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Region‑adaptive magnetic 
resonance image enhancement 
for improving CNN‑based 
segmentation of the prostate 
and prostatic zones
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Grigorios Grigoriadis 2, Nikos Tsiknakis 3, Kostas Marias 3,4, Manolis Tsiknakis 3,4 & 
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Automatic segmentation of the prostate of and the prostatic zones on MRI remains one of the 
most compelling research areas. While different image enhancement techniques are emerging as 
powerful tools for improving the performance of segmentation algorithms, their application still 
lacks consensus due to contrasting evidence regarding performance improvement and cross-model 
stability, further hampered by the inability to explain models’ predictions. Particularly, for prostate 
segmentation, the effectiveness of image enhancement on different Convolutional Neural Networks 
(CNN) remains largely unexplored. The present work introduces a novel image enhancement method, 
named RACLAHE, to enhance the performance of CNN models for segmenting the prostate’s 
gland and the prostatic zones. The improvement in performance and consistency across five CNN 
models (U-Net, U-Net++, U-Net3+, ResU-net and USE-NET) is compared against four popular image 
enhancement methods. Additionally, a methodology is proposed to explain, both quantitatively 
and qualitatively, the relation between saliency maps and ground truth probability maps. Overall, 
RACLAHE was the most consistent image enhancement algorithm in terms of performance 
improvement across CNN models with the mean increase in Dice Score ranging from 3 to 9% for 
the different prostatic regions, while achieving minimal inter-model variability. The integration of a 
feature driven methodology to explain the predictions after applying image enhancement methods, 
enables the development of a concrete, trustworthy automated pipeline for prostate segmentation on 
MR images.

Accurate segmentation of the prostate and the prostatic zones on T2w MRI consist the first step for a plethora 
of medical image analysis applications where clinically useful information needs to be extracted from the region 
of interest (ROI). Some of the most common applications are cancer detection and aggressiveness characteriza-
tion, early prediction of recurrence, detection of metastases and assessment of treatment effectiveness, among 
others1. As the medical imaging domain moves toward sub-scale levels, with information being extracted from 
single voxels or pixels, segmentation accuracy is getting more demanding2. Particularly with the rise of radiomics 
analyses, any variability in the segmentation of the ROI will affect the numerical output of the features, thereby 
introducing bias into the evaluation of quantitative imaging biomarkers3,4. Furthermore, in the era of MRI-guided 
radiotherapy, precise organ and tumor delineation is of paramount importance as it may directly affect clinical 
outcomes5,6. Nevertheless, manual delineation of ROIs, not only is a time-consuming and labor-intensive task 
but also it thoroughly depends on the radiologist’s experience7.
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To date, a plethora of Deep learning (DL) fully connected Convolutional Neural Network (CNN) pipelines 
have emerged to alleviate the burden of manual annotation in various radiological applications by automating and 
speeding up the segmentation process8. Most commonly, the backbone of such models is the U-net architecture9. 
There are a few comprehensive reviews on emerging DL applications for medical image segmentation10–13. Despite 
the state-of-the-art performance of novel architectures, the prostate and, particularly the prostatic zone segmen-
tation, remains one of the most compelling research areas14,15.

Given the already large number of parameters included in state-of-the-art prostate segmentation models, 
image preprocessing, either by using denoising filters or contrast enhancement techniques, is aimed at increas-
ing models performance by emphasizing key image characteristics relevant to the specific learning task16. An 
indispensable part of image preprocessing is image enhancement which aims to improve the visual quality of 
the image by modifying the intensity values of individual pixels so that anatomical structures can more easily be 
recognized by humans and machines. This is achieved by means of adequate gray-scale transformations17 aim-
ing to disentangle the intensity distributions arising from adjacent regions with similar gray level intensities18. 
Therefore, by sharpening the boundaries between different tissues19, contrast enhancement has emerged as a 
powerful method for improving the accuracy of DL segmentation models20.

In the literature, several studies have demonstrated the effectiveness of image preprocessing to reduce the 
ambiguity of CNNs regarding their judgment and the feature extraction process21. There is a plethora of image 
enhancement techniques, many of which propose modifications of the Histogram Equalization algorithm 
(HE) or combinations of existing methodologies, such as the contrast limited adapted histogram equalization 
(CLAHE)22. The CLAHE algorithm consist one of the most popular and well-cited image enhancement tech-
niques, as it appears to be particularly effective in medical imaging applications23–25. An improvement of CNN 
models’ performance on a variety of tasks has been reported after the application of image processing techniques, 
including object and texture classification26,27. This extends to medical imaging domain as well, in which, some 
authors have compared the effectiveness of image enhancement techniques for improving the quality of dif-
ferent imaging modalities (i.e. X-rays, CT, MRI) and for different clinical applications, such as lung, bone and 
vessel segmentation23,28,29, but also for disease detection and classification30. For instance, Rahman et al.29 evalu-
ated the impact of various lung segmentation CNN algorithms and image enhancement techniques, including 
gamma correction, HE, CLAHE, image complement and Balance Contrast Enhancement Technique (BCET) 
on COVID-19 detection using X-ray images. The effect of image enhancement on liver segmentation from CT 
images, cervical cancer segmentation from T2W MR images, and vessel segmentation from 2D fundus images 
has also been investigated, suggesting that image enhancement prior to CNN model training leads to significant 
improvement in models’ performance31–33.

In this work, we propose an extension of the CLAHE method with the aim to improve the performance of 
state-of-the-art CNN models for segmenting the prostate gland and the prostatic zones. The performance of the 
proposed Region Adaptive CLAHE (RACLAHE) pipeline was compared against four prominent histogram-based 
image enhancement techniques, while the influence of the preprocessing methods on segmentation performance 
was assessed through the implementation of five well-established CNN models.

Overall, the main contributions of this study are the following:

•	 We propose an image enhancement method that consistently improves the performance of CNN segmenta-
tion models in T2 MR images of the prostate.

•	 We demonstrate, through feature map-driven visual explanations, that the proposed method is capable to 
enhance the image features that are most relevant to the segmentation task.

