57 ± 0.05 0.68 ± 0.04 0.79 ± 0.2 11.02 ± 8.17
RAVD 0.15 ± 0.02 0.21 ± 0.04 0.63 ± 0.33 0.09 ± 0.16
Recall 1 1 1 0.86

lesion segmentation. We evaluated these models on a wide array of
distinct factors, such as total amount of data, scanner manufacturer
variability and institutional provider variability.

The more data the better. From the analysis of the whole gland models,
in particular the learning curves, it can be seen that for this task
the main factor for good performance is the total amount of data, as
the model is not fully saturated even with the entire set of samples.
Even when provided with ground truths that contain artefacts and
are, sometimes, grossly incorrect, these models still benefit from the
additional data.

More variability leads to better generalization. As consistently shown
throughout all segmentation tasks, where ProstateNet and ProstateAll
outperform single-provider single-manufacturer models in- and out-of
distribution, more data variability during training makes the models
resistant to domain shift. The fairness analysis further highlights this, as
both of these models, and in particular the ProstateAll models, not only
consistently provide the best dice scores, but also produce far smaller
errors.

Bad segmentation models are good detection models. Despite showing
a poor segmentation performance, the ProstateAll index lesion seg-
mentation models show a remarkable detection capability. This was

first shown by their overall Recall performance, at both 0.1 and 0.5
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Fig. 5. Test set ROI detection analysis based on Recall at different Dice levels (10%
and 50%).

Dice thresholds, when evaluating the segmentation performance, and
later by the extracted index lesion candidates and the corresponding
heatmaps when focusing solely on detection.

Models show good prospective performance. The results obtained from
the prospective validation of the segmentation models show that there
is no deterioration in performance, with whole gland and prostate zone
models producing results similar to those obtained on retrospective
data, and the index lesion segmentation models showing a considerable
performance improvement. However, this was done on a very small
sample of prospective cases, which raises some concerns about the real
applicability of the models.

Limitations and future directions. This work serves the purpose of build-
ng new robust models that can be seen as strong domain-invariant
aselines for prostate whole gland, zone and index lesion segmentation,
9

as well as lesion detection. While the overall quality of these models
was shown, evaluated on both retrospective and prospective data, the
prospective cohort was fairly small and did not have a time continuity.
It would be interesting to have a prospective cohort obtained through-
out a continuous period of time to assess if the models would show a
continuous degradation from domain shift. Additionally, following the
promising lesion detection results, it would be interesting to further
improve these models, and evaluate their capabilities on tumour stage
detection [21], as well as differentiate between aggressive and non-
aggressive lesions, stratified by ISUP scores. One last possible research
direction would be to use semi-supervised learning to mitigate the lack
of lesion annotations, and determine how this could improve model
performance and generalization.
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Fig. 6. Index lesion detection probability maps at different IoU thresholds. Colder hues (blue/green) denote zones of lower probability, while hotter hues (red/orange) denote
areas of higher probability. The ground truth is marked as the solid white line.
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Fig. 7. Fairness analysis showing the Dice scores when testing the different nnUNet models, in- and out-of-distribution, stratified by manufacturer and provider.
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Fig. 8. Distribution of the prospective results stratified by segmentation task.
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Fig. 9. Distribution of the prospective results stratified by data provider.
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Appendix B. Supplementary figures

See Figs. B.1–B.4.

Appendix C. Qualitative analysis

See Figs. C.1–C.3.

Appendix D. ProstateNet vendor-specific analysis

In order to assess the individual contribution and overall perfor-
mance of each vendor, we trained additional models on subsets of data
stratified by manufacturer (vendor) — GE, Philips and Siemens. We
perform both a CV and hold-out test set analysis of these models and
compare the results between manufacturer and to those obtained by
the master models described previously.

