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Deep learning–based malignancy detection algorithms 
that perform at the level of clinical experts are typi-

cally trained using large, fully annotated datasets (1–3). 
To allow localization of deep learning malignancy predic-
tions and subsequent interpretability by clinicians, dense 
voxel-level annotations are required for these datasets. Su-
pervised learning (SL) using large-scale annotation may 
achieve expert-level performance but is time intensive 
and costly, especially for dense voxel-level delineations, 
resulting in substantially smaller labeled training datasets 
for most malignancy detection use cases. Therefore, it is 
crucial to reduce annotation burden while achieving op-
timal performance.

Deep learning with partially missing annotations is ef-
fective in the natural image domain, even when manually 
labeled samples are abundant. On ImageNet, with 1.3 mil-
lion manually labeled training samples, all 10 leaderboard 
holders of the past 4 years improved performance by using 
additional unlabeled data (4–6). In the medical domain, 
popular techniques to leverage unlabeled data include 

self-supervised pretraining and semisupervised learning 
(SSL) with automatically generated pseudo labels or con-
sistency regularization (7,8).

Diagnostic medical reports contain clinical informa-
tion about the data and are typically available from clinical 
routine. Use of this clinical information to improve train-
ing with unlabeled data is underexplored. Although clini-
cal information from reports typically differs from regu-
lar training annotations, it can inform the generation of 
pseudo labels for SSL. One study (9) generated pixel-level 
Gleason score annotations in thousands of prostate biopsy 
specimens by leveraging pathology reports. Bulten et al 
generated precise cancer masks, to which they assigned the 
Gleason score extracted from the pathology report. These 
annotations would have been infeasible to acquire manu-
ally. Incorporation of clinical information to guide SSL re-
mains to be investigated for malignancy detection use cases 
other than biopsy grading.

In general, medical detection tasks in which the struc-
tures of interest can be counted might leverage unlabeled 
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Purpose: To evaluate a novel method of semisupervised learning (SSL) guided by automated sparse information from diagnostic reports 
to leverage additional data for deep learning–based malignancy detection in patients with clinically significant prostate cancer.

Materials and Methods: This retrospective study included 7756 prostate MRI examinations (6380 patients) performed between January 
2014 and December 2020 for model development. An SSL method, report-guided SSL (RG-SSL), was developed for detection of 
clinically significant prostate cancer using biparametric MRI. RG-SSL, supervised learning (SL), and state-of-the-art SSL methods were 
trained using 100, 300, 1000, or 3050 manually annotated examinations. Performance on detection of clinically significant prostate 
cancer by RG-SSL, SL, and SSL was compared on 300 unseen examinations from an external center with a histopathologically con-
firmed reference standard. Performance was evaluated using receiver operating characteristic (ROC) and free-response ROC analysis. P 
values for performance differences were generated with a permutation test.

Results: At 100 manually annotated examinations, mean examination-based diagnostic area under the ROC curve (AUC) values 
for RG-SSL, SL, and the best SSL were 0.86 ± 0.01 (SD), 0.78 ± 0.03, and 0.81 ± 0.02, respectively. Lesion-based detection partial 
AUCs were 0.62 ± 0.02, 0.44 ± 0.04, and 0.48 ± 0.09, respectively. Examination-based performance of SL with 3050 examinations 
was matched by RG-SSL with 169 manually annotated examinations, thus requiring 14 times fewer annotations. Lesion-based perfor-
mance was matched with 431 manually annotated examinations, requiring six times fewer annotations.

Conclusion: RG-SSL outperformed SSL in clinically significant prostate cancer detection and achieved performance similar to SL even 
at very low annotation budgets.
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(14). The authors found that the patient-based area under the 
receiver operating characteristic curve (AUC) for their internal 
test set increased logarithmically between 50 and 1586 training 
examinations from 0.80 to 0.88. If this trend continues, tens 
of thousands of annotated examinations would be required to 
reach expert-level performance—in concordance with similar 
applications in medical imaging (1–3).

According to our principal annotator, about 4 minutes are 
needed to annotate one prostate cancer lesion on three-dimen-
sional images. Difficult examinations are discussed with radiolo-
gists, further increasing the overall duration. Annotating tens of 
thousands of examinations would therefore incur huge costs and 
a large time investment, motivating efforts to reduce this annota-
tion burden.