•	 We introduce a quantitative and qualitative feature importance metric to provide insights regarding DL 
segmentation models’ performance, thereby enhancing their explainability.

•	 To the best of our knowledge, this is the first study to quantitatively and qualitatively evaluate the effective-
ness of image enhancement methods employing CNN models for prostate segmentation on MR images.

Results
Datasets description.  The impact of four well-known histogram-based image enhancement methods 
along with the proposed region-adaptive technique were investigated for improving the segmentation of pros-
tate’s whole gland (WG), transitional zone (TZ) and peripheral zone (PZ), using two publicly available datasets. 
One dataset was used for model training and another dataset was used to test externally the models’ performance. 
For model training, 204 patients from the Prostate-X dataset34,35 were used, along with the corresponding masks 
for the WG, TZ and PZ. The dataset consists of 3206 frames from Siemens’ T2-weighted MR scans (TrioTim, 
Skyra models). For model testing, the Prostate 3-T36 dataset was employed, which included 30 patients and 421 
frames with the associated annotations for all three regions acquired from Siemens’ T2-weighted MRIs (Skyra 
model). In order to better examine the aforementioned prostatic areas, a descriptive analysis was conducted to 
quantify the inter- and intra-patient volume variations of the different prostatic regions (Supplementary Fig. S1).

Evaluation of preprocessing methods.  The metrics used for the evaluation of the proposed method 
were the Dice Score index (DS), the Rand Error Index (REI), the Sensitivity, the Balanced Accuracy (BA), the 
Hausdorff Distance (HD), and the Average Surface Distance (ASD). Tables 1, 2 and 3 show the prostate’s WG, 
the PZ and the TZ segmentation performance, respectively, of the five DL models using different image enhance-
ment methods. For comparison, the models’ performance was also computed using the original images, without 
applying any enhancement. In the tables, it is also indicated whether the proposed RACLAHE performed sig-
nificantly better than other preprocessing methods. The corresponding boxplots of DS, Sensitivity and HD are 
provided in Supplementary Figs. S2–S4 for the WG, PZ and TZ, respectively.
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Although, for WG segmentation the most robust networks tend to perform best without any image preproc-
essing (i.e. U-Net++, U-Net3+, USE-NET), the proposed RACLAHE algorithm was able to improve the sensi-
tivity and BA in most cases, as shown in Table 1. AGCWD was efficient in improving U-Net and U-Net++ but 
degraded U-Net3+. With AGCCPF, only the performance of Unet was improved, achieving results similar to 
RACLAHE but degraded slightly U-Net++ , U-Net3+ and USE-NET. The CLAHE algorithm marginally outper-
forming RACLAHE for the ResU-net model, but degraded other networks such as U-Net3+. The RLBHE had 
the lowest performance compared to other methods with remarkably high variability. It is worth noting that 
the USE-NET model was the best performing network and remained invariant to image preprocessing. Even 
without any preprocessing, USE-NET achieved better scores for WG segmentation than all other models (i.e. 
AUC = 0.88 ± 0.12).

On the other hand, for the evaluation of prostate’s PZ segmentation, the RACLAHE algorithm consistently 
improved the performance of the majority of DL models, as it is shown in Table 2. The only exception was the 
ResU-net, for which AGCWD and AGCCPF achieved superior performance. Similar to WG segmentation task, 
for PZ segmentation, the models’ performance was degraded when the RLBHE was used. The CLAHE algorithm 
also degraded the models’ performance, except for USE-NET. Overall, the best performance was achieved with 
the ResU-net model (DS = 0.75 ± 0.17 for AGCCPF). Regarding the segmentation of prostate’s TZ, shown in 
Table 3, the proposed RACLAHE algorithm was the only consistent preprocessing method for significantly 
improving the performance of all the five networks. The best results for TZ segmentation were obtained for 
RACLAHE combined with the USE-NET model (DS = 0.81 ± 0.16). Overall, the average improvement across DL 
models in terms of DS was 3%, 8% and 9% for WG, PZ and TZ segmentation respectively.

Table 1.   Whole gland (WG) segmentation performance. BA balanced accuracy, DS dice score, HD Hausdorff 
distance, ASD average surface distance, REI Rand error index, AGCWD adaptive gamma correction with 
weighting distribution, AGCCPF adaptive gamma correction with color preserving framework, RLBHE range 
limited Bi-histogram equalization, CLAHE contrast limited adaptive histogram equalization, RACLAHE region 
adaptive contrast limited adaptive histogram equalization. *RACLAHE performs significantly better than the 
corresponding method (p-value ≤ 0.05; Wilcoxon rank-sum test). † This method is significantly better than 
RACLAHE (p-value ≤ 0.05; Wilcoxon rank-sum test). The best performance scores for each model are shown 
in bold.

Model Preprocessing method Sensitivity BA DS HD ASD REI

ResU-Net

W/o filter 0.63 ± 0.27* 0.81 ± 0.13* 0.72 ± 0.26* 10.4 ± 7.94* 3.38 ± 2.59* 0.21 ± 0.12*

AGCWD 0.85 ± 0.19 0.92 ± 0.09 0.85 ± 0.16† 7.0 ± 6.67† 1.96 ± 1.84† 0.14 ± 0.18

AGCCPF 0.72 ± 0.24* 0.86 ± 0.12* 0.78 ± 0.19* 9.88 ± 8.25* 2.97 ± 2.37* 0.2 ± 0.16*

RLBHE 0.69 ± 0.28 0.84 ± 0.14 0.74 ± 0.25 10.65 ± 9.33 3.51 ± 3.63 0.2 ± 0.19

CLAHE 0.88 ± 0.18† 0.94 ± 0.09† 0.85 ± 0.18† 6.73 ± 6.45† 2.02 ± 2.06† 0.14 ± 0.24*

RACLAHE 0.85 ± 0.19 0.92 ± 0.09 0.83 ± 0.17 9.07 ± 9.46 2.55 ± 2.38 0.14 ± 0.19

U-Net

W/o filter 0.66 ± 0.23* 0.83 ± 0.11* 0.75 ± 0.21* 8.46 ± 6.62* 3.39 ± 3.11* 0.23 ± 0.13*

