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A B S T R A C T   

Magnetic Resonance (MR) images suffer from spatial inhomogeneity, known as bias field corruption. The N4ITK 
filter is a state-of-the-art method used for correcting the bias field to optimize MR-based quantification. In this 
study, a novel approach is presented to quantitatively evaluate the performance of N4 bias field correction for 
pelvic prostate imaging. An exploratory analysis, regarding the different values of convergence threshold, shrink 
factor, fitting level, number of iterations and use of mask, is performed to quantify the performance of N4 filter in 
pelvic MR images. The performance of a total of 240 different N4 configurations is examined using the Full Width 
at Half Maximum (FWHM) of the segmented periprostatic fat distribution as evaluation metric. Phantom 
T2weighted images were used to assess the performance of N4 for a uniform test tissue mimicking material, 
excluding factors such as patient related susceptibility and anatomy heterogeneity. Moreover, 89 and 204 
T2weighted patient images from two public datasets acquired by scanners with a combined surface and 
endorectal coil at 1.5 T and a surface coil at 3 T, respectively, were utilized and corrected with a variable set of 
N4 parameters. Furthermore, two external public datasets were used to validate the performance of the N4 filter 
in T2weighted patient images acquired by various scanning conditions with different magnetic field strengths 
and coils. The results show that the set of N4 parameters, converging to optimal representations of fat in the 
image, were: convergence threshold 0.001, shrink factor 2, fitting level 6, number of iterations 100 and the use of 
default mask for prostate images acquired by a combined surface and endorectal coil at both 1.5 T and 3 T. The 
corresponding optimal N4 configuration for MR prostate images acquired by a surface coil at 1.5 T or 3 T was: 
convergence threshold 0.001, shrink factor 2, fitting level 5, number of iterations 25 and the use of default mask. 
Hence, periprostatic fat segmentation can be used to define the optimal settings for achieving T2weighted 
prostate images free from bias field corruption to provide robust input for further analysis.   

1. Introduction 

Prostate cancer (PCa) is the most frequently diagnosed cancer in 
men, affecting 1.4 million men per year worldwide [1]. Imaging plays an 
important role for non-invasive patient classification in order to avoid 
overtreatment of indolent cancers as well as undertreatment of more 
aggressive cases requiring prompt intervention [2]. The role of 

radiomics studies as a cost-effective, supportive tool has emerged 
through a large number of studies where high throughput extraction of 
quantitative features lead to machine learning models able to enhance 
confidence on medical decision [3]. However, a series of preparatory 
steps are required to minimize measurement errors such as variability 
under different conditions, imaging protocols, vendors or between 
measurements on the same subjects aiming at improved reproducibility 
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of quantitative image post-processing. Inhomogeneity correction, noise 
filtering and intensity normalization are the most frequently used pre
processing steps in this direction and can be deployed either as discrete 
actions or in the frame of a multi-step workflow for image preparation. 

Concerning MR images, robust annotation, segmentation, texture 
analysis or classification assume an image of high diagnostic value, free 
from artifacts. However, MR images are very frequently affected by a 
low frequency variation in the acquired signal known as bias field cor
ruption. This non-uniformity is the result of a number of contributing 
factors, such as poor radiofrequency (RF) coil design, gradient eddy 
currents, local variations in flip angle and inhomogeneous excitations 
caused by interactions between radio-frequency waves and electro
magnetic properties of the tissues. Scanners with higher main magnetic 
field strength are more severely affected, as well as acquisitions per
formed with surface coils. 

Bias field corruption in MR images appears randomly at different 
locations among patients and at different acquisitions, even subsequent 
acquisitions of the same individuals. Moreover, each MR pulse sequence 
is affected to a different degree from this corruption and thus in the 
frame of a multicentric study with non-identical vendor-specific pulse 
sequence designs, images are sensitive to a variable degree. Although B1 
mapping can be performed based on the reciprocity principle [4] during 
scanning, it costs valuable scan time and, therefore, retrospective ap
proaches are commonly used to correct the bias field. Bias correction 
methods are broadly categorized into prospective and retrospective 
methods [5]. The former eliminates the bias field caused by the hard
ware devices by calibrating and improving the acquisition process. The 
retrospective approaches reduce the bias field arising from the proper
ties of the object in the scanner and are more general methods in their 
concept. 

The N4 bias field correction method [6] is a popular retrospective 
histogram-based method and has been very widely used for addressing 
bias field corruption as a preprocessing step in recent bibliography in 
classification [7], segmentation [8–12] and radiomic studies [13,14]. 
The N3 filter [15], which is the predecessor of the N4, has been reported 
to be the most frequently used for comparative studies [16] and out
performs other methods for addressing bias field corruption [17]. While 
the N4 generally performs well, an undesired effect (stronger than 
necessary correction) of a spot-like correction can result from a non- 
optimal N4 configuration, i.e. when converging to local either than 
global minima by setting a dense spline mesh combined with a high 
number of iterations [18]. Such pitfalls can be mitigated by appropri
ately selecting the parameters to be tailored to the needs of the specific 
problem, considering the main magnetic field strength, the number of 
coil segments and the general characteristics of the scanned object. 

