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Abstract—Prostate cancer detection and characterization on
Magnetic Resonance Images (MRI) requires accurate segmenta-
tion of the prostate gland and the prostatic sub-regions. With the
majority of tumoral lesions located in the prostate’s peripheral
zone, a precise segmentation of this region is imperative for
tumor characterization. Despite the growing success of Con-
volution neural networks (CNN) in the task of prostate gland
segmentation, there a is a knowledge gap in the performance of
such networks for segmenting prostatic subregions. In the present
work, we propose an novel Deep Learning (DL) approach, named
PROper-Net, for segmenting the prostate’s peripheral zone on T2-
weighted (T2w) MR images. Our network was compared against
four state-of-the-art encoder–decoder CNNs: the original Unet,
and its extensions Unet++, Unet3+, and Bridged Unet. Overlap-
and distance-based metrics were computed to assess models’
performance and to quantify the superiority of the proposed
segmentation approach. The results show that the proposed
network successfully outperforms existing networks for the pe-
ripheral zone segmentation task, yielding a median performance
of 0.74 in terms of Dice Score and 0.88 in terms of balanced
accuracy. The improvement in segmentation performance was
significant (p-value≤0.05) with respect to Unet, Unet++, Unet3+
for all the evaluation metrics while for Bridged Unet significant
improvement was achieved for Dice Score, Balanced Accuracy,
Sensitivity, and Rand Error Index.

Index Terms—deep learning, segmentation, U-Net, prostate,
MRI

I. INTRODUCTION

Diagnosis and treatment of prostate cancer at early stages
requires a precise and efficient segmentation of the prostatic
gland and its subregions on Magnetic Resonance (MR) Im-
ages. Within the prostate gland, tumoral lesions are most
commonly identified in the transitional and peripheral zones.
Specifically, 70%–80% of prostate cancers are located in
the peripheral zone (PZ) [1]. Given the significantly worse

prognosis of PZ cancer, compared to lesions arising in the
transitional zone (TZ), it is crucial to accurately segment this
region and enable the accurate subsequent characterization of
the tumor [2].

The MR imaging is one of the most reliable and effective
medical imaging methods for prostate cancer diagnosis [3].
Despite the excellent soft-tissue contrast of MR imaging, man-
ual prostate segmentation is a daunting and time-consuming
task which requires certain clinical experience [4]. However,
many traditional segmentation methods tend to underperform
because of the morphological and positional properties of the
prostate. Particularly the varying and irregular pixel represen-
tation of the peripheral zone’s boundaries, make its automatic
segmentation a challenging task [5].

Over the last decade, DL techniques and, particularly, those
based on convolutional neural networks (CNN), have seen ac-
celerating growth in pattern recognition, computer vision and
medical image processing. Particularly for image segmentation
tasks, the U-net has become the mainstream DL architecture
[6]. In general, these models implement a variable number of
hidden layers between the input and output and the various
nodes are connected to others with different weights.

For prostate segmentation, many U-Net-based architectures
have emerged recently, demonstrating promising results and
outperforming traditional segmentation techniques. Although
they often achieve a remarkable performance when trained
and tested on images obtained by the same clinical center or
under the same acquisition protocol, their generalizability on
external, independent datasets is far from being established.
The optimistic performances often reported may be dataset-
specific and therefore such models are still immature for
clinical routine applications [7]. This indicates the necessity
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to both develop more robust and reliable DL segmentation
networks and to extend the evaluation of existing delineation
approaches in a multi-center environment. Furthermore, only
a few studies have evaluated the performance of these archi-
tectures for specifically segmenting the PZ of the prostate.

To account for these issues, in the present work we pro-
pose a novel U-Net-based model, named PROper-Net, for
improving the segmentation performance of prostate’s PZ on
MR imaging. The performance of our network, trained and
tested on different imaging datasets, is compared against four
state-of-the-art DL-based segmentation networks using several
evaluation metrics.