AGCWD 0.78 ± 0.19* 0.89 ± 0.1* 0.83 ± 0.16 6.84 ± 5.77 2.32 ± 2.07 0.16 ± 0.1*

AGCCPF 0.84 ± 0.16 0.92 ± 0.08 0.86 ± 0.13 5.97 ± 5.28† 2.02 ± 1.76† 0.16 ± 0.17

RLBHE 0.69 ± 0.24* 0.85 ± 0.12* 0.76 ± 0.21* 8.2 ± 5.93* 3.08 ± 2.43* 0.2 ± 0.13*

CLAHE 0.72 ± 0.24* 0.86 ± 0.12* 0.78 ± 0.2* 8.5 ± 6.29* 2.91 ± 2.5* 0.18 ± 0.1*

RACLAHE 0.85 ± 0.16 0.92 ± 0.08 0.85 ± 0.13 6.99 ± 5.71 2.13 ± 1.62 0.15 ± 0.17

U-Net3+ 

W/o filter 0.83 ± 0.17 0.91 ± 0.08 0.85 ± 0.14 6.18 ± 5.53 2.04 ± 1.62 0.15 ± 0.14

AGCWD 0.78 ± 0.2* 0.89 ± 0.1* 0.81 ± 0.17* 7.16 ± 4.96* 2.45 ± 1.58* 0.18 ± 0.14*

AGCCPF 0.78 ± 0.21* 0.89 ± 0.11* 0.82 ± 0.18* 6.78 ± 4.95* 2.49 ± 1.9* 0.16 ± 0.13

RLBHE 0.64 ± 0.23* 0.82 ± 0.11* 0.73 ± 0.2* 9.0 ± 6.28* 3.6 ± 2.48* 0.22 ± 0.1*

CLAHE 0.69 ± 0.24* 0.85 ± 0.12* 0.76 ± 0.2* 8.94 ± 5.87* 3.14 ± 1.93* 0.2 ± 0.12*

RACLAHE 0.84 ± 0.17 0.92 ± 0.08 0.85 ± 0.14 6.43 ± 5.93 2.28 ± 2.52 0.16 ± 0.18

U-Net++ 

W/o filter 0.77 ± 0.17* 0.88 ± 0.08* 0.81 ± 0.15* 6.83 ± 4.73* 2.68 ± 1.55* 0.19 ± 0.12*

AGCWD 0.79 ± 0.17* 0.89 ± 0.09* 0.82 ± 0.15 6.24 ± 4.47 2.48 ± 1.53 0.17 ± 0.12☨

AGCCPF 0.76 ± 0.21* 0.88 ± 0.1* 0.79 ± 0.17* 7.75 ± 5.75* 2.79 ± 1.95* 0.2 ± 0.16*

RLBHE 0.75 ± 0.18* 0.87 ± 0.09* 0.8 ± 0.15* 6.82 ± 4.62* 2.75 ± 1.7* 0.2 ± 0.12*

CLAHE 0.78 ± 0.21* 0.89 ± 0.1* 0.8 ± 0.18 7.57 ± 5.68* 2.57 ± 1.67 0.17 ± 0.15†

RACLAHE 0.86 ± 0.16 0.93 ± 0.08 0.83 ± 0.15 6.78 ± 5.44 2.52 ± 2.0 0.18 ± 0.24

USE-NET

W/o filter 0.86 ± 0.15 0.93 ± 0.08 0.88 ± 0.12 5.14 ± 4.62 1.82 ± 1.85 0.13 ± 0.16

AGCWD 0.86 ± 0.17* 0.93 ± 0.08* 0.87 ± 0.14† 5.54 ± 4.9† 1.9 ± 1.7† 0.13 ± 0.17

AGCCPF 0.83 ± 0.16* 0.91 ± 0.08* 0.85 ± 0.14 6.11 ± 4.98 2.22 ± 2.12 0.15 ± 0.13†

RLBHE 0.84 ± 0.15* 0.92 ± 0.08* 0.86 ± 0.12 5.92 ± 4.91 2.07 ± 1.91* 0.14 ± 0.14*

CLAHE 0.83 ± 0.18* 0.91 ± 0.09* 0.85 ± 0.15 5.78 ± 4.99* 2.12 ± 2.22* 0.14 ± 0.14†

RACLAHE 0.89 ± 0.15 0.94 ± 0.07 0.84 ± 0.15 6.6 ± 5.75 2.32 ± 2.19 0.16 ± 0.25
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Inter‑model performance and variability.  The stability of each preprocessing method was computed in 
terms of method-specific average performance and variance in performance across all models. The inter-model 
performance, referring to the mean value for each method taking into consideration all the models, shows how 
each approach impacts DL segmentation models in general, and is described as follows:

where  m is the metric, filt is the histogram processing methods, p is the performance (mean score) for each 
model. This metric assists further for the identification of the best method as it reveals the method that has the 
most effective performance among models. In additions the inter-model variability shows how far are the mean 
values for each model from the Performance(m, filt) evaluation metric. Typically represents the standard devia-
tion across models ( std ) and it is reproduced by Eq. (2):

Figure 1a presents the normalized performance for each preprocessing method while Fig. 1b presents the 
normalized variability across the segmentation models. For a given preprocessing method, the normalization 
of the results was performed with respect to the minimum and maximum performance for each metric. For 
instance, in Fig. 1a the best performing preprocessing method in terms of DS has a value of 1 while the worst 
has a value of 0. Specifically, for the distance-based metrics (HD, ASD) where lower values indicate a better 
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Table 2.   Peripheral zone (PZ) segmentation performance. BA balanced accuracy, DS dice score, HD 
Hausdorff distance, ASD average surface distance, REI Rand error index, AGCWD adaptive gamma correction 
with weighting distribution, AGCCPF adaptive gamma correction with color preserving framework, RLBHE 
range limited Bi-histogram equalization, CLAHE contrast limited adaptive histogram equalization, RACLAHE 
region adaptive contrast limited adaptive histogram equalization. *RACLAHE performs significantly better 
than the corresponding method (p-value ≤ 0.05; Wilcoxon rank-sum test). † This method is significantly better 
than RACLAHE (p-value ≤ 0.05; Wilcoxon rank-sum test). The best performance scores for each model are 
shown in bold.