During CV results, Table D.1 shows two very distinct scenarios: For
whole gland and zones segmentation, we can see that the performance
is very similar across all metrics, between all manufacturers – with the
exception of GE for the peripheral zone – and that these are also similar
to the ones obtained by the master models; On the other hand, the
lesion segmentation models show large discrepancies between manu-

facturer, with the Siemens model clearly outperforming the other two,
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Fig. B.1. Top: Scanner models distribution per data partition. Bottom: Proportion comparison per scanner model per data partition.
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Fig. B.2. Fairness analysis showing how much the predicted volumes differ from the ground truths when testing the different nnUNet models, in- and out- of distribution, stratified
by manufacturer and provider.
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Fig. B.3. Fairness analysis showing the maximum errors of the predictions when testing the different nnUNet models, in- and out- of distribution, stratified by manufacturer and
provider.
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Fig. B.4. Fairness analysis showing how much the surface of the predicted volumes differ from that of the ground truths when testing the different nnUNet models, in- and out-
of distribution, stratified by manufacturer and provider.
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Fig. C.1. Sample of ground truth errors detected during the largest connect component
analysis, showing random artefacts and incorrect gland masks.

Fig. C.2. Set of examples showcasing the quality of the developed segmentation
models, for whole gland, zones and lesion segmentation, on various areas of the
prostate. Predicted segmentations are white for the whole gland and lesions, and
white+brown for zones, while ground truth masks are red for whole gland and lesions,
and green+red for zones.

and being the only one producing results similar to those obtained by
the master models.

Analysing the hold-out test results, for the whole gland segmenta-
tion models (Table D.2) we can see that on all manufacturer models
show the same generalization degree to Siemens and Philips data,
whilst GE shows a 2∕3% improvement over the others on GE data. It can
also be noted that these results match those of the ProstateNet master
models. For the zone segmentation (Table D.3), the key finding is how
well all models seem to generalize to Philips data. Both Siemens and
GE models generalize better on Philips data than on their own vendor-
specific data. Regarding the lesion segmentation models (Table D.4)
there are several interesting aspects. Similar to what was observed
during CV, Siemens models are the ones that overall generalize the
18
Fig. C.3. Examples where the predicted segmentation (white) was evaluated with a
low dice score due to incorrect ground truth masks (red) for whole gland segmentation,
evaluated by an expert radiologist.

better, however, it can also be noted that the data on which all models
better generalize is that of Philips. Even models such as the GE, which
show a very poor in-distribution performance, show higher results on
Philips data. When evaluating the lesion detection capabilities (Recall)
of each models, we can see that the Siemens model produces very good
results, in particular when tested in-distribution (on Siemens data).
When comparing these results to those produced by the master models,
we can observe that, overall, only the Siemens model – and also the
Philips model trained on Philips data – come close regarding Dice and
Recall performance, whilst both the GE model and GE data wield very
poor results.

Appendix E. Supplementary methods

E.1. Training the U-Net and U-Net + D.S. models

To train the U-Net and U-Net + D.S. models, we used a stochastic
gradient descent optimizer with 0.99 momentum with a maximum
learning rate of 0.01, weight decay of 0.005 [39] and cosine decay with
a minimum learning rate of 0. The encoder is composed of five regular
convolutional layers with kernel size [3, 3, 3] and increasing depths
(32, 64, 128, 256, 320) intercalated with 2x2 max-pooling operations with
strides [2, 2, 1], [2, 2, 1], [2, 2, 1], [2, 2, 2], [2, 2, 2], similar to what is used
in nnUNet [31], while the decoder replicates the encoder but replaces
the max-pooling operations with transpose convolutions. In any case,
Swish activation functions [40] and instance normalization operations
are used after each convolution, with a dropout [41] probability of 0.1.
The anysotropic max-pooling allows for the preservation of a minimal
resolution of 4 in the slice dimension. Using a batch-size of 2, we
sampled 256 × 256 × 16 patches from the image such that patches
with and without positive samples (i.e. voxels belonging to the prostate
gland) are sampled equally. A combo loss [42] — the addition of the
generalized Dice [43] and weighted focal losses [44] with alpha=0.5
— was used to train both U-Net and U-Net + D.S. models.