II. METHODOLOGY

A. Dataset

Two publicly available datasets were used for model train-
ing and testing. Model training was performed on 204 T2-
Weighted MR patient images from the Prostate-X dataset,
consisting of 3206 frames, along with the corresponding masks
of the peripheral zone [8]. The vendor used was Siemens, with
TrioTim and Skyra models. The prostate-X dataset partitioned
into training and validation sets with 85% and 15% of the
available data, respectively, while the partitioning remained
the same for all the experiments. The performance of the
segmentation model was tested on the Prostate 3T dataset
[9]. It consist of 30 T2-Weighted MR patients comprising a
total of 421 frames, with the corresponding annotations of the
peripheral zone. The vendor used was Siemens, Skyra model.

B. Segmentation Networks

1) U-net: The U-net [6] is a long-established architecture in
the biomedical imaging domain for segmentation applications.
The network consists of an encoder-decoder combination,
where the encoder captures the semantic features regarding the
area of interest while the decoder upsamples that information
assisted by the skipped connections.

2) U-net++: The U-net++ [10] is another encoder-decoder
model based on the original U-net. Its novelty arises from
the ensembled networks inside the outer encoder-decoder.
Specifically U-net++ has three encoder-decoder networks with
each stage being more swallow than the previous one. The
outputs from each individual encoder-decoder network are
connected to produce the final ensembled prediction.

3) U-net3+: The U-net3+ architecture [11] also belongs to
the U-net family of models. Its composition consists of fully
connected stages between each layer. Specifically, each block
from the encoder structure is concatenated into each block of
the decoder structure, transferring the semantic information
from simple substructures that composes the region of interest
to more complex ones. Furthermore, in the decoder path all
the decoder are communicating with each other, minimizing
the effect of vanishing gradient problem [12].

4) Bridged U-net: The Bridged U-Net [13], on the other
hand, combines two interconnected U-net substructures, form-
ing a W-shaped network, to transfer the information and
further analyze the image into more complex patches. Feature

maps are fused together using concatenation, thereby improv-
ing the performance of the network.

5) PROper-Net: The network proposed in this study is
shown in Fig.1. Residual connections [14] have been used
in order to improve the information transfer and tackle the
vanishing gradient issue (Eq. 1), and a Batch normalization
layer has been used for standardizing each batch of data and
improve model’s robustness (Eq. 2):

Oi,j,fm = H(Ii,j,fm) + Ii,j,fm, (1)

where i, j, fm are width, height and the number of feature
maps respectively, Ii,j,fm is each layer’s input, Oi,j,fm is each
layer’s output and H(Ii,j,fm) is the output of convolution
operations.

BNi, j, fm =
Ii,j,fm − Ifm

σIfm
, (2)

where i, j, fm are width, height and the number of feature
maps respectively, Ii,j,fm is each layer’s input, BNi, j, fm
is the normalized batch and σIfm is the standard deviation
of the input. Furthermore, four layers of encoder and decoder
paths were utilized to identify complex patterns. Specifically,
the bottleneck block has 1024 feature maps to recognize more
complex features. While most architectures come with a bot-
tleneck layer of 512 feature maps due to frames’ size, for our
network 1024 were used due to their capability to recognize
complex structures such as the prostate’s peripheral zone. On
the other hand, due to the complexity and the workforce
load of the model, max pooling operations were utilized for
dimensionality reduction and feature selection while dropout
layers were used to neglect non-important neurons and further
improve the information flow through the model.

Fig. 1. The proposed PROper-Net architecture. W,H and C represent the
width height and number of channels in the input and output

C. Model specification

Model consists of 2D convolutional layers with kernel size
3x3, dilation rate 1 and stride 1. Batch normalization used
L2 regularization technique for gamma and beta regularizers
with a value of 10−4. The max pooling layer has stride value
of 2x2 while the dropout rate was 0.5. Furthermore, batch
size was kept at 16, the number of epochs set to 120 while
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TABLE I

MEDIAN VALUES AND INTERQUARTILE RANGE OF PZ SEGMENTATION PERFORMANCE ON THE TEST SET FOR THE FIVE DL NETWORKS.