Since it is not easy to establish the ground truth, most published 
works focus on simulated data where the bias field is introduced by a 
known function and is corrected [17,19]. Phantoms have also been used 
to provide an indication of the minimum expected variability in mea
surements induced by scanning conditions. However, they lack the 
ability to simulate anatomy related susceptibility among subjects and 
tissue heterogeneity. Many studies assess the reproducibility of radiomic 
features to evaluate the performance of the bias field correction algo
rithm, as well as of other preprocessing techniques [20–23]. Addition
ally, Martin et al. [21] applied the N4ITK algorithm on breast phantoms 
and evaluated the values of specific N4 parameters. They identified the 
number of 50 iterations, fitting level 5 and the use of a full mask as 
optimal configuration for the reduction of the intensity inhomogeneities 
by assessing the segmentation results and measuring the coefficient of 
variation in the mean intensity of specific regions. The impact of the 
mask's shape and the spline distance on the performance of N3 was 
assessed on brain MR images acquired on 3 T scanners in a paper pub
lished prior to the N4 introduction by Boyes et al. [24]. In this work, the 
masks that enclose more precisely the brain tissue and smaller values of 
spline distances resulted in better performance of the N3 filter by 
measuring the variation of the normalized white matter intensity and 

the variation of the normalized image difference. The effectiveness of 
using smaller spline smoothing distances in N3 filter in 3 T brain MR 
images was also confirmed by Zheng et al. [25]. Some published works 
on patient data focus on brain tissue and use the segmentation perfor
mance as a metric to evaluate the performance of the bias field correc
tion algorithm [25–28]. 

However, to the best of our knowledge, the bias field correction on 
the pelvic area has not been widely investigated. The main challenges of 
this area, compared to the brain, are the increased anatomic heteroge
neity among patients, the larger variability of MR sequences and the 
larger field of view. Furthermore, the impact of the parameters' values of 
the N4ITK filter on the bias field correction has been overlooked, as the 
majority of the studies use the default values of the filter. The present 
study aims to quantitatively and automatically evaluate the perfor
mance of the N4ITK filter for bias field correction in prostate images. 
Furthermore, the effect of the different values of each parameter on the 
performance of the N4 filter is investigated to identify specific optimal 
values for each parameter and thus improve the bias field correction in 
prostate images. The innovation of the current study is the rigorous 
exploration analysis of the performance of the N4ITK filter using various 
configurations. A novel automatic evaluation metric based on the peri
prostatic fat distribution is proposed to quantitatively assess the per
formance and identify optimal configurations of the N4ITK filter for the 
bias field correction of MR prostate images in different scanning 
conditions. 

To this end, the FWHM of the periprostatic fat distribution was 
computed to assess the impact of the N4 filter on MR prostate images 
from two different magnetic field strengths (1.5 Tesla (1.5 T) and 3 Tesla 
(3 T)) and different receive coil configurations (surface coil and com
bination of surface and endorectal coil). As a preparatory step, the 
analysis on a homogeneous corn oil phantom was performed to define 
the minimum expected FWHM value and the minimum requirements on 
the parameters' values of the N4 filter. The fat tissue has consistent 
magnetic properties across individuals and also resides in the vicinity of 
the prostatic tissue. Small values of FWHM indicate narrow fat distri
bution and thus better bias field correction. Each parameter of the N4 
filter was handled individually, while keeping the rest of the parameters 
unchanged, to have an overview of the effect of each parameter. 

2. Methods 

2.1. N4 filter 

The N4 filter is available in python by the open-source image analysis 
toolkit simpleITK as an improvement of the N3 bias correction method. 
The N4 filter provides an improved B-spline fitting routine allowing for 
the use of multiple resolution levels and an optimized iterative process 
updating constantly the residual bias field. The N4 filter is a histogram- 
based method for intensity inhomogeneity correction in images and is 
available as a python module, called N4ITK [6]. The algorithm of the N4 
bias filter is an iterative process between deconvolving the image his
togram by a Gaussian, estimating the “corrected” intensities and 
spatially smoothing the resulted bias field estimation using the B-spline 
model. This process is repeated until the coefficient of variation (CV) in 
the ratio between subsequent bias field estimations drops below the 
convergence threshold or the maximum number of iterations is reached. 
Thus, the method seeks to estimate the smooth, slowly spatially varying, 
multiplicative field that sharpens the peaks of the intensity histogram by 
using an improved B-spline fitting routine. 

The N4 bias field correction filter requires the selection of the values 
of its parameters, such as the convergence threshold, the shrink factor, 
the fitting level, the number of iterations and the use of mask. The 
convergence threshold is the stopping criterion for the iterative bias field 
estimation procedure. The shrink factor defines how much the original 
image will be downsampled before estimating the inhomogeneity field, 
leading to lower image complexity. The number of fitting levels defines 

A. Dovrou et al.                                                                                                                                                                                                                                 



Magnetic Resonance Imaging 101 (2023) 1–12

3

how many levels will be used to determine the resolution of the B-spline 
grid. At each fitting level, the previous mesh grid resolution is doubled 
and thus the spline distance gets smaller. The number of iterations de
fines the maximum number of iterations at each level of resolution. 
Regarding the use of a mask, if a binary mask is provided, the algorithm 
uses the voxels of the image that correspond to the voxels of the mask to 
estimate the bias field. If a mask is not provided, the algorithm generates 
a mask or uses the non-zero voxels of the image. More specifically, some 
implementations of the N4 filter use the simple Otsu thresholding in 
order to generate a mask. In the ITK implementation, the input image is 
log transformed and the values of the original image that are <1 are 
zeroed out in the log domain. Thus, these values are not used by the 
algorithm for the bias field estimation as only the non-zero voxels of the 
image are used. The computational complexity of the algorithm and the 
execution time are decreased by using larger values of convergence 
threshold and shrink factor and lower values of fitting level and number 
of iterations. For instance, the runtime of the N4 filter with configura
tion “mask False, threshold 0.001, shrink factor 2, fitting level 4, itera
tions 50” is approximately 25 s using a computer with an Intel(R) Core 
(TM) i7–9700 8-core 3.00GHz CPU and 16GB RAM, when applied to one 
MR prostate image with size of 16 MB. 