We show that SSL with report-guided pseudo labels can le-
verage unlabeled examinations to significantly improve detec-
tion performance, without additional manual effort. In addi-
tion, we show that our method allows development of detection 
artificial intelligence with similar performance compared with 
supervised training, while requiring substantially fewer manual 
annotations. To demonstrate efficacy, we trained semisupervised 
models for detection of clinically significant prostate cancer with 
several manual annotation budgets and compared them against 
supervised training and state-of-the-art semisupervised training 
methods. Pseudo labels were generated offline, allowing easy in-
tegration into any existing training framework.

Materials and Methods

Report-guided SSL 
Our novel SSL method leverages diagnostic reports to guide the 
generation of pseudo labels for semisupervised malignancy de-
tection. At a high level, our report-guided SSL method consists 
of the following four steps: The first step is to train a supervised 
model with manually labeled examinations, commonly referred 
to as the teacher model. The second is to automatically parse the 
diagnostic reports to assess the number of clinically significant 
findings in unlabeled examinations, nsig. The third is to predict 
the cancer likelihood heatmap for unlabeled examinations with 
the teacher model and generate pseudo labels by iteratively ex-
tracting the nsig most likely lesion candidate from the heatmap. 
The fourth and final step is to train a semisupervised model on 
the full dataset with manually and automatically labeled exami-
nations, commonly referred to as the student model. Optionally, 
the student model can be used as the teacher model in a second 
iteration. The pipeline is depicted in Figure 1 and described in 
more detail below. The code is publicly available (https://fastmri.
eu/research/bosma22a).

Count clinically significant findings in diagnostic reports.— Our 
report-guided pseudo labels leverage the number of clinically 
significant findings described in the diagnostic report (nsig). For 
detection of clinically significant prostate cancer using MRI, 
we defined nsig as the number of lesions deemed (very) likely 
to harbor clinically significant prostate cancer by the radiologist 
(PI-RADS ≥ 4). See Appendix S1 for details on the automatic 
extraction of nsig from the radiology reports from clinical routine.

examinations by SSL with report-guided pseudo labels. Herein, 
we focus on lesion detection, wherein each patient can have 
any number of lesions. To demonstrate the feasibility of our 
novel method, we developed an SSL method for clinically sig-
nificant prostate cancer detection using MRI.

Noninvasive diagnosis of clinically significant prostate cancer 
is crucial to reduce both overtreatment and unnecessary (confir-
matory) biopsies (10). Multiparametric MRI scans interpreted 
by expert prostate radiologists provide the best noninvasive di-
agnosis (11) but cannot be leveraged freely. Computer-aided 
diagnosis can help radiologists to diagnose clinically significant 
prostate cancer, but present-day solutions lack stand-alone per-
formance similar to that of expert radiologists (12–16).

Datasets used for detection and diagnosis of prostate cancer 
have significantly fewer training samples than datasets used to 
train top-performing deep learning systems in other medical 
applications (1–3). For example, Ardila et al (1) used 29 541 
training examinations (10 306 patients) for the detection of 
lung cancer, whereas studies investigating detection of clini-
cally significant prostate cancer with MRI using histopatho-
logically confirmed annotations used deep learning systems 
trained on 66–806 examinations (median, 146 examinations) 
(15–22). Approaches using radiologically estimated annota-
tions (reported using the Prostate Imaging Reporting and Data 
System [PI-RADS] version 2 or 2.1) used 687–1736 training 
examinations (median, 1584 examinations) (13,14,23–25).

A previous study investigated the effect of training set size 
on performance of clinically significant prostate cancer detection 

Abbreviations
AUC = area under the ROC curve, Ddev = development dataset, 
Ddev,labeled = manually labeled Ddev, Dtest = test dataset, DSC = Dice 
similarity coefficient, FROC = free-response ROC, GGG = Gleason 
grade group, PI-RADS = Prostate Imaging Reporting and Data 
System, ROC = receiver operating characteristic, SL = supervised 
learning, SSL = semisupervised learning 

Summary
Malignancy detection models trained using semisupervised learning 
with pseudo labels guided by clinical reports required up to 14 times 
fewer manual annotations for training and achieved similar perfor-
mance compared with supervised learning methods.

Key Points
 ■ A novel semisupervised learning (SSL) method, which leverages 

clinical reports to guide voxel-level pseudo labels, was developed 
for joint detection and segmentation of malignancy.

 ■ Report-guided SSL reduced the required number of manual an-
notations by up to 14 times for detection of clinically significant 
prostate cancer using biparametric MRI examinations.