Model Preprocessing method Sensitivity BA DS HD ASD REI

ResU-Net

W/o filter 0.67 ± 0.25* 0.83 ± 0.12* 0.68 ± 0.22 13.35 ± 15.73 2.54 ± 4.2 0.21 ± 0.13

AGCWD 0.79 ± 0.22 0.89 ± 0.11 0.73 ± 0.19† 8.57 ± 7.77† 1.7 ± 1.49† 0.15 ± 0.12

AGCCPF 0.8 ± 0.17 0.9 ± 0.09 0.75 ± 0.17† 9.38 ± 8.57† 1.77 ± 1.75† 0.17 ± 0.11

RLBHE 0.67 ± 0.25* 0.83 ± 0.12* 0.68 ± 0.22 10.16 ± 8.81 2.16 ± 2.3 0.21 ± 0.13*

CLAHE 0.67 ± 0.23* 0.83 ± 0.12* 0.71 ± 0.21 9.31 ± 8.23† 1.96 ± 2.18† 0.23 ± 0.13*

RACLAHE 0.77 ± 0.22 0.88 ± 0.11 0.7 ± 0.19 11.39 ± 10.85 2.2 ± 1.9 0.16 ± 0.12

U-Net

W/o filter 0.61 ± 0.24* 0.8 ± 0.12* 0.66 ± 0.22* 9.7 ± 9.11 2.16 ± 2.35 0.23 ± 0.11

AGCWD 0.58 ± 0.26* 0.79 ± 0.13* 0.63 ± 0.25* 10.3 ± 9.81 2.63 ± 3.67 0.25 ± 0.15*

AGCCPF 0.58 ± 0.27* 0.79 ± 0.13* 0.64 ± 0.25 10.28 ± 8.84 2.3 ± 2.27 0.23 ± 0.13

RLBHE 0.54 ± 0.26* 0.77 ± 0.13* 0.61 ± 0.25* 11.49 ± 9.4* 2.61 ± 2.79* 0.24 ± 0.11*

CLAHE 0.48 ± 0.24* 0.74 ± 0.12* 0.57 ± 0.24* 11.46 ± 8.35* 2.69 ± 2.28* 0.25 ± 0.12*

RACLAHE 0.67 ± 0.22 0.83 ± 0.11 0.69 ± 0.21 10.21 ± 9.5 2.07 ± 1.92 0.22 ± 0.11

U-Net3+ 

W/o filter 0.51 ± 0.25* 0.75 ± 0.12* 0.58 ± 0.24 11.16 ± 9.3 2.63 ± 2.38 0.25 ± 0.12

AGCWD 0.49 ± 0.25* 0.75 ± 0.12* 0.57 ± 0.25 12.34 ± 10.26 3.07 ± 3.59* 0.27 ± 0.15

AGCCPF 0.39 ± 0.24* 0.69 ± 0.12* 0.48 ± 0.25* 14.27 ± 10.45* 3.52 ± 2.87* 0.25 ± 0.15

RLBHE 0.32 ± 0.23* 0.66 ± 0.11* 0.4 ± 0.24* 15.99 ± 10.45* 4.23 ± 3.11* 0.23 ± 0.15

CLAHE 0.33 ± 0.24* 0.67 ± 0.12* 0.43 ± 0.26* 16.27 ± 9.46* 4.01 ± 2.75* 0.22 ± 0.14†

RACLAHE 0.57 ± 0.22 0.79 ± 0.11 0.62 ± 0.21 10.99 ± 9.47 2.47 ± 2.35 0.26 ± 0.11

U-Net++ 

W/o filter 0.5 ± 0.23* 0.75 ± 0.11* 0.55 ± 0.22* 10.01 ± 8.8 2.59 ± 2.0 0.28 ± 0.14

AGCWD 0.46 ± 0.21* 0.73 ± 0.1* 0.53 ± 0.2* 10.24 ± 8.47 2.57 ± 1.83* 0.27 ± 0.09*

AGCCPF 0.54 ± 0.23* 0.77 ± 0.12* 0.57 ± 0.21* 10.19 ± 8.12 2.56 ± 1.88* 0.26 ± 0.12*

RLBHE 0.49 ± 0.22* 0.74 ± 0.11* 0.54 ± 0.21* 10.99 ± 8.51* 2.79 ± 2.16* 0.27 ± 0.12*

CLAHE 0.5 ± 0.22* 0.75 ± 0.11* 0.56 ± 0.22 10.18 ± 8.99 2.64 ± 2.59 0.29 ± 0.15*

RACLAHE 0.62 ± 0.21 0.81 ± 0.11 0.61 ± 0.2 9.88 ± 8.45 2.35 ± 1.76 0.25 ± 0.11

USE-NET

W/o filter 0.63 ± 0.23* 0.82 ± 0.12* 0.69 ± 0.23 9.6 ± 8.09 1.94 ± 1.88 0.24 ± 0.12*

AGCWD 0.64 ± 0.24* 0.82 ± 0.12* 0.68 ± 0.23 10.37 ± 8.49 2.3 ± 2.86 0.26 ± 0.17*

AGCCPF 0.65 ± 0.24* 0.82 ± 0.12* 0.7 ± 0.23 9.69 ± 9.51 2.1 ± 2.79 0.25 ± 0.17*

RLBHE 0.63 ± 0.24* 0.81 ± 0.12* 0.67 ± 0.23 9.91 ± 8.47 2.19 ± 2.42 0.25 ± 0.15*

CLAHE 0.68 ± 0.21* 0.84 ± 0.11 0.72 ± 0.21† 9.02 ± 8.74 1.85 ± 1.98† 0.22 ± 0.11☨

RACLAHE 0.69 ± 0.25 0.84 ± 0.12 0.68 ± 0.23 9.85 ± 9.11 2.23 ± 2.84 0.21 ± 0.16
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performance, the inverse of these values was computed in order to have a consistency in scale. In Fig. 1b the 
variability of the mean performance across models, for each preprocessing method and metric, is shown. After 
normalization, the lowest variability across models is indicated with the value 0 while the highest variability is 
indicated with the value 1.