2.2. Phantom 

The corn oil phantom was used to assess the impact of the different 
configurations of the N4 filter on the bias field correction in homoge
neous fat mimicking material. The corn oil phantom data was acquired 
on a SonataVision Siemens scanner using a 1.5 T magnet and 3 different 
Time to Echo (TE) values, which are 60, 80 and 120 ms, resulting in 3 
scanning settings. More precisely, a commercially available 12-channel 
head matrix coil (Siemens Medical Solutions, Erlangen, Germany) was 
used for imaging the oil phantom. The lower and upper parts of the head 
matrix coil were symmetrical and housed six partially overlapping RF 
receiving elements each. This coil had an inner vertical diameter of 26 
cm and an inner horizontal diameter of 25 cm. The oil sample was placed 
in a 16×14cm container (quasi-rectangular bottom part) with 18 cm 
height, excluding the bottleneck part. The sample contained edible corn 
oil from the same brand that has T2 relaxometry constants approxi
mating adipose tissue, as shown in earlier experiments of our team 
[29,30]. The bottleneck part faced the feet direction to ensure maximum 
coil loading. Prior to imaging, the cylinder was topped up with material 
from an identical sample in order to restrict susceptibility effects from 
air. Imaging slices were centered in the middle part of the container, for 
the same reason. The container was surrounded by a thin layer of foam 
material and was further immobilized by sand cushions that covered the 
empty space between the coil and the phantom. 

The N4ITK filter was applied to the 3 produced phantom T2weighted 
(T2W) series of different TEs frequently applied in clinical practice. 
More precisely, the examined values were: i) convergence threshold 
0.01, 0.001 and 0.0001; ii) fitting level 3, 4, 5 and 6; and iii) number of 
iterations 5, 10, 25, 50 and 100. All possible combinations of these pa
rameters values were applied, resulting in 60 different settings of the N4 
filter. The initial B-spline mesh element size is 1x1x1 with a spline dis
tance of 200 mm at the first level, resulting in a 32x32x32 mesh element 
with a spline distance of 6.25 mm at the last sixth level. The effect of the 
shrink factor parameter could not be examined as the corn oil phantom 
consists of only 2 slices. The intensity histogram of the central region of 
each phantom and the corresponding FWHM were calculated. The 
central region was manually positioned by using a cubic box that covers 
the largest area of the phantom and excludes the area with the low in
tensity values that exists close to the phantom's wall. 

For each corn oil phantom, the filter's setting that resulted in the 
minimum FWHM was identified and considered as optimal setting. The 
minimum FWHM corresponds to the narrowest distribution, demon
strating more homogeneous distribution of the intensity values. This 
minimum FWHM value was then compared with the FWHM of the 

original unfiltered image to quantify the improvement in the intensity 
values after the N4 filter. 

2.3. Datasets 

Two public datasets of T2W prostate images were used for our 
analysis. The first dataset is the PROSTATE-DIAGNOSIS which consists 
of 89 prostate cancer T2W MR images acquired on a 1.5 T Philips 
Achieva scanner using combined surface and endorectal coil [31,32] 
(the data can be downloaded from [33]). 

The second dataset used was the PROSTATEx which consists of 204 
prostate T2W MR images that were acquired on two different types of 
Siemens 3 T MR scanners, the MAGNETOM Trio and Skyra (the data can 
be downloaded from [34]). The T2W images were acquired using a 
turbo spin echo sequence without an endorectal coil and had a resolu
tion around 0.5 mm in plane and a slice thickness 3.6 mm [32,35,36]. 

Two external public datasets were used to validate the findings. The 
Prostate-MRI dataset consists of 26 prostate T2W MR images acquired 
on a 3 T Philips Achieva scanner using combined phased-array surface 
and endorectal coil [32,37] (the data can be downloaded from [38]). 
This dataset was used to validate the performance of the derived optimal 
configuration in prostate MR images acquired by a combined surface 
and endorectal coil. 