 ■ Report-guided SSL with 100 manually annotated prostate exami-
nations improved area under the receiver operating characteristic 
curve for risk stratification for clinically significant prostate cancer 
from 0.78 ± 0.03 to 0.86 ± 0.01 (P < .001) and improved lesion-
based sensitivity at one false-positive per examination from 48.9% 
± 5.0 to 67.1% ± 2.6 (P < .001).
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Annotation Efficiency, Computer-aided Detection and Diagnosis, 
MRI, Prostate Cancer, Semisupervised Deep Learning
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Report-guided pseudo labels were then generated by keeping 
the nsig candidates with highest confidence for a lesion. Exami-
nations with fewer lesion candidates than clinically significant 
report findings were excluded.

Datasets
Two retrospective datasets with biparametric MRI scans (axial 
T2-weighted, calculated high-b-value [≥1400 sec/mm2] dif-
fusion-weighted imaging, and apparent diffusion coefficient 
maps) for prostate cancer detection were used.

The development dataset (Ddev) was used to train and 
tune our models and included 7756 examinations (6380 pa-
tients) from 9275 consecutive examinations (7430 patients) 
performed between January 2014 and December 2020 at 

Generate report-guided pseudo labels.— Report-guided 
pseudo labels were generated in an offline fashion. First, 
a teacher model was trained on the manually labeled ex-
aminations. Then, we performed inference with the teacher 
model, which comprises an ensemble of clinically signifi-
cant prostate cancer segmentation models. (Multiple models 
were ensembled by averaging the softmax confidence maps, 
which resulted in more consistent segmentation masks com-
pared with a single model. The ensemble also improved lo-
calization of report findings in difficult examinations, where 
a single model was more likely to miss the lesion.) From the 
resulting voxel-level confidence maps, we created detection 
maps with distinct lesion candidates, as described in detail 
in Appendix S1.

Figure 1: Overview of the semisupervised learning method for malignancy detection: (1) train the teacher model with manual labels; (2) count 
the number of clinically significant lesions described in the report, nsig; (3) localize and segment the lesions, by keeping the nsig most confident lesion 
candidates of the teacher model; (4) train the student model with manual and pseudo labels. ADC = apparent diffusion coefficient, bpMRI = bipa-
rametric MRI, csPCA = clinically significant prostate cancer, DWI = diffusion-weighted imaging, PI-RADS = Prostate Imaging and Reporting Data 
System, T2W = T2-weighted.
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pseudo-labeled data were combined with the manually la-
beled data to train a student model. To investigate conver-
gence of our SSL method, a second iteration was performed. 
The student model from the first iteration then became the 
teacher model in the second iteration.

Our report-guided SSL was compared with two state-of-the-
art SSL methods for medical image segmentation without report 
guidance: uncertainty-aware mean teacher (28) and cross pseudo 
supervision (Appendix S1) (29). 

Experimental Analysis
First, we evaluated the quality of our report-guided pseudo 
labels by comparing them with the manual labels. Then, we 
trained semisupervised student models with several manual 
annotation budgets. Finally, we calculated the annotation 
burden reduction.

Extraction of report findings.— The accuracy of natural lan-
guage processing for automatically counting the number of PI-
RADS of 4 or greater lesions in a report (nsig) was determined 
by comparing against the number of PI-RADS 4 or greater 
lesions in Ddev,labeled. To account for multifocal lesions (which 
can be annotated as two distinct regions or a single larger one) 
and human error in the ground truth annotations, we manu-
ally checked the radiology report and verified the number of 
lesions when there was a mismatch between the manual label 
and automatic estimation.

Localization of report findings.— Localization performance 
of the artificial intelligence methods was compared using 
free-response receiver operating characteristic (FROC) analy-
sis. Analysis was performed with fivefold cross-validation on 
Ddev,labeled.

Pseudo labels from uncertainty-aware mean teacher and cross 
pseudo supervision were generated at each training site. For fair 
comparison, we evaluated the pseudo labels from the best check-
point (see Appendix S1 for the model selection method).

Segmentation of report findings.— Quality of the correctly lo-
calized report findings was evaluated with the Dice similarity 
coefficient (DSC). This evaluation was performed with fivefold 
cross-validation on Ddev,labeled.

To enable spatial similarity evaluation of the soft pseudo la-
bels from uncertainty-aware mean teacher, we binarized the la-
bels with a threshold of 0.5, following the strategy used by cross 
pseudo supervision.