Considering Fig. 1a, for WG and PZ segmentation, the RACLAHE outperformed all the other preprocess-
ing methods, in terms of sensitivity, BA, DS and REI, while it had the second-best performance, after AGCWD, 
in terms of HD and ASD. With respect to variability in performance across DL models, shown in Fig. 1b, the 
RACLAHE has the lowest standard deviation for WG and PZ segmentation, apart from the HD and REI metric, 
respectively. Regarding the TZ segmentation, the proposed method was superior for all the metrics with the 
lowest inter-model variability in performance.

Explainability of model’s predictions.  In order to explain the effect of each preprocessing method on 
the DL models, we sought to quantify how each model’s important for the task features diverge from the ground 
truth density maps of the binary masks. Specifically, the density map of ground truth masks are given as:

(3)GTDensity map =

i,j=256
∑

i,j=0

{

k=Nsl
∑

k=0

GTij(k)

}

,

Table 3.   Transitional zone (TZ) segmentation performance. BA balanced accuracy, DS dice score, HD 
Hausdorff distance, ASD average surface distance, REI Rand error index, AGCWD adaptive gamma correction 
with weighting distribution, AGCCPF adaptive gamma correction with color preserving framework, RLBHE 
range limited Bi-histogram equalization, CLAHE contrast limited adaptive histogram equalization, RACLAHE 
region adaptive contrast limited adaptive histogram equalization. *RACLAHE performs significantly better 
than the corresponding method (p-value ≤ 0.05; Wilcoxon rank-sum test). † This method is significantly better 
than RACLAHE (p-value ≤ 0.05; Wilcoxon rank-sum test). The best performance scores for each model are 
shown in bold.

Model Preprocessing method Sensitivity BA DS HD ASD REI

ResU-Net

W/o filter 0.73 ± 0.25† 0.86 ± 0.12* 0.76 ± 0.21* 11.43 ± 12.17* 3.01 ± 2.27* 0.2 ± 0.18

AGCWD 0.58 ± 0.3* 0.79 ± 0.15* 0.66 ± 0.27* 10.24 ± 7.28* 3.43 ± 2.41* 0.22 ± 0.16*

AGCCPF 0.63 ± 0.27* 0.81 ± 0.14* 0.7 ± 0.25* 9.59 ± 7.32* 3.38 ± 2.72* 0.23 ± 0.17*

RLBHE 0.58 ± 0.29* 0.79 ± 0.14* 0.66 ± 0.26* 11.41 ± 9.38* 4.07 ± 3.4* 0.22 ± 0.14*

CLAHE 0.72 ± 0.25 0.86 ± 0.13 0.76 ± 0.22 8.49 ± 8.11 2.73 ± 2.92 0.19 ± 0.16

RACLAHE 0.72 ± 0.23 0.86 ± 0.11 0.77 ± 0.19 7.4 ± 5.52 2.51 ± 1.87 0.2 ± 0.13

U-Net

W/o filter 0.73 ± 0.23* 0.86 ± 0.12* 0.77 ± 0.19 7.59 ± 6.23 2.73 ± 2.32* 0.19 ± 0.14

AGCWD 0.59 ± 0.27* 0.8 ± 0.14* 0.69 ± 0.25* 8.88 ± 6.65* 3.52 ± 2.73* 0.21 ± 0.11*

AGCCPF 0.59 ± 0.25* 0.8 ± 0.13* 0.69 ± 0.23* 10.74 ± 7.19* 3.63 ± 2.38* 0.23 ± 0.11*

RLBHE 0.63 ± 0.26* 0.82 ± 0.13* 0.72 ± 0.23* 8.62 ± 5.97* 3.21 ± 2.54* 0.22 ± 0.13*

CLAHE 0.63 ± 0.27* 0.82 ± 0.13* 0.71 ± 0.23* 8.76 ± 6.79* 3.19 ± 2.59* 0.22 ± 0.14*

RACLAHE 0.76 ± 0.19 0.88 ± 0.09 0.8 ± 0.15 7.73 ± 7.18 2.54 ± 1.99 0.2 ± 0.16

U-Net3+ 

W/o filter 0.63 ± 0.25* 0.82 ± 0.12* 0.71 ± 0.22* 8.62 ± 5.74* 3.2 ± 2.2* 0.22 ± 0.12*

AGCWD 0.67 ± 0.23* 0.84 ± 0.11* 0.74 ± 0.2* 7.84 ± 5.07* 2.95 ± 1.8* 0.22 ± 0.12*

AGCCPF 0.62 ± 0.27* 0.81 ± 0.13* 0.7 ± 0.24* 8.4 ± 5.18* 3.47 ± 2.45* 0.23 ± 0.15*

RLBHE 0.42 ± 0.26* 0.71 ± 0.13* 0.53 ± 0.26* 12.54 ± 7.68* 5.87 ± 3.52* 0.23 ± 0.12*

CLAHE 0.59 ± 0.26* 0.8 ± 0.13* 0.68 ± 0.24* 8.68 ± 5.43* 3.51 ± 2.4* 0.22 ± 0.12*

RACLAHE 0.79 ± 0.19 0.89 ± 0.09 0.8 ± 0.15 6.62 ± 4.5 2.39 ± 1.45 0.2 ± 0.19

U-Net ++ 

W/o filter 0.67 ± 0.27* 0.84 ± 0.14* 0.72 ± 0.25* 8.13 ± 7.59* 3.23 ± 3.6* 0.2 ± 0.15☨