The second dataset used for validation was the PI-CAI dataset [39] 
(the data can be downloaded from [40]). This dataset consists of 1500 
prostate T2W MR images acquired on Siemens Healthineers or Philips 
Medical Systems-based MR scanners at 1.5 T or 3 T using surface coils. 
More precisely, the Aera, Avanto and Espree scanners of Siemens 
Healthineers and the Achieva and Intera scanners of Philips were used at 
1.5 T magnetic field strength. The Skyra, TrioTrim and Prisma scanners 
of Siemens Healthineers and the Ingenia scanner of Philips were used at 
3 T magnetic field strength. This dataset was used to validate the per
formance of the derived optimal configuration of the N4 filter in prostate 
MR images acquired by a surface coil. Two subsets of T2W images were 
selected based on the two different magnetic field strengths, i.e., 1.5 T 
and 3 T, used for scanning in PI-CAI dataset, as the magnetic field 
strength affects the degree of the bias field corruption in images. In each 
subset, images of the same magnetic field strength were randomly 
selected in order to include heterogeneity and avoid biases. The whole 
dataset cannot be used due to the high computational complexity and 
the time-consuming process of the N4 filter. All the images of the PI-CAI 
dataset that were scanned with 1.5 T magnetic field strength were 
included in the first validation set, as there were only 59 such T2W 
prostate images. A subset of 80 random images that were scanned with 3 
T magnetic field strength was selected for the second validation set. 
Hence, the effect of the magnetic field strength on the performance of 
the N4 filter was assessed using two sets of images acquired with the 
same receive coil configuration, i.e., surface coil, but different magnetic 
field strength, i.e., 1.5 T and 3 T, to account for the severity of the bias 
field corruption induced by the magnetic field strength. 

2.4. Assessment of N4 settings in MR images 

The effect of the N4 filter's parameters on the enhancement of the MR 
image is assessed in the heterogeneous MR prostate images. The analysis 
was performed independently on each dataset. The same N4 parameters 
that were applied to the phantoms were also used to the patients' images 
with the addition of the shrink factor parameter and the use of a mask. 
The shrink factor defines how much the original image will be down
sampled, reducing the size of the image along the three dimensions. The 
mask was derived automatically by the proposed deep learning model 
[41] that extracts a cubic box around the estimated position of the whole 
prostate gland. The deep learning model requires slice-wised min-max 
normalization of the images and resizing to 256 × 256. Hence, 240 
different configurations of the N4 filter were applied to the patients' 
images by using all combinations of the following parameters: i) with 
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and without mask; ii) convergence threshold 0.01, 0.001 and 0.0001; iii) 
shrink factor 2 and 3; iv) fitting level 3, 4, 5 and 6; and v) number of 
iterations 5, 10, 25, 50 and 100. 

The workflow of the proposed pipeline is presented in Fig. 1. The 
original and the filtered images were cropped to include only the peri
prostatic region by removing the heterogeneous prostate gland and the 
area distant from the prostate. The prostate gland is located at the center 
of the image; thus, each image was divided in 3 equal parts vertically 
and the middle part was selected for subsequent analysis to automati
cally restrict the working area in the prostate region based on human 
anatomy. The mask of the prostate was applied to the image for the 
heterogeneous prostate removal. The K-means clustering algorithm was 
implemented on the image intensity values of the masked image to 
identify the periprostatic fat distribution. The number of clusters (i.e., K) 
was set equal to 2 to discriminate the low intensity values from the high 
intensity values that correspond to the fat distribution, since after 
masking the fat and muscle tissue dominated in the image working 
space. The fat tissue corresponds to high intensity values in the T2W MR 
images. The FWHM was calculated on the frequency distribution of the 
cluster with the high intensity values for the original and the filtered 
images of each patient. The voxels with intensity values belonging to the 
cluster of the high intensity values were marked with red color and were 
considered as an approximation of the fat tissue. The minimum FWHM 
achieved among the filtered images with different settings corresponds 
to the optimal filter's setting for each patient and was compared with the 
FWHM value of the original unfiltered image. The fat distribution should 
become narrower after applying the N4 bias field correction as the tissue 
intensities become more homogeneous. The narrowest fat distribution, 
and subsequently the minimum FWHM, indicates the reduction of the 
inhomogeneities that account for fat distribution broadening. Further
more, the relative difference between the FWHM of a specific setting and 
the minimum FWHM obtained from the optimal setting for each patient 
was also computed to identify the set of parameter values which are 
optimal for all the dataset. 

3. Results 

3.1. Phantom results 

In Table 1, the results for the corn oil phantom with the 3 different TE 
values relevant for T2W imaging are presented. The optimal settings of 
the N4 filter are similar for all scanning settings of the phantom. The 
fitting level was 6 in the configurations that resulted in the minimum 
FWHM in all examined cases of the phantom. The convergence threshold 
is 0.001 in the optimal configurations of the phantoms with TE equal to 
60 and 80, while it is 0.01 for the phantom with TE 120. The number of 
iterations that are used in these derived optimal configurations vary 
among the three phantoms. More specifically, the minimum FWHM 
achieved for the phantom with TE 120 is independent of the number of 
iterations, as it is achieved using either 5 or 10 or 25 or 50 or 100 it
erations. However, the values of the FWHM achieved by configurations 
using a threshold 0.01 or 0.001, a fitting level 5 or 6 and independently 

Fig. 1. Workflow of the proposed methodology for assessing the N4 parameters. The pipeline is performed to each patient and statistics are derived from the 
calculated FWHM values from all patients. 

Table 1 
Selection of the optimal filter settings for the corn oil phantoms based on the 
difference of FWHM before and after N4 filtering. For each corn oil phantom, the 
optimal settings, the FWHM of the distribution of the original image and the 
minimum FWHM of the distribution of the filtered image with the optimal filter 
configuration are depicted. In the last 2 columns, the absolute and the relative 
difference between the FWHM of the unfiltered image and the FWHM of the 
selected filtered images are presented. The (− ) sign in the relative difference 
denotes the decrease in the FWHM value after applying the N4 bias filter.  