Deep supervision [30] for U-Net + D.S. was implemented using an
additional classifier after each layer decoder layer that classifies voxels
at a decreased resolution. To calculate the loss for each deep supervi-
sion output, the ground truth was downsampled to match the resolution
at each decoder layer and the loss was calculated. All losses (for the
original resolution and for the deep supervision) were combined using a
weighted average where the weight is parameterized as 1∕2𝑑𝑠−1, where
ds is the downsampling level. For instance, for the full resolution, this
weight evaluates to 1, whereas for the lowest resolution (ds=4) this
evaluates to 1∕8. During U-Net and U-Net + D.S. training, we augment
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Table D.1
nnUNet CV results for all segmentation tasks, stratified by manufacturer. For each dataset, the average
Dice, Hausdorf, RAVD, ASSD and Recall performance, along with their respective standard deviations, are
presented.

Dice HD ASSD RAVD Recall

Gland

Siemens 0.9 ± 0.01 12.37 ± 1.49 0.04 ± 0.02 0.52 ± 0.11 1.0 ± 0.0

Philips 0.9 ± 0.01 12.43 ± 1.13 0.04 ± 0.02 0.47 ± 0.07 0.99 ± 0.01

GE 0.91 ± 0.01 11.23 ± 1.33 0.21 ± 0.21 0.42 ± 0.03 1.0 ± 0.0

Zones

Siemens 0.8 ± 0.01
0.88 ± 0.01

13.99 ± 0.77
15.45 ± 1.42

0.06 ± 0.03
0.02 ± 0.02

0.52 ± 0.03
0.55 ± 0.04

1.0 ± 0.0
1.0 ± 0.0

Philips 0.82 ± 0.01
0.87 ± 0.01

15.15 ± 1.0
13.85 ± 1.05

0.07 ± 0.03
0.19 ± 0.13

0.56 ± 0.07
0.9 ± 0.36

0.99 ± 0.01
0.98 ± 0.01

GE 0.78 ± 0.01
0.88 ± 0.01

17.08 ± 1.94
13.47 ± 0.73

0.22 ± 0.19
0.24 ± 0.21

0.68 ± 0.08
0.54 ± 0.05

1.0 ± 0.0
1.0 ± 0.0

PZ
TZ

Lesions

Siemens 0.36 ± 0.03 74.32 ± 6.17 0.08 ± 0.11 15.11 ± 2.4 0.7 ± 0.04

Philips 0.24 ± 0.02 64.66 ± 5.32 0.82 ± 0.37 22.62 ± 3.37 0.5 ± 0.04

GE 0.29 ± 0.03 74.39 ± 6.7 1.17 ± 0.45 17.92 ± 2.67 0.58 ± 0.05
t
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Table D.2
nnUNet whole gland segmentation hold-out test set results. For each pairwise

evaluation, the average Dice, Hausdorf, RAVD, ASSD and Recall performance, along
with their respective standard deviations, are presented.

Tested on

Siemens Philips GE

Trained on

Siemens

0.92 ± 0.03 0.91 ± 0.03 0.88 ± 0.09 Dice
8.81 ± 5.8 21.59 ± 43.48 17.87 ± 45.61 HD
0.02 ± 0.09 0.01 ± 0.07 0.01 ± 0.12 ASSD
0.32 ± 0.11 0.81 ± 2.38 0.62 ± 0.64 RAVD
1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 Recall

Philips

0.92 ± 0.03 0.92 ± 0.02 0.89 ± 0.1
8.28 ± 5.38 14.12 ± 24.47 18.21 ± 45.59
0.01 ± 0.08 0.01 ± 0.07 −0.01 ± 0.11
0.33 ± 0.11 0.36 ± 0.31 0.6 ± 0.65
1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

GE

0.92 ± 0.03 0.92 ± 0.03 0.91 ± 0.09
9.08 ± 5.56 17.39 ± 27.73 17.12 ± 46.21
−0.0 ± 0.08 −0.01 ± 0.07 0.0 ± 0.09
0.33 ± 0.1 0.45 ± 0.49 0.52 ± 0.65
1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

data in real time to increase the variability of observed data by our
model using MONAI [45], with each transform having a 0.1 probability
of being applied. Particularly we use:

• Random contrast adjustments (gamma multiplier between 0.5 and
1.5)