AGCWD 0.64 ± 0.25* 0.82 ± 0.13* 0.71 ± 0.23* 8.01 ± 5.28* 3.42 ± 2.48* 0.22 ± 0.13*

AGCCPF 0.41 ± 0.28* 0.71 ± 0.14* 0.51 ± 0.3* 14.54 ± 12.2* 5.85 ± 4.13* 0.21 ± 0.11*

RLBHE 0.54 ± 0.28* 0.77 ± 0.14* 0.63 ± 0.26* 11.23 ± 8.39* 4.41 ± 3.04* 0.22 ± 0.12*

CLAHE 0.6 ± 0.25* 0.8 ± 0.12* 0.69 ± 0.23* 9.04 ± 5.81* 3.86 ± 2.36* 0.23 ± 0.12*

RACLAHE 0.77 ± 0.21 0.88 ± 0.11 0.78 ± 0.17 6.64 ± 4.59 2.61 ± 1.53 0.21 ± 0.2

USE-NET

W/o filter 0.68 ± 0.25* 0.84 ± 0.12* 0.76 ± 0.22* 7.36 ± 5.79* 2.82 ± 2.72 0.2 ± 0.11*

AGCWD 0.71 ± 0.24* 0.85 ± 0.12* 0.77 ± 0.21 6.87 ± 5.61 2.65 ± 2.4 0.2 ± 0.15*

AGCCPF 0.7 ± 0.24* 0.85 ± 0.12* 0.77 ± 0.2* 7.1 ± 5.49 2.79 ± 2.52 0.22 ± 0.17*

RLBHE 0.73 ± 0.24* 0.86 ± 0.12* 0.78 ± 0.2 6.74 ± 4.99 2.51 ± 1.94 0.19 ± 0.15

CLAHE 0.7 ± 0.24* 0.85 ± 0.12* 0.77 ± 0.2* 7.07 ± 5.68 2.66 ± 2.37 0.2 ± 0.14*

RACLAHE 0.8 ± 0.19 0.9 ± 0.09 0.81 ± 0.16 6.21 ± 4.03 2.31 ± 1.76 0.2 ± 0.21
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Figure 1.   (a) Intermodel performance for each metric and histogram based preprocessing technique. The best 
preprocessing method for each metric is depicted in yellow and the inferior in dark greens. (b) Intermodel 
variability for each metric and the histogram based preprocessing technique. The best method for each metric is 
depicted in white and the inferior in dark red.
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where GTDensity map is the density map that is extracted after the pixel wise aggregation of all binary GT masks, 
and GTij(k) represents the pixel wise aggregation for the total number of binary ground truth images Nsl in a 
certain pixel position i, j . The density map of important features is given as:

where FMDensity map is the density map of extracted features that a model utilize for its decision and is extracted 
after the pixel wise aggregation of those feature maps, and FMij(k)  represents the pixel wise aggregation for the 
total number Nsl of feature maps extracted by a model in a certain pixel position i, j . The latter can take values 
ranging from 0 to 256 attributed to the spatial dimensions of the density maps. A comprehensive scheme is 
presented in Fig. 2, while the mean squared error and the absolute subtraction are used as explainability metrics 
for quantitative and visual assessment. The absolute pixel wise difference map between Eqs. (3) and (4) is given 
by Eq. (5):

(4)FMDensity map =

i,j=256
∑

i,j=0

{

k=Nsl
∑

k=0

FMij(k)

}

,

(5)

DMap =







�

�FM Density map0,0 − GT Density map0,0
�

� · · ·
�

�FM Density map0,256 − GT Density map0,256
�

�

.

.

.
. . .

.

.

.
�

�FM Density map256,0 − GT Density map256,0
�

� · · ·
�

�FM Density map256,256 − GT Density map256,256
�

�






.

Figure 2.   The explainability assessment pipeline. Density maps for GT binary masks and Feature maps are 
extracted via a pixel wise aggregation. Mean squared error and absolute pixel wise subtraction are performed on 
the density maps for quantitative and visual inspection.
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The gradient-weighted class activation mapping (Grad-Cam)37 technique was used to extract the feature maps 
(FM) from a certain layer of a DL network. In fact, the performance of a model is tightly linked to the feature 
maps extracted throughout the forward–backward propagation process. Figure 3 presents the significant features 
processed by the USE-NET model, under the influence of each preprocessing method, applied for the WG, TZ 

Figure 3.   Weighted heatmap for the USE-Net model and for each preprocessing method used. The columns are 
the prostatic zones while the rows are the evaluated methods.
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and PZ segmentation. The RACLAHE method seems to improve the accuracy of boundary estimation assisting 
the model to focus on relevant pixels. Red areas indicate that the model is certain that those pixels belong to the 
object of interest, yellow areas imply that the model is less certain for these pixels while blue areas denote that 
these pixels have no contribution to the model’s final decision. Figure 4 provides a visual representation of the 
pixel-wise absolute differences (DMap) between the ground truth density map (GTdensity map) and the relevant 
for the model’s decision features density map (FMdensity map). A near-zero signifies that the pixels significance for 
a model is equal to its GT density. It is evident that the RACLAHE method has more pixels with values close to 
the GT, compared to other methods. This suggests that the RACLAHE method can more efficiently assist the 
DL models in focusing on meaningful features that are showcased by the GTdensity map, reducing their uncertainty.

Figure 4.   The visual assessment after the absolute pixel wise subtraction of GTDensity map and FMDensity map 
(Eq. 5), for each preprocessing method applied on the USE-NET network.
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Discussion
Despite the widespread usage of image enhancement techniques, they are often adopted on the basis of scant 
literature evidence and are blindly utilized in a plethora of clinical applications. In this regard, the present 
work addresses two highly relevant issues in the field of medical image preprocessing, namely, how well image 
enhancement methods generalize across different segmentation algorithms and how to reliably select the most 
appropriate preprocessing method for a given task. For the former, we estimated the variability in segmenta-
tion performance across models, for each one of the preprocessing methods under evaluation. For the latter, we 
introduce a feature driven approach to explain models’ predictions, enabling both the qualitative assessment 
of model performance through visual explanations, as presented in Fig. 4, and the quantitative assessment via 
the estimation of the absolute mean squared error and the subtraction of feature maps and the GT maps. To the 
best of our knowledge, this is the first study to evaluate the impact and generalizability of image enhancement 
methods on DL models for prostate and prostatic zone segmentation.