Cornoil_TE Optimal 
Filter Settings 

FWHM 
original 

FWHM 
filtered 

Absolute 
Difference 

Relative 
Difference 

cornoil60 thres =
0.001_fit =
6_iters = 25 

41.89 3.46 38.43 − 91.74% 

cornoil80 thres =
0.001_fit =
6_iters = 10 

37.06 3.75 33.31 − 89.88% 

cornoil120 thres =
0.01_fit =
6_iters = 5, 
10, 25, 50, 
100 

27.1 3.69 23.41 − 86.38%  
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of the number of iterations, are the lowest and quite close to each other, 
as depicted in Fig. 2. The relative difference showed a decrease larger 
than 86% in the FWHM value, demonstrating the effectiveness of the N4 
filter. In the Fig. 3A, the original unfiltered image and the corresponding 
N4 filtered image with the optimal setting of phantom with TE 60 are 
depicted, as well as the estimated bias field map. The homogeneous 
material of the phantom becomes brighter after applying the N4 filter. 
The bias field map shows the variations of the bias field across the 
phantom. The difference in the histograms of the image before and after 
N4 filtering with the optimal settings, is illustrated in Fig. 3B. The dis
tribution of image intensities is significantly narrower in the N4 filtered 
than the original phantom. The width of the line between the two ver
tical green lines corresponds to the FWHM, which is marked with orange 
color. 

3.2. Prostate results 

The histogram of a prostate MR image before and after the N4 
filtering is presented in Fig. 4B to visualize the effect of the N4 bias filter 
in the image intensity values. A narrower distribution of the high in
tensity values (i.e., red colored part of histogram) as well as a bigger 
value in the frequency of the peak are observed in the N4 filtered than 
the original image. Subsequently, the image voxels that have intensity 

values in the fat distribution are presented with red color in Fig. 4C, 
where the fat is better identified in the N4 filtered than in the original 
image. 

The pipeline was initially performed to the patients from the 
PROSTATE-DIAGNOSIS dataset, which contains MR images scanned at 
1.5 T field with combined surface and endorectal coil. The combination 
of the use of threshold 0.001, shrink factor 2, fitting level 6, iterations 
100 and without mask was identified as optimal for the 52% of the 
patients, which was the highest percentage (Supporting Table S1). 
However, this proportion is not adequate large and thus this setting 
could not be considered representative, before being examined further, 
for all the patients of this dataset. 

Hence, the relative difference between the minimum FWHM of their 
optimal setting and the FWHM achieved with the setting “mask False, 
threshold 0.001, shrink factor 2, fitting level 6, iterations 100” was 
calculated for the rest 48% of the patients and presented in Fig. 5. We 
further examined the difference between the FWHM of the optimal 
setting of each patient and the FWHM achieved with the second most 
frequent setting as well as with other settings that use parameter's values 
that lead to lower computational complexity and execution time of N4 
bias filter, such as smaller number of iterations, smaller fitting level and 
larger shrink factor (Fig. 5). The aforementioned setting with the highest 
frequency led to optimal performance for the rest 48% of the patients, as 

Fig. 2. Scatterplots showing the values of the FWHM achieved by various configurations of the N4 filter that were applied in the corn oil phantoms with the three 
different TE values. In the first row, from left to right, the scatterplots for the corn oil phantom with TE equal to 60 and 80, respectively, are depicted. In the second 
row, the scatterplot for the corn oil phantom with TE = 120 is illustrated. 
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the FWHM value achieved with this setting was close to the minimum 
FWHM, having the 75th percentile lower than 20% (Fig. 5B). The same 
setting with the only difference in the threshold value, i.e., “mask False, 
threshold 0.0001, shrink factor 2, fitting level 6, iterations 100”, resul
ted also in small differences in the FWHM value. The FWHM value ob
tained from these two settings was <20% larger than the minimum 
FWHM in 75% of the patients. 

The analysis was also performed to the patients from the PROSTATEx 
dataset to assess and identify the optimal N4 filter setting for MR images 
scanned at 3 T with surface coil. The minimum FWHM in 16% of the 
patients was achieved using convergence threshold 0.001, shrink factor 
2, fitting level 5, number of iterations 25 and without mask (Supporting 
Table S2). However, this percentage is quite small, indicating that many 
different configurations were identified as optimum in different patients 
and thus further investigation was needed. 

Hence, the aforementioned exploratory analysis in the values of 
FWHM obtained from various settings was also performed in the pa
tients of the 3 T PROSTATEx dataset (Fig. 6). Two settings gave a FWHM 
close to the minimum value. The smaller values of relative difference are 
achieved by the settings: mask False, threshold 0.001 or 0.0001, shrink 
factor 2, fitting level 5, iterations 25. The difference in their values was 
<20% for the largest proportion of patients (Fig. 6A). 