Prostate cancer detection.— Prostate cancer detection models 
were evaluated on 300 external examinations with histopatho-
logically confirmed ground truth (Dtest). Examinations with at 
least one clinically significant prostate cancer (GGG ≥ 2) lesion 
were considered positive.

Patient-based diagnostic performance was analyzed using 
receiver operating characteristic (ROC) analysis and was sum-
marized using the AUC. Lesion-based detection performance 
was analyzed using FROC analysis and was summarized 

Radboud University Medical Center. A total of 1519 examina-
tions were excluded because of incomplete examinations, pre-
vious treatment, severe misalignment between sequences, se-
vere artifacts, a previous positive biopsy finding (Gleason grade 
group [GGG] ≥ 2) (26), or preprocessing errors. See Figure S3 
for details. All scans were obtained during clinical routine and 
were evaluated by at least one of six experienced radiologists 
(4–25 years of experience with prostate MRI).

The manually labeled development dataset (Ddev,labeled) com-
prised the 3050 examinations from Ddev performed between 
January 2016 and August 2018. All 1315 lesions graded as PI-
RADS 4 or greater were manually delineated by trained investi-
gators (I.S. and M.H., at least 1 year of experience), who in turn 
were supervised by an experienced radiologist (M.d.R., 7 years of 
experience with prostate MRI).

To test our models, an external dataset (test dataset [Dtest]) of 
300 examinations (300 patients) performed between March 2015 
and January 2017 from Ziekenhuisgroep Twente was used. All 
patients in the test set underwent transrectal US-guided biopsy, 
and patients with suspicious findings at MRI (PI-RADS ≥3) also 
underwent MRI-guided biopsy. For 61 patients (20.3%), radical 
prostatectomy was performed (see Fig S4 for details). The presence 
of clinically significant prostate cancer (GGG ≥ 2) was derived 
from radical prostatectomy (if available) or MRI-guided biopsy. 
Systematic biopsies were used to upgrade MRI-guided biopsy find-
ings but were not used to downgrade findings. All examinations in 
the test set had histopathologically confirmed ground truth while 
retaining the patient cohort observed in clinical practice.

Further details on patient demographic characteristics, exam-
ination inclusion or exclusion criteria, and acquisition param-
eters can be found in Table 1 and Appendix S1. We previously 
reported on 2436 examinations from Ddev and 296 examinations 
from Dtest (13) and 2372 examinations from Ddev and 293 ex-
aminations from Dtest (14). The current study refined the exclu-
sion criteria and clinical annotations and expanded the datasets 
with newly curated examinations. Written informed consent was 
waived by the institutional review board.

Models, Preprocessing, and Data Augmentation
We posed the prostate cancer detection task as a voxel-level seg-
mentation task and used the nnU-Net framework. The nnU-
Net is a self-configuring framework that follows a set of rules 
to select the appropriate architecture, data augmentations, pre-
processing method, and more (Appendix S1) (27). 

SSL Approaches
For the SSL setting, we investigated budgets of 100, 300, 
1000, and 3050 manually labeled examinations, paired with 
the remaining 7656, 7456, 6756, and 4706 unlabeled exami-
nations, respectively. Models were trained with fivefold cross-
validation, with randomly generated cross-validation splits at 
the patient level.

For report-guided SSL, the teacher model was used 
to generate pseudo labels for the unlabeled portion of 
the training data by ensembling the predictions of the 
15 models (three restarts, fivefold cross-validation). The 
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setting to match the performance achieved in the fully super-
vised setting with 3050 manually labeled examinations. The 
annotation burden reduction factor is then defined as follows:

supervised

semi supervised

N
R

N
=  (1),

with Nsupervised representing the number of manually labeled ex-
aminations used for supervised training and Nsemi supervised repre-

using the partial AUC between 0 and 1 false-positive findings 
per examination.

