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Value of handcrafted and deep 
radiomic features towards training 
robust machine learning classifiers 
for prediction of prostate cancer 
disease aggressiveness
Ana Rodrigues 1,2*, Nuno Rodrigues 1,3, João Santinha 1,4, Maria V. Lisitskaya 5, Aycan Uysal 6, 
Celso Matos 1, Inês Domingues 7,8 & Nickolas Papanikolaou 1

There is a growing piece of evidence that artificial intelligence may be helpful in the entire prostate 
cancer disease continuum. However, building machine learning algorithms robust to inter- and intra-
radiologist segmentation variability is still a challenge. With this goal in mind, several model training 
approaches were compared: removing unstable features according to the intraclass correlation 
coefficient (ICC); training independently with features extracted from each radiologist’s mask; 
training with the feature average between both radiologists; extracting radiomic features from the 
intersection or union of masks; and creating a heterogeneous dataset by randomly selecting one 
of the radiologists’ masks for each patient. The classifier trained with this last resampled dataset 
presented with the lowest generalization error, suggesting that training with heterogeneous data 
leads to the development of the most robust classifiers. On the contrary, removing features with low 
ICC resulted in the highest generalization error. The selected radiomics dataset, with the randomly 
chosen radiologists, was concatenated with deep features extracted from neural networks trained to 
segment the whole prostate. This new hybrid dataset was then used to train a classifier. The results 
revealed that, even though the hybrid classifier was less overfitted than the one trained with deep 
features, it still was unable to outperform the radiomics model.

In 2020, prostate cancer was the second most frequent cancer in men worldwide and ranked 5th in terms of 
mortality, being the leading cause of death in 48 out of 185 countries as analysed by Sung et al.1. Prostate cancer 
diagnosis procedure relies on unspecific measures such as PSA (prostate-specific antigen) levels and DRE (digital 
rectal examination), followed by biopsy2, where disease aggressiveness assessment is based on the Gleason Score. 
This biomarker is used to define the clinical significance of lesions, according to which treatment decisions are 
made. Thus, an accurate determination of clinical significance is essential for ascertaining the most appropriate 
treatment options and ensuring the best clinical outcome.

Recent developments in Artificial Intelligence anticipate much needed improvements in the detection, diag-
nosis, screening, and staging of prostate cancer3. One area of particular interest is radiomics, which allows for 
quantitative analysis of medical images, contrary to the qualitative analysis performed by experts in the field 
thus far. Radiomics is defined as the transformation of medical images into high-dimensional mineable data in 
the form of extracted quantitative features4. Studies using radiomics have shown potential since the features’ 
quantitative nature eliminates some of the inherent subjectiveness of medical image interpretation. Moreover, 
radiomics is able to turn radiological images into tabular data, which machine learning algorithms can later 
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analyse5. The latter are designed to detect patterns in the data and are able to find useful diagnostic and prog-
nostic biomarkers that would not be seen by the naked eye of an expert radiologist. The use of radiomic features 
extracted from bpMRI (bi-parametric Magnetic Resonance Imaging) exams to predict prostate cancer disease 
aggressiveness can be found in the literature6–14.

Radiomics, however, has several shortcomings. A major limitation is the tight link between the computed 
radiomic features and the volume of interest (VOI) from where they have been extracted. Tissue or lesion 
segmentation is performed either manually, when a radiologist outlines the boundary of the VOI in the image, 
automatically, for example by a deep learning algorithm trained to segment a certain VOI, or semi-automatically, 
where the mask is drawn in an automated fashion and later verified and corrected by a radiologist. When manu-
ally traced, the segmentation masks suffer from inter- and intra-reader variability15. These slight real-world dif-
ferences in human-defined segmentation margins may in principle affect the the distribution of the calculated 
radiomic features, which subsequently affect the algorithms trained with them16. Building machine learning 
algorithms that are robust to this real-world heterogeneity is essential to a future safe application of AI methods 
in the clinical setting.

Parallel to the growing interest in radiomic features, deep Neural Networks have emerged as a promising 
technique for prostate cancer detection and segmentation of anatomic zones or tumorous lesions17. However, it 
has been shown that deep learning models tend to overfit when attempting to solve prostate cancer classification 
problems, not generalizing to out of distribution data18. Despite the large number of studies published, very few 
compare the performance of handcrafted radiomic features and deep features on the same data and objective18,19.

Regarding the classification of prostate cancer disease aggressiveness, we attempted to answer two research 
questions. Firstly, we compared different approaches and obtained insights into how to produce classifiers that 
are robust to differences in segmentation margins. And secondly, we have not only compared the performance of 
radiomic features and deep features for the classification of prostate cancer aggressiveness but also assessed the 
performance of models trained with hybrid datasets incorporating both handcrafted radiomic and deep features.

Research questions
In this section, we will describe the research questions addressed in this study.

Research question I (RQ I).  Which is the best approach to train robust classifiers to minor differences in 
segmentation margins derived from two radiologists?

