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Abstract—Precise delineation of the prostate gland on MRI is
the cornerstone for accurate prostate cancer diagnosis, detection,
characterization and treatment. The present work proposes a
meta-learner deep learning (DL) network that combines the
complexity of 3 well-established DL models and fine tune them
in order to improve the segmentation of the prostate compared
to the base learners. The backbone of the meta-learner consist
the original U-net, Dense2U-net and Bridged U-net models. A
model was added on top of the three base networks that has
four convolutions with different receptor fields. The meta-learner
outperformed the base-learners in 4 out of 5 performance metrics.
The median Dice Score for the meta-learner was 89% while for
the second best model it was 83%. Except for Hausdorff distance,
where the meta-learner and Dense2U-net performed equally
well, the improvement achieved in terms of average sensitivity,
balanced accuracy, dice score and rand error, compared to
the best performing base-learner, was 6%, 3%, 5% and 4%,
respectively.

Index Terms—Prostate Segmentation, Deep Learning, Ensem-
bling, Fine Tuning

I. INTRODUCTION

One of the most prevalent cancer type among men world-
wide is the prostate cancer. Although the important decrease
in mortality over the last decades, prostate cancer remains a
leading cause of cancer-related death among men [1].

Precise delineation of the prostate gland on MRI is the
cornerstone for accurate prostate cancer diagnosis, detection,
characterization and subsequent treatment. However, this re-
mains a challenging task due to the position and morphology
of the prostate [2]. In fact, the small size of the prostatic
gland, the vague boundaries of the organ, and the closeness to
neighboring organs, are likely to obscure the performance of

both humans and machines in segmenting this region. Manual
labeling of the prostate is a daunting and labor-intensive task.
It is well-known that not only it requires certain clinical
experience but also often it suffers from considerable inter-
observer variability with respect to the segmented region [3].

With the breakthrough of Deep Learning (DL) in medical
image segmentation, several algorithms based on Convolu-
tional Neural Networks (CNN) have been developed to au-
tomatically and accurately segment the prostate. The U-net
encoder-decoder architecture [4], in particular, has emerged
at the standard DL architecture for image segmentation tasks
and the backbone for a plethora of other emerging networks. In
general, these models use a variable number of hidden layers
between the input and output, and the nodes are connected
in a serial and a parallel way to one another with varying
weights in order to extract several redundant and low-level
features at different steps and different scales. Although, to
date, DL networks have demonstrated sufficient performance
for prostate segmentation, their generalizability on external
datasets remains an open question. Furthermore, these net-
works frequently fail to map the long-range relationships of
local features, resulting in discriminative feature mappings in
the resultant segmented picture for each class.

In the present work we propose a meta-learner DL net-
work that combines the complexity of 3 well established
models.Task specific performance is increased due to the fine
tuning and important features alleviation by each of them.
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II. METHODOLOGY
A. Imaging Datasets

In this work two publicly available datasets were used for
model training, validation and testing. Specifically, for model
training and validation, 204 patients from the Prostate-X2
dataset along with the corresponding masks of the whole gland
were utilized [5]. Prostate-X dataset consist of 3206 frames
in T2-Weighted MR images from Siemens vendor (TrioTim,
Skyra models). For model testing, the Prostate 3T dataset [6]
was used containing 30 patients and 421 frames in total with
its corresponding annotations of the whole gland obtained in
T2-Weighted MR images from Siemens vendor (Skyra model).

B. Deep learning models

The proposed meta-learner model was developed based on
three well-established DL segmentation networks that have
demonstrated state-of-the-art performance for segmenting the
prostate.

U-net: The U-net [4] is a long-established architecture in
the biomedical imaging domain for segmentation applications.
The network consists of an encoder-decoder combination,
where the encoder captures the semantic features regarding the
area of interest while the decoder upsamples that information
assisted by the skipped connections.

Dense2U-net: Dense2U-net [7] is an encoder-decoder net-
work where, like residual connections, dense blocks [8] are
being used to enable the passing of information from previous
layers forward while the transitional blocks are reducing the
computational burden of the network making the features
produced by dense blocks simpler.