Annotation burden reduction.— SSL can leverage unlabeled 
examinations for training, potentially reducing the number of 
manually labeled examinations required to reach expert-level 
diagnostic performance. To investigate the extent to which SSL 
reduces the annotation burden, we assessed how many manu-
ally labeled examinations are required in the semisupervised 

Table 1: Patient Demographic and Imaging Characteristics for Datasets Acquired at Rad-
boud University Medical Center and Ziekenhuisgroep Twente

Characteristic Radboud University Medical Center Ziekenhuisgroep Twente 

No. of patients 6380 300
No. of examinations 7756 300
 Benign 4734/7756 (61)* 212/300 (71)
 Malignant (≥ 1 csPCa†) 3022/7756 (39)* 88/300 (29)
Median age (y) 66 (61–70) 65 (59–68)
Median PSA level (ng/mL) 8.0 (5–11) 6.6 (5–9)
Median prostate volume (cm3) 64 (46–91) 50 (40–69)
MRI scanners (surface coils)
 Magnetom Trio/Skyra (3 T)‡ 6893/7756 (88.9) 300/300 (100)
 Magnetom Prisma (3 T)‡ 852/7756 (11.0) -
 Magnetom Avanto (1.5 T)‡ 11/7756 (0.1) -
T2-weighted acquisition
 In-plane resolution (mm/voxel) 0.30 ± 0.08 0.50 ± 0.00
 Section thickness (mm/voxel) 3.60 ± 0.20 3.00 ± 0.00
DWI/ADC acquisition
 In-plane resolution (mm per voxel) 2.00 ± 0.05 2.00 ± 0.00
 Section thickness (mm per voxel) 3.60 ± 0.20 3.00 ± 0.00
Computed high b value (sec/mm2) 1400 1400

(50, 400, 800) × 7391
Acquired b values (sec/mm2) (50, 500, 800) × 243 (50, 400, 800) × 300

(0, 50, 400, 800) × 122
MRI-detected lesions 10 564* 464
 PI-RADS ≤ 2 5958/10 564 (56)* 248/464 (53)
 PI-RADS 3 983/10 564 (9)* 35/464 (8)
 PI-RADS 4 2115/10 564 (20)* 92/464 (20)
 PI-RADS 5 1508/10 564 (14)* 89/464 (19)
Histopathologically confirmed lesions NA 191

 GGG 1 (GS ≤ 3+ 3) NA 94/191 (49)
 GGG 2 (GS3 + 4) NA 63/191 (33)
 GGG 3 (GS4 + 3) NA 11/191 (6)
 GGG 4 (GS4 + 4) NA 5/191 (3)
 GGG 5 (GS2: 4+ 5) NA 18/191 (9)

Note.—Characteristic values are followed by their interquartile ranges or percentages of the total, if 
applicable. ADC = apparent diffusion coefficient, csPCa = clinically significant prostate cancer, DWI = 
diffusion-weighted imaging, GGG = Gleason grade group, NA = not applicable, PI-RADS = Prostate 
Imaging Reporting and Data System, PSA = prostate-specific antigen.
* Determined semiautomatically.
† Radboud University Medical Center csPCa: PI-RADS ≥ 4; Ziekenhuisgroep Twente csPCa: GGG ≥ 2.
‡ Siemens Healthineers, Erlangen, Germany.

http://radiology-ai.rsna.org
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senting the number of manually labeled examinations used for 
semisupervised training.

We used piecewise logarithmic interpolation to obtain a 
continuous performance curve as a function of the number of 
manually labeled examinations.

Statistical Analysis
We trained models with fivefold cross-validation and three re-
starts for our report-guided SSL method, two restarts for un-
certainty-aware mean teacher, and one restart for cross pseudo 
supervision, resulting in 15 or 10 AUCs and partial AUCs on 
the test set for each model configuration. Comparison of per-
formance between groups of independent models allows for in-
vestigation of the difference in performance due to training con-
figuration rather than variation in performance inherent to the 
stochastic nature of deep learning. (Sources of variation include 
the model’s random initialization, order of training batches, and 
data augmentations, resulting in differences in model perfor-
mance between training runs.) To determine the probability of 
one configuration outperforming another, we performed a per-
mutation test of the performance metrics with 1 000 000 itera-
tions. We used a statistical significance threshold of .05.

We estimated 95% CIs for the performance of radiologists 
by bootstrapping 1 000 000 iterations, with each iteration se-
lecting n-of-n patients with replacement and calculating the 
target metric. Iterations that sampled only one class were re-
jected. Statistical analyses were implemented in Python 3.8.

Results

Extraction of Report Findings
Our natural language processing score extraction algorithm 
identified the correct number of PI-RADS  4 or greater lesions 
for 3024 of the 3044 (99.3%) radiology reports in Ddev,labeled. 
Examinations with negative results (PI-RADS ≤3) were identi-
fied with 99.7% accuracy.