Models Sensitivity Balanced accuracy Dice score Hausdorff Distance (mm) Average surface distance (mm) Rand error index
PROper-Net 0.77 [0.53-0.86] 0.88 [0.76-0.93] 0.75 [0.58-0.85] 7.42 [3.65-14.82] 1.50 [0.95-2.52] 0.20 [0.13-0.30]
Bridged U-net 0.61 [0.42-0.76] 0.81 [0.71-0.88] 0.70 [0.55-0.83] 6.84 [3.47-12.4] 1.46 [0.86-2.33] 0.26 [0.19-0.32]
U-net 0.60 [0.33-0.70] 0.80 [0.67-0.85] 0.68 [0.46-0.80] 9.02 [5.18-16.11] 1.83 [1.17-3.35] 0.27 [0.18-0.31]
U-net++ 0.52 [0.4-0.66] 0.76 [0.70-0.83] 0.60 [0.44-0.71] 7.98 [5.18-13.16] 2.15 [1.52-2.92] 0.31 [0.24-0.33]
U-net3+ 0.52 [0.27-0.67] 0.76 [0.63-0.83] 0.62 [0.39-0.76] 9.12 [4.97-14.83] 2 [1.29-3.24] 0.28 [2-0.32]

early stopping used to halt the training process when the
model didn’t improve further at the validation set. Binary
crossentropy used as a loss function and Adam optimizer
employed for model’s weights updating while the learning rate
set to 10−4. The GPU used for the experiments is the NVIDIA
Quadro P6000, the drivers are of version 441.66. The python
packages utilized for this experiment are scikit-image=0.18.3,
numpy=1.21.2, keras-unet-collection=0.1.11, scipy=1.7.1, ten-
sorflow=2.2.0 and tensorflow-addons=0.11.2.

D. Evaluation metrics

For the evaluation of the results six metrics have been used.
They have been carefully selected as each one serves a specific
purpose. For instance, Dice Score and Rand Error Index are
overlap metrics while Average surface distance and Hausdorff
distance are distance metrics.

Sensitivity is a measure of model’s ability to identify
pixels that belong to the object of interest, based on true
positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN), and it is given as:

Sensitivity =
TP

TP + FN
. (3)

Balanced accuracy(BA) on the other hand is used when there
is class imbalance and background pixels are prevalent to
foreground and it is given as:

BA =
Sensitivity + TN

TN+FP

2
. (4)

Dice score is a well established metric for segmentation
applications and its form is given as:

Dice score =
2 ∗ TP

2 ∗ TP + FP + FN
. (5)

Rand error index (REI) measures the error of intensity corre-
lation between two clusters of intensity values and it is given
by as:

REI = 1− TP + TN

TP + TN + FP + FN
. (6)

Hausdorff Distance (HD) measures how far are two data
points, each of them originated by ground truth and predicted
boundaries. In this work, the 95% HD has been used to avoid
extreme values of the metric as they may not be representative
of the actual model performance. The expression that defines
HD is given as:

HD(G,P ) = max(h(G,P ), h(P,G)), (7)

where G,P are the ground truth and predicted boundaries,
h(G,P ) is the closest distance from ground truth points to
predicted and h(P,G) are the closest distance from predicted
points to ground truth.

Average surface distance (AVSD) is an one dimensional
metric that measures the average distance which is the eu-
clidian norm from one point of the ground truth boundary to
the closest point of the predicted boundary and it is given as:

AV SD =

∫
A
min||pnt(g)− pnt(p)|| dg dp

A
, (8)

where A is the total number of points, pnt(g) is point
in ground truth boundary and pnt(p) is point in predicted
boundary.

In order to assess whether the performance of the pro-
posed segmentation network is significantly different than the
other networks in comparison, the non-parametric two-sided
Wilcoxon signed-rank test was used.