• Random intensity standard deviation shift (multiplier between 0.9
and 1.1)

• Random intensity shift (multiplier between 0.9 and 1.1)
• Random addition of Rician noise (with a standard deviation of

0.02)
• Random addition of Gibbs noise (alpha between 0.0 and 0.6 and

standard deviation of 0.25)
• Random affine transform (translation range in voxels
[(0, 4), (0, 4), (0, 1)], rotation range in radians
[(0, 𝜋∕16), (0, 𝜋∕16), (0, 𝜋∕16)]

• Random shearing (shearing factor between 0.9 and 1.1 for all
axes)

• Gaussian blurring (sigma between 0.25 and 1.5)

.2. Training the UNETR and Swin-UNETR models

UNETR [35] and Swin-UNETR [36] are segmentation models which
ake use of transformers [46] in the feature encoder layer. Both of
19

a

hese were trained using the exact same hyperparameters as those
sed to train the standard U-Net and U-Net + D.S. models described
n Appendix E.1 with few exceptions — the use of a linear learning
ate warm-up of 25 epochs (10% of the total number of training
pochs) followed by a cosine decay for the remainder of the training,
maximum learning rate of 0.001, and a weight decay of 0.05 and

.005 for Swin-UNETR and UNETR, respectively. Additionally, a batch
ize of 2 was used for both UNETR and Swin-UNETR, and each sample
as padded (if necessary) to a minimum size of 256 × 256 × 32 voxels
nd the randomly cropped to have the same size. The reason for the
ifference in padding/crop sizes between the standard U-Net/nnUNet
nd UNETR and Swin-UNETR is that the latter require a pre-specified
umber of down-scaling operations during the encoding.

The UNETR architecture was implemented using an in-house li-
rary4 with a patch size of 16 × 16 × 16 and composed by 12 vision
ransformer blocks, skip connections at blocks 3, 6 and 9 and 4 encoder
tages with depths of 16, 32, 64 and 128 features; each block had an
mbedding size of 768 with a multilayer perceptron with 3072 hidden
nits. The Swin-UNETR architecture is available as a part of the MONAI
ackage for Python [45], which is identical to the one used in the
riginal publication [36].

.3. UNETR and Swin-UNETR results

To further solidify the motivation for using nnUNet and regular
Net models as opposed to transformer-based segmentation architec-

ures, we trained a UNETR and Swin-UNETR models for whole gland
egmentation and compared the results to those of nnUNet and both
Net variations. Comparing the CV results (Table E.1) it is possible to
bserve that the results are considerably worse than those of nnUNet
nd both UNet variants, being statistically significantly worse in all
atasets when compared with nnUNet (Kruskall-wallis 𝑝-test < 0.01).
hen analysing the hold-out test set results (Table E.2), not only can

t be observed that the results are worse, but that there is clear domain
rift, in particular between ProstateX and ProstateNet models.

Considering these underwhelming results and the cost/carbon im-
act of training these large models, which take up to 14 h per fold
n 2x A6000 GPUs, we concluded that training these models for the
emaining tasks was neither relevant nor beneficial.

4 Available at https://github.com/CCIG-Champalimaud/adell-mri under
dell_mri/modules/segmentation/unetr.py.

https://github.com/CCIG-Champalimaud/adell-mri
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Table D.3
nnUNet zones segmentation hold-out test set results. For each pairwise evaluation, the average Dice, Hausdorf, RAVD, ASSD and Recall

performance, along with their respective standard deviations, are presented.
Tested on

Siemens Philips GE

Trained on

Siemens

0.79 ± 0.1 0.84 ± 0.14 0.8 ± 0.08 0.89 ± 0.04 0.73 ± 0.18 0.86 ± 0.09 Dice
16.55 ± 17.51 16.18 ± 17.64 21.32 ± 24.26 15.76 ± 12.46 14.56 ± 6.55 11.17 ± 6.01 HD
0.02 ± 0.17 0.2 ± 1.02 −0.02 ± 0.16 0.02 ± 0.12 0.11 ± 0.37 0.05 ± 0.17 ASSD
0.53 ± 0.26 1.29 ± 3.46 0.61 ± 0.41 0.5 ± 0.2 0.75 ± 0.57 0.53 ± 0.22 RAVD
1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 Recall