We excluded reports and their examinations when no PI-
RADS scores could be extracted from the report: six of 3050 ex-
aminations (0.2%) from Ddev,labeled and 121 of 4706 examinations 
(2.6%) from the remaining examinations of Ddev (ie, unlabeled 
examinations). Manual inspection revealed that 34 of these 121 
unlabeled examinations (28%) contained PI-RADS 4 or greater 
classifications (with nonstandard reporting) or were not a pros-
tate cancer detection examination. Exclusion of these examina-
tions improved the quality of the pseudo-labeled examinations 
because they would have been included as negative otherwise. 
Figure 2 shows the full breakdown of automatically extracted 
versus manually determined number of significant lesions. Typ-
ing mistakes and score updates in the addendum were the main 
source of the 20 (0.7%) incorrect extractions, which is an error 
rate similar to that observed for our annotators.

Localization of Report Findings
The clinically significant prostate cancer detection models 
achieved high sensitivity. At this high sensitivity, the models 
also propose many false-positive lesion candidates (Fig 3). 

Masking the lesion candidates from the teacher model with 
the number of clinically significant report findings, nsig, greatly 
reduced the mean number of false-positive lesions per ex-
amination from 0.39 ± 0.14 (SD) to 0.064 ± 0.008 for our 
report-guided pseudo labels (with fivefold cross-validation on 
Ddev,labeled). This sixfold reduction in false-positive lesions greatly 
increased the quality of the pseudo labels.

Examinations for which we could extract fewer than nsig 
lesion candidates were excluded. Among the excluded ex-
aminations were those where we are certain to have missed 
lesions, thus increasing sensitivity. From the first iteration 
of report-guided pseudo labels, we excluded 119 examina-
tions, resulting in a sensitivity of 83.8% ± 1.1 (192 ± 12 
of 229 ± 14 lesions) at 0.063 ± 0.008 (36 ± 4 of 578 ± 
15) false-positive lesions per examination across fivefold 
cross-validation.

Binarization of uncertainty-aware mean teacher–generated 
soft pseudo labels yielded pseudo labels with a sensitivity of 
50.1% ± 3.5 (132 ± 17 of 263 ± 16) at 0.114 ± 0.031 (70 ± 19 
of 610 ± 21) false-positive lesions per examination.

Use of cross pseudo supervision generated binarized pseudo 
labels with a sensitivity of 60.3% ± 3.8 (157 ± 6 of 263 ± 16) 
at 0.115 ± 0.035 (62 ± 20 of 610 ± 21) false-positive lesions 
per examination. Binarization of the softmax predictions gave 
lower detection performance than the FROC curve because 
our lesion extraction (Appendix S1) performed better than na-
ive binarization. See Figure 3 for an overview of the pseudo 
label localization quality.

Segmentation of Report Findings
Spatial similarity between the pseudo and manual labels was 
good. When trained with fivefold cross-validation on Ddev,labeled, 

Figure 2: Accuracy of natural language processing score extraction al-
gorithm, as depicted by the confusion matrix for number of clinically significant 
findings in a radiology report. Evaluated on the manually labeled development 
dataset. PI-RADS = Prostate Imaging and Reporting Data System.
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our report-guided pseudo labels achieved a DSC of 0.67 ± 
0.19. When trained semisupervised with fivefold cross-val-
idation on Ddev, pseudo labels from uncertainty-aware mean 
teacher achieved a DSC of 0.64 ± 0.20, and pseudo labels from 
cross pseudo supervision achieved a DSC of 0.68 ± 0.19.

Figure 1 shows report-guided pseudo labels, with a DSC of 
0.70 (approximate mean) for the upper lesion of patient 1, a 
DSC of 0.87 (approximate mean + 1 SD) for patient 2, and a 
DSC of 0.55 (approximate mean − 1 SD) for patient 3.

The full distribution of DSC against lesion volume is given 
in Appendix S1.

Detection of Clinically Significant Prostate Cancer 
Report-guided SSL significantly increased model performance 
for all investigated manual annotation budgets compared with 
SL with the same number of manually labeled examinations (P 
< .001 for each comparison). Iteration 2 generally performed 
better than iteration 1, although only examination-based per-
formance for manual annotation budgets of 100 or 300 exami-
nations improved significantly (P = .004 and P = .003, respec-
tively), showing quick convergence. Uncertainty-aware mean 
teacher and cross pseudo supervision failed to improve model 
performance compared with SL (all comparisons P > .05). 
The exception was uncertainty-aware mean teacher with 1000 
manual labels, in which uncertainty-aware mean teacher outper-

formed SL at examination-based diagnosis (P = .004) and lesion-
based detection (P < .001).