In order to validate the efficiency of the derived optimal configura
tions of N4 filter, the exploratory analysis was performed in two external 
datasets with scanning conditions similar to the already examined 
datasets. More specifically, the Prostate-MRI dataset was used to 
investigate whether the derived optimal configuration for images 

scanned at 1.5 T with combined surface and endorectal coil remains 
optimal for images scanned at 3 T with the same receive coil configu
ration. The results from the exploratory analysis in the Prostate-MRI 
dataset showed that the derived optimal configuration “mask False, 
threshold 0.001, shrink factor 2, fitting level 6, iterations 100” was also 
optimal for images scanned at higher magnetic field strength of 3 T with 
combined surface and endorectal coil (Supporting Fig. S1). In this 
configuration, the median value of the distribution of the relative dif
ference values in FWHM was lower than 20%. Hence, there is one 
configuration that is optimal for images scanned at either 1.5 T or 3 T 
with this receive coil setting. 

Two subsets of PI-CAI dataset were used to assess the performance of 
the optimal N4 configurations that were derived for images of the 
PROSTATEx dataset scanned at 3 T with surface coil. These two vali
dation subsets contained images scanned at 1.5 T and 3 T with the same 
receive coil configuration. In the subset of the 1.5 T MR images scanned 
with surface coil, the optimal configurations “mask False, threshold 
0.001 or 0.0001, shrink factor 2, fitting level 5, iterations 25” demon
strated good performance, having the 75th percentile close to the rela
tive difference value of 20% (Supporting Fig. S2). However, three other 
configurations showed even better performance achieving smaller 
values of relative difference than the derived optimal configuration of 
PROSTATEx dataset (Supporting Fig. S2). More specifically, the same 
configuration with the difference of using a number of iterations of 10 
and/or fitting level 6 resulted in even better performance of N4 filter. In 
the subset of the 3 T MR images scanned with surface coil, the derived 
optimal configurations “mask False, threshold 0.001 or 0.0001, shrink 

Fig. 3. A. Original image of corn oil phantom with TE 60, N4 filtered image after bias field correction and the corresponding bias field map. B. Histograms of the corn 
oil phantom with TE 60, before and after N4 filtering. 
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factor 2, fitting level 5, iterations 25” from PROSTATEx dataset were 
also identified as optimum in this subset of PI-CAI dataset (Supporting 
Fig. S3). Hence, the same configurations were identified as optimal in 
images scanned at 3 T magnetic field strength with surface coil, origi
nating either from the PROSTATEx or the PI-CAI dataset. 

4. Discussion 

Prostatic lesion evaluation is either based on multi-parametric MR 
imaging, comprising T2W, Diffusion-weighted imaging (DWI) and Dy
namic Contrast Enhanced (DCE) or can be reduced to a bi-parametric 
examination comprising only T2W and DWI, as the most indicative ac
quisitions for disease characterization. Our study focused on T2W im
ages among the T2 as Echo Planar Imaging (EPI)-based DWI sequences 
are almost always acquired with suppressed fat signal because of the 
related chemical shift artifact that severely degrades image diagnostic 
quality. 

Periprostatic fat was chosen as the reference tissue to provide the 
metrics for evaluation of each parameter set, because fat tissue sur
rounds abdominal organs and it can be found around the target prostate 
gland. Furthermore, periprostatic fat is a homogeneous tissue expected 
to have a similar imaging appearance among patients. Lastly, it yields 
high signal intensity in non-fat suppressed images and thus even small 
relative changes can have a measurable difference among different tests 
and can be easily perceived. 

The examined MRI prostate images were acquired from scanners 
with different magnetic field strengths, 1.5 T and 3 T, and different 
receive coil configurations, surface coil and combined surface and 
endorectal coil, to investigate whether the different fields and coils lead 
to different or same optimal configuration of the N4 filter. A decrease 

larger or equal than 50% in the FWHM value before and after filtering 
with the optimal setting is observed for >80% of the patients in each of 
the examined datasets, indicating substantial improvement in the peri
prostatic fat distribution (Supporting Table S3-S7). More precisely, the 
proportion of the patients was approximately 92%, 89%, 81%, 85% and 
88% at PROSTATE-DIAGNOSIS, PROSTATEx, Prostate-MRI, 1.5 T PI- 
CAI and 3 T PI-CAI datasets, respectively. 

The analysis in datasets that contain images scanned at either 1.5 T 
or 3 T but with the same receive coil configuration showed that the 
optimal configuration is the same. However, the analysis in datasets 
with different receive coil configuration resulted in a different optimal 
configuration for the N4 filter. The effect of the different magnetic field 
strength in images scanned with the same receive coil configuration is 
observed in the FWHM values. For instance, the 75th percentile of the 
relative difference distribution achieved by the optimal setting was 
lower in the 1.5 T than in the 3 T images of the PI-CAI dataset. Lower 
magnetic field strengths, such as 1.5 T compared to 3 T, results in lower 
frequency modulation of the corrupting bias field. Hence, MR images 
scanned with 1.5 T is less corrupted than with 3 T. Thus, the difference 
in the FWHM value before and after bias field correction is smaller in 
most N4 configurations in images scanned with the same receive coil 
configuration at 1.5 T than 3 T. However, the optimal configuration is 
the same for these images scanned at 1.5 T or 3 T. Hence, the effect of the 
receive coil configuration prevails over the magnetic field strength in the 
extraction of the optimal N4 filter's configuration for the bias field 
correction in MR prostate images. 