III. RESULTS

In Table I, the median values of the six performance metrics
computed on the testing dataset for the proposed segmentation
algorithm along with the four state-of-the-art networks, are
presented. PROper-Net outperformed U-net, U-net++ and U-
net3+ for all the evaluation metrics considered. Compared
to Bridged U-net model, PROper-Net performed better in
terms of Dice Score, BA, Sensitivity and REI but scores were
slightly lower for HD and AVSD metrics. The corresponding
p-values computed by the 2-sided Wilcoxon signed-rank test,
are provided in the form of heatmap in Fig. 2. Non-significant
differences were identified only for HD an AVSD metrics.

Fig. 2. Heatmap of p-values for the evaluation metrics between PROper-NET
and all the other segmentation networks.
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Fig. 3. Four examples of the predicted contours for each network.

In Fig. 3 four examples of the derived PZ delineations
are shown for the different DL segmentation networks. The
predicted segmentations are depicted with blue colours while
the ground truth is shown in orange. As it is shown in Fig. 3,
cases 1 and 3 are some examples of difficult cases for the
segmentation task compared to cases 2 and 4 were all the
algorithms perform relatively well.

IV. DISCUSSION AND CONCLUSION

A new DL-based approach was presented, for improving the
segmentation of prostate’s PZ on T2w MR images, evaluated
on an external population data and compared against state-of-
the-art segmentation networks. As it was shown, the PROper-
Net algorithm outperformed all the other networks. The
achieved overlap-based indices, prove that segmentation accu-
racy in terms the algorithm’s capability to correctly detect true
labels while not detecting wrong labels withing the segmented
PZ, were superior compared to other networks. A similar
trend is apparent for spatial distance-based metrics, with the
exception of Bridged-Unet, which performs marginally better.

It is well known that prostate gland segmentation is not
trivial but prostate zonal segmentation is even more challeng-
ing [4]. Specifically for automatic PZ segmentation, there are

several factors that hamper models performance, namely the
ambiguity of the PZ boundary, tissue heterogeneity, partial
volume effects, as well as the presence of artifacts and the large
differences between the number of foreground and background
pixels in the image. For instance, by applying a smart cropping
technique on prostate MR images [15] to counterbalance
background and foreground pixels, was able to significantly
improve PZ segmentation performance of different DL algo-
rithms [16].

From a clinical perspective, the precise identification of
prostate cancers’ location has important diagnostic and prog-
nostic implications. In general, tumors located in the PZ result
to poor clinical outcomes and worse biochemical recurrence-
free survival compared to cancers of the TZ. Furthermore,
some authors have identified differences in biological and
molecular characteristics between TZ and PZ cancer [17].

Over the last decades, several types of segmentation tech-
niques have been developed [18], including among others,
graph cuts [19], [20], deformable segmentation [21], active ap-
pearance models [22], [23], random walks [24], atlas matching
[25], watersheds [26] and c-means clustering [27], [28]. After
the success of CNN in computer vision and object detection,
it recently attracted remarkable attention for medical image
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segmentation tasks as novel DL-based algorithms consistently
outperformed more conventional approaches.

To date, apart form whole gland segmentation, only a few
studies have tackled the problem of PZ segmentation. In
Chilali et al., prostate and zonal segmentation was performed
using atlas-based techniques and c-means clustering [28].
Karimi et al. introduced statistical shape models to a CNN
algorithm [31] demonstrating superior performance to conven-
tional CNN techniques. Rundo et al. describe an architecture
to segment prostatic zones where a squeeze-and-excitation
module has been incorporated into the U-net, outperforming
other state-of-the-art algorithms [29]. More recently, Aldoj et
al. proposed different combinations of Unet and DenseNet
algorithms to segment the prostate gland and its subregions
achieving a performance superior to the standard U-net [4].

Future works should focus on more selective segmentation
approaches, to simultaneously delineate the whole gland and
multiple prostatic zones. This can also be extended to segment
prostate cancer using a two-step approach, focusing on patho-
logical regions in the PZ or other regions of clinical interest.
Additionally, 3D segmentation networks are emerging as a
promising alternative for further augmenting DL performance,
by taking into account the spatial information among slices.
Nevertheless, more research is necessary to establish their
superiority, particularly for zonal segmentation of the prostate.
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