Report-guided SSL (iteration 2) outperformed uncertainty-
aware mean teacher and cross pseudo supervision at examina-
tion- and lesion-based performance for all manual annotation 
budgets (all comparisons P < .003), except for examination-
based performance of uncertainty-aware mean teacher with 
1000 manual labels.

Figure 4 (bottom row) shows a full overview of diagnostic 
and detection performance for each manual annotation budget. 
Table 2 shows the AUC values for each configuration. To inves-
tigate the dependence of our report-guided SSL method on the 
nnU-Net training framework, we also investigated the training 
framework from Saha et al (13). Results for this are shown in 
Appendix S1.

Annotation Burden Reduction
Report-guided SSL (iteration 2) with 300 manual labels ex-
ceeded examination-based AUC performance of SL with 2440 
manually labeled examinations. Performance with 100 manual 
labels came close to SL. Interpolation suggests that supervised 
performance is matched with 169 manual labels (14 times an-
notation burden reduction).

Report-guided SSL (iteration 2) with 1000 manually labeled 
examinations exceeded lesion-based partial AUC performance of 
SL with 2440 manually labeled examinations. Performance with 
300 manual labels came close to that of SL. Interpolation sug-
gests that supervised performance is matched with 431 manual 
labels (six times annotation burden reduction).

Discussion
Large-scale SL can reach expert-level diagnostic performance 
but requires labor-intensive manual annotation, which is ex-
pensive and infeasible to obtain for each (cancer) detection use 
case. Our novel report-guided SSL method significantly im-
proved diagnostic performance at all investigated manual an-
notation budgets compared with SL and SSL without report 
guidance except for examination-based performance of uncer-
tainty-aware mean teacher with 1000 manual annotations. The 
report-guided pseudo labels are of sufficient quality to improve 
semisupervised malignancy detection, even when only 100 
manually labeled examinations are available. This improved 
performance demonstrates the feasibility of report-guided SSL 
for malignancy detection.

In this study, the training procedure with report-guided 
pseudo labels is presented for detection of clinically significant 
prostate cancer with MRI using radiology reports. However, the 
underlying method is not limited to clinically significant pros-
tate cancer, MRI, or radiology reports  and can be applied uni-
versally. Any detection task with countable structures of interest 
and clinical information reflecting these findings can use our 
training method to reduce the annotation burden.

Report-guided SSL allowed us to leverage the full dataset of 
7756 examinations, which is a substantial increase in the num-
ber of training examinations compared with the previous larg-
est dataset for detection of clinically significant prostate cancer 

Figure 3: Quality of the pseudo labels, as evaluated by free-response re-
ceiver operating characteristic (FROC) analysis for matching manually annotated 
Prostate Imaging and Reporting Data System (PI-RADS) 4 or greater lesions in 
the manually labeled development dataset. Supervised models used to generate 
report-guided pseudo labels were trained with fivefold cross-validation on the 
manually labeled development dataset. Uncertainty-aware mean teacher and 
cross pseudo supervision models were trained with fivefold cross-validation on the 
development dataset. Filtering pseudo labels using the number of clinically signifi-
cant findings described in the diagnostic report (nsig) greatly reduced the number 
of false-positive lesions per examination (report-guided pseudo labels [intermedi-
ate]). Excluding examinations with fewer than nsig lesion candidates improved 
sensitivity (report-guided pseudo labels). Shaded areas indicate 95% CIs. Error 
bars indicate SDs. 
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Table 2: Examination-based Diagnostic Areas Under the Receiver Operating Characteristic Curve on External Test Set 
with 100, 300, 1000, or 3050 Manually Labeled Examinations

Method
100 Manually Labeled 
Examinations

300 Manually Labeled 
Examinations

1000 Manually Labeled 
Examinations

3050 Manually Labeled 
Examinations

SL 0.78 ± 0.03 0.79 ± 0.03 0.84 ± 0.03 0.87 ± 0.01
Uncertainty-aware mean teacher 0.81 ± 0.02 0.79 ± 0.03 0.87 ± 0.02 0.87 ± 0.01

Cross pseudo supervision 0.77 ± 0.03 0.78 ± 0.05 0.85 ± 0.04 0.87 ± 0.01
Report-guided SSL (iteration 1) 0.85 ± 0.01 0.87 ± 0.01 0.89 ± 0.01 0.89 ± 0.01
Report-guided SSL (iteration 2) 0.86 ± 0.01 0.88 ± 0.01 0.89 ± 0.01 0.89 ± 0.01

Note.—Values are means ± SDs across 10 or 15 independent training runs. SL = supervised learning, SSL = semisupervised learning.