The optimal settings, which were identified for the corn oil phantom, 
indicated the minimum requirements for the values of the N4 parame
ters, as the phantom is a homogeneous material free from anatomy 
induced challenges. The inherently heterogeneous MR prostate images 

Fig. 4. In the first row, the masked image (A), the corresponding histogram (B) and the voxels of the fat distribution (C) of the original unfiltered image are shown. In 
the second row, the corresponding images of the N4 filtered image are presented. 
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Fig. 5. A. Boxplots showing the relative difference between the FWHM of the optimal setting and the FWHM of various specific settings with fixed fitting level 5. B. 
Boxplots showing the relative difference between the FWHM of the optimal setting and the FWHM of various specific settings with fixed fitting level 6. These results 
are obtained from the patients of PROSTATE-DIAGNOSIS dataset. The relative difference is calculated for the patients whose optimal setting is not the specific setting 
defined in the legend. 
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Fig. 6. A. Boxplots showing the relative difference between the FWHM of the optimal setting and the FWHM of various specific settings with fixed fitting level 5. B. 
Boxplots showing the relative difference between the FWHM of the optimal setting and the FWHM of various specific settings with fixed fitting level 6. These results 
are obtained from the patients of PROSTATEx dataset. The relative difference is calculated for the patients whose optimal setting is not the specific setting defined in 
the legend. 
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from two different receive coil configurations and both 1.5 T and 3 T 
magnet resulted in more “strict” values in the N4 parameters to achieve 
the minimum FWHM, as intuitively expected. 

4.1. Convergence threshold 

The effect of the convergence threshold was examined to identify the 
optimal value that should be used for the bias field correction of prostate 
images. In the phantom, there is no need to use a strict value for the 
convergence threshold, since the minimum FWHM is achieved using the 
largest among the examined values of threshold. On the other hand, a 
smaller threshold value 0.001 was considered as optimal from the 
analysis in the patients from all datasets. However, the exploratory 
analysis for the comparison of the FWHM achieved by the optimal and 
some other settings (Figs. 5 and 6) demonstrated that only a smaller 
threshold 0.0001 can also be used, preserving the values of the rest 
parameters stable in each case, which increases the computational 
complexity and the required execution time of the N4ITK filter. 

4.2. Number of iterations 

The number of iterations is also crucial for the performance and the 
execution time of the N4 bias filter. The algorithm is an iterative process, 
which makes it computationally expensive. In the phantom, the mini
mum FWHM can be achieved using a small number of iterations, such as 
5. More precisely, the minimum FWHM is achieved independently of the 
number of iterations, showing that increasing the number of iterations, 
and thus the computational complexity, do not improve the result of the 
N4 filter. However, a large number of iterations, such as 100, is required 
when the N4 filter is applied in the heterogeneous MR prostate images 
scanned with a combined surface and endorectal coil. The use of a 
smaller number of iterations, which lead to faster execution of the N4 
filter, resulted in larger values of difference in the FWHM value. How
ever, 25 iterations are adequate for the bias field correction in MR im
ages scanned with a surface coil. In these images, the use of a larger 
number of iterations has also good results, but increases the computa
tional complexity without improving the performance of the N4 filter. 
However, some configurations with 10 iterations have also good results 
only for images scanned at 1.5 T with surface coil. 

4.3. Shrink factor 

The minimum FWHM was achieved using the shrink factor of 2 and 
thus this value is recommended. The use of shrink factor 3 resulted in 
substantial increase in the FWHM value in all the examined MR images. 
Hence, the use of a shrink factor of 2 is strongly recommended. 

4.4. Fitting level 

The number of the parameter fitting level, which is an advancement 
of the N4 compared to N3, defines the number of the resolution levels 
that the N4 filter uses to calculate the bias field, allowing for multi
resolution approximation. The scale of the inhomogeneity depends on 
the wavelength of the radiofrequency field at the field strength of the 
scanner. For 3 T scanners the frequency is 128 MHz, which in free space 
corresponds to a wavelength of about 2 m and is doubled for 1.5 T 
scanners. However, inside the human body these dimensions for the 
dielectric effects are reduced to 20 cm for 3 T and double for 1.5 T. 
Hence, it becomes obvious that the spline density requirements are more 
demanding for higher field strengths, as well as that the bias field cor
ruption is obvious in higher field, while it may remain subtle or un
perceived for 1.5 T field. However, another factor that affects the bias 
field corruption is the use of an endorectal coil. This coil is used to in
crease the signal-to-noise ratio (SNR), but it simultaneously increases 
the intensity near the coil, resulting in increased intensity in
homogeneity in the image [42]. In the phantom analysis, the use of a 

fitting level 5 or 6 resulted in smaller values of FWHM, setting the lower 
boundaries for efficient bias field correction. In the patients analyses 
with images acquired by a surface coil, the fitting level 5 is optimum 
resulting to the minimum FWHM. The configurations with a fitting level 
6 and small number of iterations (10 or 25) resulted in good perfor
mance, but worse than the optimal configuration with fitting level 5. In 
the patient analysis with images scanned with a combined surface and 
endorectal coil, the fitting level 6 resulted in the minimum FWHM. In 
these datasets, the fitting level 5 leads to substantially larger values of 
FWHM at images from both 1.5 T and 3 T and thus it is not recom
mended when an endorectal coil is used during image acquisition. The 
use of an endorectal coil and higher magnetic field strengths require the 
use of smaller values of spline distance in N4ITK due to the increased 
bias field corruption. The effect of the endorectal coil prevailed over the 
magnetic field strength and thus a fitting level 6, which results in a 
smaller spline distance than a fitting level 5, is required when an 
endorectal coil is used independently of the magnetic field strength. 