In contrast to other popular histogram-based image enhancement approaches, which displayed low stability 
and generalizability across different DL models, the success of RACLAHE lies in the consistent, model-invariant 
improvement achieved for segmenting the prostate and the prostatic zones. The proposed method’s novelty relies 
on the combination of an automated DL region proposal model and a local enhancement technique. RACLAHE 
mainly focuses on (a) the effective automated identification of the region of interest to discretize the relevant for 
the task region features from the redundant features, (b) the enhancement of the relevant region to enhance the 
adequate pixels for the segmentation task, and (c) the harmonization of the enhanced region and the redundant 
region to retransform the image in its original dimensions to be visually presented in a more natural way for 
the clinical practitioners and the CNNs models as well. Specifically, the RACLAHE was the only technique that 
did not deteriorate models’ performance in any of the experiments conducted, as shown in Tables 1, 2 and 3. In 
most cases, a superior performance was achieved compared to no-preprocessing or, at worst, the performance 
remained the same. Regarding the stability of image enhancement methods across different DL models, the 
RACLAHE was found to be more stable, reducing the variation of results across models and improving the 
overall inter-model average scores, as shown in Fig. 1.

Another important contribution of this work consists the integration of saliency maps as a performance 
indicator, providing a unique opportunity to interrogate the effect of different preprocessing methods on models’ 
behavior. We provide feature map-driven visual explanations to assist on the selection of the most appropriate 
preprocessing method by highlighting the image features that guide the segmentation task. Herein, the Grad-
CAM37 technique was employed to visually present class discriminative localization map (heatmap or saliency 
map) which highlights the most important pixels of a particular class. These heatmaps were coupled with a 
probabilistic ground truth feature importance map to extract meaningful indications regarding a model’s perfor-
mance, both qualitatively and quantitatively, as it is shown in Fig. 2. We extend the aforementioned methodology 
to compare different image enhancement methods and to quantify the contribution of each feature to DL models’ 
decisions. As depicted in Fig. 4 and Supplementary Table S1, the RACLAHE was able to enhance specific areas 
within the images that are strongly associated with the ROI. It is worth noting that the most significant differ-
ences were observed for the prostate’s WG and the TZ. The proposed method provides better insights about the 
performance of biomedical imaging applications as it represents a natural way of comparing the ground truth 
samples from the predicted samples, as indicated in Figs. 2 and 4.

This work has some limitations. Τhe impact of image enhancement was not assessed for 3D segmentation 
tasks, which would permit to evaluate its effectiveness in every spatial plane. Nonetheless, for this type of analy-
sis, a sufficiently large amount of data is required. Additionally, regarding the RACLAHE method, no hyper-
parameter tuning was performed to optimally define the cutoff for the CLAHE component and, therefore, the 
default parameters that are automatically chosen from the algorithm were used. As proposed by Campos et al.38, 
hyperparameter optimization can be achieved by means of machine learning techniques.

In summary, the outcomes of this study indicate that image enhancement using RACLAHE can improve the 
segmentation efficacy of CNN networks in a model-agnostic manner, thereby, contributing to establishing a 
concrete image preprocessing pipeline for effective automatic prostate segmentation tasks. Future research may 
concentrate on establishing the superiority of the proposed method considering different image enhancement 
techniques and segmentation algorithms and evaluating its generalizability in other population datasets and 
clinical scenarios. In addition, the application of RACLAHE prior to CNN model training has led to the genera-
tion of more accurate saliency maps. These probabilistic pixel-wise representations, reflect a more natural way 
to visually explain the outcomes of a model. Ultimately, the explainability module will render model’s prediction 
more trustworthy among clinicals, to further support the decision-making process.

Methods
Histogram‑based enhancement methods.  The four image enhancement techniques used for compari-
son are described below.

Adaptive gamma correction with weighting distribution (AGCWD).  AGCWD is a histogram modification 
approach to enhance and correct images. The main attribute that differentiates this approach from the power-law 
transformation is the automatic selection of the gamma factor based on the weighting distribution. Specifically, 
the authors39 used weighting distribution to find the cumulative distribution and therefore specify the gamma 
parameter. This hyperparameter is set to 1, which is the default value as suggested by the authors in the original 
work which brightens low pixel intensities on the image and the high intensities remain intact.
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Adaptive gamma correction with color preserving framework (AGCCPF).  AGCCPF employs a two-step pro-
cessing approach. First, it improves the contrast and brightness of a given image by modifying the probability 
distribution of pixels’ intensity and then it applies gamma correction. In the second stage, it restores color using a 
color-preserving framework. This method is an upgrade of AGCWD due to its ability to retain information bet-
ter than AGCWD as authors claim40. They use a histogram modification function to control the level of contrast 
enhancement by utilizing the input histogram along with the uniform histogram, which is a histogram equalized 
image, to produce the resulted one. The difference between input histogram, uniform histogram and the result-
ant histogram for an image is presented in Fig. S5 in the Supplementary Materials.

Range limited Bi‑histogram equalization (RLBHE).  RLBHE considers both contrast enhancement and intensity 
brightness preservation as valuable factors in the output image. First, the single threshold Otsu’s41 approach is 
employed to execute histogram thresholding to get better contrast enhancement and avoid over-enhancement. 
Second, the range of the equalized input image is limited to ensure that the mean output brightness is almost 
equal to the mean input brightness, preserving the initial information from the input image and third, each 
partition of the histogram is equalized independently.

Contrast limited adaptive histogram equalization (CLAHE).  CLAHE algorithm22 is considered more stable for 
contrast enhancement operations due to its local application on the frame. This approach is separated into two 
steps. First the initial image is divided into 8X8 windows that compose the image. Second histogram equaliza-
tion algorithm is applied to equalize each window independently from the other. In this way, the histogram 
equalization method does not take into consideration the global features of the image and, therefore, it optimizes 
the intensity levels to a neighboring area around the center of each window. Compared to the aforementioned 
techniques, there are several advantages of CLAHE with the main being the reduced contribution of outliers. 
In histogram equalization, outliers play an important role as the tuning of the histogram is affected by extreme 
values. With the partition in windows though, extreme values are scaled within a neighborhood region and, 
therefore, are smoothed.