Figure 4: Model performance for semisupervised and supervised learning. Top row: Supervised models were trained with fivefold cross-validation on 3050 manually 
labeled examinations, and semisupervised learning (SSL) also included 4706 unlabeled examinations. Report-guided SSL significantly outperformed supervised learn-
ing as well as the baseline SSL methods. Bottom row: Model performance for 100, 300, 1000, and 3050 manually labeled examinations, combined with 7656, 7456, 
6756, and 4706 unlabeled examinations, respectively. Report-guided SSL significantly outperformed the baseline SSL methods and supervised learning at each annota-
tion budget, except for examination-based area under the receiver operating characteristic curve (AUC) of uncertainty-aware mean teacher trained with 1000 labeled 
examinations. Left: Receiver operating characteristic (ROC) performance for examination-based diagnosis of examinations with at least one lesion with Gleason grade 
group (GGG) 2 or greater. Right: Free-response ROC (FROC) performance for lesion-based diagnosis of lesions with GGG  2 or greater. All models were trained with 
radiology-based Prostate Imaging and Reporting Data System 4 or greater labels and evaluated on the external test set with histopathologically confirmed ground truth. 
Shaded areas indicate the 95% CIs from 15 or five independent training runs. Error bars indicate SDs across 15 or five independent training runs. pAUC = partial area 
under the receiver operating characteristic curve.
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using MRI of 1736 examinations. This brings detection of clini-
cally significant prostate cancer much closer to the dataset sizes 
used to train top-performing deep learning systems, where up to 
29 541 training examinations were used.

Negative examinations were identified with 99.7% accuracy, 
suggesting that negative examinations (approximately 60% of all 
examinations for detection of clinically significant prostate can-
cer) can be automatically annotated almost perfectly, speeding 
up the manual annotation process substantially. Furthermore, 
the segmentation masks are often of sufficient quality to require 
only verification of the location, saving ample time for positive 
examinations as well.

To our knowledge, we are the first to investigate SSL for 
malignancy detection using three-dimensional images. Our 
presented method, report-guided SSL, has several limitations 
that should be considered. Report-guided SSL has the risk of 
introducing systematic pseudo label errors by reinforcing possi-
bly incorrect model predictions. This could drive the subsequent 
semisupervised detection model to confidently predict benign 
abnormalities as being malignant. Thus, careful evaluation of the 
model before is necessary.

Direct applicability of the rule-based PI-RADS score extrac-
tion from radiology reports is limited because it needs to be 
adapted for reports with different structures or languages. For 
unstructured reports, a deep learning–based NLP model can be 
trained on the manually labeled subset to perform the task of 
counting the number of clinically significant findings.

In addition, PI-RADS 4 or greater lesions reported with PI-
RADS version 2 or version 2.1 were used to train the clinically 
significant prostate cancer detection models. Radiologically es-
timated lesions contain both false-positive and false-negative 
lesions. Inclusion of PI-RADS 3 lesions as clinically significant 
prostate cancer to train the algorithms would decrease the num-
ber of false-negative lesions at the cost of introducing many 
false-positive results. Although these training annotations are 
not perfect, they have been shown to be suitable for training 
clinically significant prostate cancer detection models (13,14), 
as also demonstrated by the evaluation on the test set with his-
topathologically confirmed lesions. Changes between PI-RADS 
versions 2 and 2.1 did not affect the classification of PI-RADS 
4 and 5 lesions, so this difference in reporting did not affect our 
training dataset. The exclusion of PI-RADS 3 lesions from the 
training dataset may cause bias in the algorithms and lead them 
to suppress these lesions. Subset analysis of patients with PI-
RADS 3 lesions should therefore be performed before deploy-
ment in clinical practice.

In conclusion, report-guided SSL allows for substantial re-
duction in annotation burden by leveraging unlabeled examina-
tions paired with diagnostic reports. Our proposed method is 
widely applicable, paving the way for larger datasets with equal 
or reduced annotation time.
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