The FWHM of the periprostatic fat distribution is proposed as a novel 
quantitative metric to evaluate the performance of the algorithm. The 
smaller the FWHM value, the better the performance of the N4 algo
rithm, implying a more homogeneous representation for the peripro
static fat tissue. This work presents a comprehensive overview of the 
effect of the parameters of the well-established N4ITK filter using an 
automatic quantitative metric. The exploratory analysis was performed 
on MR prostate images acquired from both 1.5 T and 3 T magnetic field 
strength and different receive coil configurations (surface coil and 
combination of surface and endorectal coil) to account for the variability 
induced by those factors highly relevant to the bias field corruption. In 
addition to those factors, each patient's specific anatomical character
istics contribute differently to the final intensity inhomogeneity of the 
MR image. Thus, the use of a large number of patients and validation 
datasets also contributed to form a valid set of datasets that embraces the 
expected variability of bias field manifestation in terms of its severity 
and location in the image. To the best of our knowledge, this is the first 
study that assesses the impact of the parameters' values on the perfor
mance of the N4 filter investigating a large number of different settings 
and proposes specific optimal configurations of the state-of-the-art 
N4ITK filter for the bias field correction in the heterogeneous MR 
prostate images. 

However, this study could be more generalizable if a broader image 
cohort was used, imaged with different sequence types, contrasts, 
acquisition parameters and receive coil schemes. For instance, provided 
that fat suppression techniques are avoided, MR abdominal images from 
gradient echo T1 acquisitions as in a DCE acquisition could be included 
in future work. Moreover, the experimental set up with the phantom can 
be extended to examine the effect of other coil types (e.g., phased array 
coils), sequences (e.g., gradient echo) or contrasts (e.g., T1 or proton 
density) on a homogeneous sample. A major limitation of the N4 filter is 
that it is computationally expensive, resulting in large execution times. 
Thus, we constrained the exploratory values of the number of iterations 
and fitting level to the maximum values of 100 and 6, respectively, to 
explore possible N4 configurations that are feasible to be used in the 
research studies regarding the time complexity. Moreover, the set of 
values for each parameter was selected by using the default values the 
authors of the N4ITK filter suggest and scaling them up and down. 
Furthermore, addressing field inhomogeneities is a key element for 
addressing lack of reproducibility in radiomics studies. Hence, the 
impact of the N4 method with the derived optimal setting on the 
robustness and stability of radiomic analyses will be examined in future 
work. Moreover, the N4-corrected images will be used to develop Arti
ficial Intelligence (AI) tools to non-invasively detect prostate cancer and 
predict the aggressiveness of the cancer. Machine learning models using 
the radiomic features extracted from the N4-filtered images and deep 
learning models using as input the N4-filtered images will be developed. 
The efficiency of the N4 filter will be investigated on assessing whether 
the application of the N4 filter enhances the performance of the AI 
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models instead of using raw data. 

5. Conclusion 

In this study, the performance of the state-of-the-art, for bias field 
correction, N4ITK filter with various configurations was quantitatively 
evaluated to identify the optimal set of parameters' values and thus 
improve the bias field correction in MR prostate images. Τhe FWHM of 
the periprostatic fat distribution was automatically calculated to quan
tify the impact of the N4 filter on the correction of the intensity in
homogeneities. The periprostatic fat tissue was used as reference tissue 
to evaluate the different configurations of the N4 filter due to its bene
ficial position around the prostate and its magnetic properties. A large 
number of possible different configurations of N4 filter was applied to 
1.5 T and 3 T MRI prostate images acquired by a surface coil only or a 
combination of surface and endorectal coil to identify the setting with 
the best performance. The exploratory analysis indicated that the 
optimal values of the parameters of the N4ITK filter for bias field 
correction in MRI prostate images acquired by a surface coil are 
convergence threshold 0.001, shrink factor 2, fitting level 5, number of 
iterations 25 and without mask (i.e. using the default mask). In MR 
images scanned by a combination of surface and endorectal coil, the 
optimal configuration is convergence threshold 0.001, shrink factor 2, 
fitting level 6, number of iterations 100 and without mask (i.e. using the 
default mask), independently of the magnetic field strength. The same 
configurations with the only difference of using a convergence threshold 
0.0001 while keeping the rest of the parameters unchanged, could also 
be used for the bias field correction of MR prostate images; however, it 
leads to higher computational complexity and execution time of the 
filter. The N4-corrected images using the derived optimal configurations 
will be used to assess the reproducibility of the radiomic features and 
develop AI tools for the detection and the prediction of the prostate 
cancer aggressiveness in a future study. 

Although the analysis focused on fat distribution, the target organ for 
reliable quantification is the prostate gland, being an organ very 
commonly affected by oncologic and non-oncologic pathologies 
requiring accurate evidence-based classification. The use of the pro
posed methodology can be translated to any other abdominal organ 
surrounded by visceral fat. Furthermore, similarly to the prostate, the 
breast region presents similar challenges and thus the benefit of the N4 
filter can be examined in such a challenging imaging field containing fat- 
air interfaces. 
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