Bridged U-net: The Bridged U-Net [9] combines two inter-
connected U-net substructures, forming a W-shaped network,
to transfer the information and further analyze the image
into more complex patches. Feature maps are fused together
using concatenation, thereby improving the performance of the
network.

C. Proposed method

A meta-learner architecture was developed in order to select
well refined features acquired from 3 well-established models
dedicated for medical image segmentation tasks. Figure 1
shows the proposed meta-learner pipeline. The whole pipeline
takes 2 inputs, which are the initial images along with their
corresponding whole gland annotations, and each of them
passes from each model. Few layers before each model’s final
decision, the feature maps are extracted, therefore only the
most informative features for the decision of each network
are kept. In addition, the concatenation process between the
feature maps obtained by each individual model is ongoing,
and the resulting feature map contains rich task-related infor-
mation. This information is passed through the meta-learner
module, which consists of convolutional filters with different
kernel sizes seeking to harness close and distant information
across the feature maps.

Specifically, Fig.1A shows the separation of the input in
the models and the resulted feature maps from each network.

The concatenation process of the resulted maps of Fig.1A is
depicted in Fig.1B and described in Eq.(1):

FMdn+un+br =

i=Ncdn∑
i=1

FMi +

i=Ncun∑
i=1

FMi +

i=Ncbr∑
i=1

FMi (1)

Where FMdn+un+br are the resultant concatenated feature
maps, dn, un, br are the indices for Dense2U-net, U-net and
Bridged U-net respectively, Nc are the number of channels
extracted from each individual network and FM are the
feature maps of each network.

In Fig.1C, the features extracted by Eq. (1) are passed
through convolutional layers of different kernel size. This pro-
cess enables the meta-learner to identify close spatially related
features along with distant ones, and as a consequence, it is
able to recognize patterns that individual models are not able
to. FMdn+un+br maps are passed from the convolutions of
different receptor field units and features from each operation
are concatenated and then passed from a convolutional layer
with a kernel of size 3x3. Finally they are passed from an
identity convolutional layer and the sigmoid function to obtain
the predicted prostate gland mask.

D. Evaluation metrics

For the evaluation of the models’ performance 5 metrics
have been used; Sensitivity in this particular study refers to
a model’s ability to identify correctly pixels belonging to the
region of interest [10]. Balanced Accuracy (BA) is used when
there is class imbalance and background pixels are prevalent
to foreground [11]. Dice similarity Score (DS) measures the
statistical similarity between 2 clusters of data points and
is the most widely used and well-established overlap metric
for medical image segmentation applications [12]. Hausdorff
Distance (HD) is an one dimensional metric which measures
how far two data points are (one from the ground truth and one
from the predicted mask boundaries), by means of euclidean
distance. Herein, the 95% HD was used, compensating for the
impact of outliers [13]. Rand Error Rate (RER) measures the
error of intensity correlation between two clusters of intensity
values [14].

E. Model development

The backbone of the meta-learner consist the original U-
net, Dense2U-net and Bridged U-net models while the model
that has been added on top of the three base networks has 4
convolutions with different receptor fields. Batch normaliza-
tion and specifically L2 regularization technique was utilized
for gamma and beta regularizers with a value of 10−4. The
dropout rate was 0.5. Batch size was kept at 16, the number
of epochs was set to 120, while early stopping was used
to halt the training process when the model didn’t improve
further at the validation set. Binary cross-entropy was used as a
loss function and Adam optimizer was employed for updating
model’s weights. The learning rate set to 10−4. The GPU used
for the experiments is an NVIDIA Quadro P6000 with drivers
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TABLE I
MEAN VALUES AND STANDARD DEVIATION FOR 4 DEEP LEARNING MODELS ON THE TEST DATASET