The proposed image enhancement method: RACLAHE.  Conventionally, the CLAHE algorithm is applied glob-
ally on the entire frame of the image. The algorithm utilizes the histogram equalization method in a close neigh-
borhood around a central pixel. Although the histogram equalization is applied frame-wise, the CLAHE algo-
rithm is applied patch-wise enhancing further the contrast of the sub-regions within the frame. The proposed 
method RACLAHE utilizes the CLAHE algorithm along with the steps described below to transform selected 
features to be more interpretable for the model. The pipeline is visually presented in Fig. 5. The algorithm that 
describes the RACLAHE operation is.

L e t  Z  b e  a  s p a c e  w h e re  t h e  i nte ns i t y  f e atu re s  v a lu e s  o f  e a ch  f r am e  l i e , 
FMZ ∈ Z, 0 ≤ FMZ ≤ Frame width× Frame height . Each frame is passed from a DL U-Net like structure9,42 
that proposes a reduced size area that includes the prostate gland. Specifically, the initial space Z is reduced into 
a subspace Q ⊂ Z and features FMQ ∈ Q are selected by reducing the dimensionality of the Z space in the Q 
space. The relation that describes these two spaces is presented in Eq. (6) and the operation is given in Fig. 5a.

The frame is then divided into two subframes, features FMQ , FMZ − FMQ and those areas are the proposed 
area that contains the whole gland and the remaining area respectively while this process is presented in Fig. 5b. 
The CLAHE algorithm is then applied on the features FMQ (proposed area). Specifically, FMQ pixel intensity 
features are divided into 8× 8 patches and the number of those patches in each FMQ is approximately 196. Then, 
the probability of the occurrence of each pixel’s unique intensity value Ppatch(iFMQ ) is given as:

where Num(iFMQ ) is the number of occurrences of pixel intensity iFMQ within the patch, TotNum is the total 
number of pixels of the patch, LDpatch is the range of values, inside each patch. Consequently, the cumulative 
distribution for each patch is calculated:

The histogram equalized patch is obtained by Eq. (9) making use of Eqs. (8) and (7):

The enhanced area of Fig. 5b is constructed from the aggregation of the histogram equalized patches and it 
is obtained as:

(6)Q ≃ 0.25Z ± 0.12Z.

(7)Ppatch
(

iFMQ

)

=
Num

(

iFMQ

)

TotNum
, 0 ≤ iFMQ ≤ LDpatch

,

(8)CDFpatch(iFMQ ) =

iFMQ
∑

k=0

Ppatch
(

k = iFMQ

)

.

(9)EqHistpatch = round
(

LDpatch
− 1

)

× CDFpatch
(

iFMQ

)

.

(10)FMQ
trans

= Enhanced Area =

Patches
∑

t=0

EqHistt ,
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where with Patches we denote the total number of patches within FMQ while FMQ
trans indicates the enhanced 

area. Finally, the RACLAHE resulted image is given by Eq. (11) it is shown in Fig. 5b:

Model development.  Five CNN algorithms were implemented to evaluate the impact of preprocessing 
methods to segment the prostate and the prostatic zones, namely the U-Net9, ResUNet43, U-Net3+44, U-Net++45 
and USE-NET46 while a brief description of them is given in the Supplementary Materials. For model training, 
the Prostate X dataset was split into the training and the validation sets where the 85% of image frames were used 
for training and the remaining 15% for validation. The splits were kept the same for all the experiments run in 
this study (i.e. for the different models and preprocessing methods). The initial learning rate was kept at 0.0001 
whereas the batch size and epochs were 16 and 120, respectively, while the adam optimizer was used for weight 
updating throughout the training process. As loss function the sigmoid focal crossentropy47 was utilized due to 
its effectiveness to handle unbalanced data. The early stopping technique used in order to stop model training 
when the validation performance stopped improving further. The segmentation performance of each model and 
the preprocessing method was evaluated externally on an independent dataset (Prostate 3 T). The GPU used for 
the experiments is the NVIDIA Quadro P6000, the drivers are of version 441.66 while the python packages used 
are numpy = 1.21.2, keras-unet-collection = 0.1.11, scikit-image = 0.18.3, SciPy = 1.7.1, Tensorflow = 2.2.0 and 
Tensorflow-addons = 0.11.2. The original code and the docker image for RACLAHE and all the experiments are 
available from the authors upon request.

Performance assessment.  Several metrics have been implemented to thoroughly evaluate the perfor-
mance of the proposed method and existing histogram modification methods. Specifically, DS, REI, Sensitivity, 
BA, HD and ASD common segmentation metrics were computed thanks to the complementary information 
they provide which could provide sufficient insights about models’ performance. DS and REI are metrics related 
to the overlapping between the predicted and the true annotation of the object of interest. On the other hand, 

(11)RACLAHE = FMQ
trans

+ FMZ − FMQ .

Figure 5.   The RACLAHE algorithm. From the initial 256 × 256 frame an area of {134± 15} × {134± 15} pixels 
is selected which contains the region of interest (a). This reduced dimensional space provides more targeted 
features to be enhanced and simplify the complexity of the problem while introducing some biases to the model 
regarding the area to identify features from (b).
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Sensitivity and BA provide information about the ability of the model to identify an area of interest with high 
class imbalance between the background and foreground pixels. HD and ASD employ one dimensional meas-
urement that connect the relevant results with real world insights (S.I unit system). Specifically, HD and ASD are 
measurements of how far two data points are, one belonging to the ground truth boundary and the other to the 
prediction. Herein, the 95% HD was employed to avoid using extreme values as they may not be indicative of real 
model performance. All the performance metrics were computed on the external testing dataset. The Wilcoxon 
rank-sum test (two-sided) was used to compare the proposed RACLAHE technique with all the other methods 
and a p-value ≤ 0.05 was considered as significant in performance differences.

Data availability
The datasets generated during and analyzed during the current study are available in the TCIA repository and 
in GitHub. Specifically the Prostate X2 dataset can be found in this link (https://​github.​com/​rcuoc​olo/​PROST​
ATEx_​masks) while the Prostate 3T dataset can be found in this link (https://​wiki.​cance​rimag​ingar​chive.​net/​
displ​ay/​Public/​Prost​ate-​3T). Those are publicly available datasets. Docker container of the RACLAHE method 
and code is available from the authors upon request.
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