Philips

0.79 ± 0.09 0.85 ± 0.08 0.83 ± 0.07 0.91 ± 0.04 0.75 ± 0.16 0.87 ± 0.09
16.25 ± 15.99 12.83 ± 7.5 17.75 ± 23.77 13.2 ± 13.32 14.48 ± 7.54 11.5 ± 5.67
0.06 ± 0.16 −0.0 ± 0.22 0.02 ± 0.15 −0.0 ± 0.1 0.11 ± 0.27 0.03 ± 0.16
0.5 ± 0.21 0.61 ± 0.24 0.5 ± 0.34 0.4 ± 0.2 0.75 ± 0.63 0.48 ± 0.22
1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

GE

0.79 ± 0.08 0.85 ± 0.08 0.81 ± 0.06 0.89 ± 0.04 0.78 ± 0.15 0.87 ± 0.1
16.43 ± 16.78 12.87 ± 7.03 20.61 ± 24.5 15.02 ± 12.83 12.45 ± 5.29 9.81 ± 5.18
0.06 ± 0.18 −0.02 ± 0.23 −0.01 ± 0.15 0.01 ± 0.12 0.01 ± 0.18 0.1 ± 0.17
0.53 ± 0.23 0.6 ± 0.26 0.57 ± 0.36 0.47 ± 0.21 0.57 ± 0.41 0.46 ± 0.24
1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
PZ TZ
Table D.4
nnUNet lesion segmentation hold-out test set results. For each pairwise evaluation,

the average Dice, Hausdorf, RAVD, ASSD and Recall performance, along with their
respective standard deviations, are presented.

Tested on

Siemens Philips GE

Trained on

Siemens

0.33 ± 0.28 0.33 ± 0.31 0.19 ± 0.26 Dice
40.84 ± 50.38 79.66 ± 69.08 63.53 ± 71.39 HD
−0.3 ± 0.42 −0.14 ± 1.28 0.21 ± 2.17 ASSD
11.23 ± 32.49 28.32 ± 44.85 20.31 ± 34.75 RAVD
0.7 ± 0.1 0.63 ± 0.09 0.4 ± 0.11 Recall

Philips

0.15 ± 0.22 0.34 ± 0.33 0.23 ± 0.3
34.68 ± 51.57 47.94 ± 51.18 26.72 ± 49.08
−0.37 ± 0.4 −0.04 ± 1.15 0.05 ± 0.92
5.78 ± 10.95 12.45 ± 27.82 3.42 ± 8.13
0.4 ± 0.11 0.56 ± 0.1 0.4 ± 0.11

GE

0.22 ± 0.29 0.29 ± 0.31 0.21 ± 0.28
45.14 ± 65.89 49.02 ± 53.59 51.54 ± 59.9
−0.31 ± 0.36 0.09 ± 1.97 −0.26 ± 0.71
8.7 ± 15.1 12.53 ± 31.32 7.56 ± 9.24
0.4 ± 0.11 0.56 ± 0.1 0.45 ± 0.11

Table E.1
Whole gland CV results for the transformer models. For each dataset the average Dice
and associated standard deviation are presented.

ProstateX Prostate158 ProstateNet ProstateAll

UNETR 0.84 ± 0.02 0.77 ± 0.03 0.8 ± 0.01 0.84 ± 0.01
Swin-UNETR 0.89 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.89 ± 0.0

E.4. Validation metrics

The Dice Similarity Coefficient (DSC) is a widely used metric for
segmentation tasks, and it measures the spatial overlap between the
voxels of the ground truth and predicted masks. The produces score is
in the range of [0, 1], where one indicates a perfect segmentation.

The Average Symmetric Surface Distance (ASSD) measures, in
millimetres, the difference between the surface voxels of the predicted
mask and the ground truth mask. For each surface voxel of both images,
the Euclidean distance to the closest surface voxel of the opposite image
is calculated using the approximate nearest neighbour technique. All
measurements are averaged, with the final score indicating the average
distance, where a value of zero indicates a perfect segmentation. In
essence, the ASSD provides information about the spatial accuracy of
the segmentation (how closely the prediction boundary matches the
ground truth boundary).