Sensitivity % Balanced accuracy % Dice score % Hausdorff distance (mm) Rand error rate %
Meta-learner 0.78 ± 0.26 0.89 ± 0.13 0.79 ± 0.24 20.94 ± 23.56 0.17 ± 0.21
Dense2U-net 0.66 ± 0.31 0.83 ± 0.15 0.71 ± 0.29 20.89 ± 21.64 0.21 ± 0.21
U-net 0.72 ± 0.31 0.86 ± 0.15 0.72 ± 0.28 23.42 ± 23.3 0.23 ± 0.27
Bridged U-net 0.59 ± 0.29 0.79 ± 0.14 0.67 ± 0.29 23.56 ± 23.39 0.27 ± 0.23

Fig. 1. The proposed meta-learner method

version 441.66. The python packages utilized were scikit-
image=0.18.3, numpy=1.21.2, keras-unet-collection=0.1.11,
scipy=1.7.1, tensorflow=2.2.0 and tensorflow-addons=0.11.2.

III. RESULTS

Table 1 presents the average evaluation scores obtained
through cross-validation along with the corresponding stan-
dard deviation. The proposed meta-learner network achieved
superior performance for all the evaluation metrics. With
the exception of the HD metric, where the meta-learner

and Dense2U-net performed equally well, the improvement
achieved in sensitivity, BA, DS and RER compared to the
best performing base-learners (either U-net or Dense2U-net)
was 6%, 3%, 5%, and 4%, respectively.

Regarding the DS, the meta-learner achieved superior per-
formance in terms of median value (89%) and interquartile
range (IQR) [78%-93%] compared to the second best model,
the U-net, which obtains median and interquartile values of
83% [IQR: 65%-90%]. Regarding the HD, the meta-learner
shows greater performance in terms of median value (12
mm) and interquartile range (8-24 mm) compared to the
second best model, the Dense2U-net, which obtains median
and interquartile values of 14 mm and 9-28 mm.

Figure 2 depicts the overlaid ground truth and predicted
contours by the models, in 6 different cases. Starting from
the top cases 1,2,3 and 6 represent areas of the midgland
prostate’s region while case 4 is the apex and case 5 is the
basal region. It is evident that for each individual model the
segmentation of the prostate gland in apex and basal areas is
much more challenging than the segmentation of the midgland
region. Especially for the case 5, the individual models failed
completely to recognize such a small cluster of pixels belong
to the prostate, while the meta-learner performed relatively
well. In fact, it takes a contradictory path and it is able to
efficiently segment even the most challenging areas. Even in
simpler cases (i.e Cases 1, 2, 3, and 6), the meta-learner was
able to delineate more effectively the region of interest.

IV. DISCUSSION & CONCLUSION

In the present work, we propose a meta-learner network
aiming to improve the segmentation accuracy of the prostate
gland on pelvic MRI images. The innovative aspect of this
work lies on the optimization of the feature extraction process
using three individual DL models. The experiments suggest
that the proposed model outperformed all the other networks
in the majority of the metrics tested.

The meta-learner module practically employs the compu-
tational power of a well generalizable and simple model to
identify features of low complexity (U-net) while it retains
the ability of two related to the task models(Dense2U-net
& Bridged U-net) to extract complex features. The features
from each individual model are concatenated in channel-wise
manner just before their passing from the convolution layer
which is responsible for the extraction of the predicted mask.
The concatenated features are then passed from the meta-
learner model to extract valuable information regarding the
area of interest from each model and cancel their individual
errors.In the meta-learner, the feature weights are assigned
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Fig. 2. The predicted (blue) and the ground truth (red) contours for 6 cases
and 4 networks. Cases start top to bottom (1-6)

based on how close the base-learner’s feature maps are to the
ground truth. Thereby, base-learner’s errors are minimized.

The main limitation of this study is that the experiment
was conducted in relatively small amount of data. Future work
could also take advantage of image preprocessing techniques
to further improve the performance of the meta-learner. For
instance, data augmentation is an efficient work-around when
the amount of training data is limited. Also, using advanced
techniques to crop the image around the prostate, in order
to overcome issues related to the class imbalance [15], [16]
between the prostate and the background regions, have been
proven particularly useful for enhancing the performance of
DL segmentation networks [17], [18].
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