The Hausdorff Distance (HD), also known as Maximum Symmetric
Surface Distance, measures, in millimetres, the maximum difference
20
between the surface voxels of the predicted mask and the ground
truth mask. The Euclidean distance is measured in the same way as
the ASSD, however, the final score will be the maximum distance, or
error, between both masks, where a value of zero indicates a perfect
segmentation.

The Relative Absolute Volume Difference (RAVD) measures, in
millimetres, the absolute size difference between the volume of the pre-
dicted mask and the ground truth mask. RAVD can be either negative
or positive, with negative values denoting smaller and positive values
a larger predicted volume compared to the ground truth. Values close
to zero indicate both volumes are similar.

Appendix F. Results

F.1. Qualitative analysis

To better understand failure cases in whole prostate gland seg-
mentation – here defined as cases where the Dice score was inferior
to 90% – we individually inspected each case that fit this criterion
in ProstateNet with the assistance of a radiologist with 6.5 years of
experience (RM). Interestingly, the outcome of this analysis is not
associated with the failure of the model — rather, it is associated with
low quality labels as shown in Figs. C.1 and C.3. Particularly, this is
associated with cases where labels were automatically generated using
the ProCAncer-I tool or when the corrections provided by clinicians
contained mistakes. Additionally, through the analysis of large (≈>
20) Hausdorf errors, an issue became apparent — some of the errors
stemmed from the existence of more than one connected component
(given that the prostate gland is a single continuous object in 3 di-
mensions, there can be no more than one component corresponding
to the prostate gland). To understand this quantitatively, we isolated
the largest connected component for all masks and calculated the IoU
score between the largest connected component and the totality of the
ground truth (if there is no more than one connected component, the
IoU score should be 100%). As shown in Table F.1, approximately 1% of
ground truths have a large spurious object not belonging to the prostate
gland, while most detected abnormalities (74%) are relatively small.
In other words, there are cases where the calculated IoU score will be
relatively worse than expected due to the quality of the labels as shown
by our visual inspection and annotation. Taking the aforementioned
aspects into account, it becomes evident that this approach for prostate
gland segmentation – training a nnUNet on the ProstateAll dataset –
is of high value and can be safely deployed across several different
centres.
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Table E.2
Whole gland segmentation hold-out test set results for both transformer-based segmentation models. For
each pairwise evaluation, the average Dice and associated standard error are presented.

Tested on

ProstateX Prostate158 ProstateNet ProstateAll

Trained on

ProstateX 0.85 ± 0.06 0.66 ± 0.15 0.45 ± 0.24 0.56 ± 0.26 UNETR
0.89 ± 0.03 0.83 ± 0.05 0.67 ± 0.18 0.73 ± 0.18 Swin-UNETR

Prostate158 0.64 ± 0.14 0.79 ± 0.07 0.54 ± 0.22 0.59 ± 0.21
0.44 ± 0.17 0.86 ± 0.05 0.67 ± 0.18 0.65 ± 0.20

ProstateNet 0.63 ± 0.16 0.78 ± 0.06 0.82 ± 0.09 0.78 ± 0.13
0.35 ± 0.19 0.85 ± 0.05 0.89 ± 0.05 0.78 ± 0.23

ProstateAll 0.87 ± 0.06 0.83 ± 0.05 0.84 ± 0.09 0.85 ± 0.08
0.9 ± 0.04 0.88 ± 0.04 0.89 ± 0.05 0.89 ± 0.05
Table F.1
Number of ground truths for different IoU scores between the largest connected
component and the entire ground truth.

IoU interval [0.0,0.9[ [0.9,0.99[ [0.99,1.0[ 1.0 Total

No. of cases 7 21 82 524 637

Conclusively, the segmentations inferred by our model were of
onsiderable quality (Fig. C.2) and the failure cases were typically
ssociated with poor annotation.
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