An example of the common differences in segmentation margins can be found in Fig. 1. To answer RQ I, we 
compared different approaches at training: 

1st approach	� (stableRad1) Perform a feature stability analysis and train only with stable features.
2nd approach	� (Rad1) Train with features extracted from masks drawn by radiologist 1 (rad1).
3rd approach	� (Rad2) Train with features extracted from masks drawn by radiologist 2 (rad2).
4th approach	� (avgRad) Train with the feature average between both radiologists.
5th approach	� (intersectionRad) Train with features extracted from the intersection of the two masks.
6th approach	� (unionRad) Train with features extracted from the union of the two masks.
7th approach	� (resampledRad) Train with a randomly resampled dataset where for some patients the extrac-

tion was performed from the mask drawn by rad1 and for others the extraction was performed 
from the mask drawn by rad2.

Figure 1.   An example of the evident segmentation variability in the masks drawn by radiologist 1, (a), and 
radiologist 2, (b), on patient Prostatex0000.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6206  | https://doi.org/10.1038/s41598-023-33339-0

www.nature.com/scientificreports/

The dataset that resulted in the most robust classifier was selected for further analysis (research question II).

Research question II.  Can deep features significantly improve the performance of machine learning classifiers 
trained with handcrafted radiomic features?

To answer research question II, three approaches were compared for model training. These included a hand-
crafted radiomics dataset, a dataset with “deep” features, and a hybrid dataset with both.

Methods
Data description.  Our dataset consisted of T2W, DW, and ADC data from the SPIE-AAPM-NCI PROSTA-
TEx challenge20–22. The MRI exams were acquired at the Prostate MR Reference Center—Radboud University 
Medical Centre in the Netherlands. Due to the public nature of the data, ethics committee approval and patient 
consent were waived for this study. The dataset is composed of 181 patients. Due to complications with some 
segmentation files, we did not utilize the full extent of the PROSTATEx dataset. The full list of excluded patients 
can be found in Supplementary Material (SM 1). The approximate location of the centroid of each lesion was 
provided in DICOM coordinates. Cancer was considered significant when the biopsy Gleason score was 7 or 
higher. The lesions were labelled with “TRUE” and “FALSE” for the presence of clinically significant cancer, with 
a distribution of 67 clinically significant lesions (TRUE) and 214 clinically non-significant lesions (FALSE). A 
gland was considered to have clinically significant cancer if at least one of its lesions is clinically significant for 
prostate cancer. This resulted in a label distribution of 122 clinically insignificant glands and 59 clinically signifi-
cant glands, giving a total of 181 patients.

Methods specific to RQ1.  Segmentation.  Manual segmentations of the whole prostate gland were per-
formed independently by two radiologists (M.L., 10 years of experience, and A.U., radiology resident) on T2W 
and DWI high b-value images separately.

Radiomic features extraction.  Bias field correction was performed on T2W images using the N4 Bias Field Cor-
rection algorithm23 and the Python package Simple ITK (version 2.0.0)24. First, each image’s x-, y- and z-spacing 
was checked for discrepancies. Since x- and y-spacings differed from z-spacing, feature extraction was later per-
formed in 2D. Additionally, T2W images’ x- and y-spacings differed within and between patients, so these were 
resampled to the highest value of 0.5. Non-quantitative images’ (T2W and DWI) intensities were normalized. 
The bin width was selected to produce discritized images with between 30 and 130 bins. This resulted in a bin 
width of 20 for T2W images, 5 for DWI, and 70 for ADC maps.

Radiomic features were extracted from the whole gland segmentation using the Pyradiomics package (version 
3.0)25 in Python (version 3.7.9)26. All the pre-processing steps mentioned before were performed as parameters 
of the extractor function, except for the bias field correction, which was performed prior to the extraction. All 
image filters and feature classes were enabled, resulting in a total of 3111 features extracted, 1037 from each MRI 
modality (T2W, high b-value DWI and ADC). In the feature extraction of the ADC map, the mask drawn on the 
DWI was used. The mathematical expressions and semantic meanings of the features extracted can be found at 
https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/.

Spatial stability of radiomic features.  For approach 1, spatial stability was assessed by comparing the features 
extracted from the VOIs created by each radiologist. This analysis was conducted with a two-way, single rater, 
absolute agreement Intraclass correlation coefficient (ICC) formulation (ICC 2.1)27. Features with ICC 95% con-
fidence interval lower limit over 0.75 were considered to be robust to segmentation and were kept for further 
analysis.

Methods specific to RQ2.  On top of the radiomic features utilized in RQ1, to answer RQ2, we also 
extracted deep features.

Deep features extraction.  Deep features were extracted from segmentation models trained to segment the whole 
gland. To train the network, the volumes were cropped on both the X and Y axis, and zero padded on the Z axis. 
A comprehensive description of the training as well as network performance can be found in previous work28. 
The ground truth masks used for the gland were obtained as described previously, while both the peripheral and 
transitional zone masks were the publicly available ones from the SPIE-AAPM-NCI PROSTATEx challenge.

The models used to perform the segmentations were all Encoder-Decoder Unet variations, namely: Unet29; 
Unet++30; Attention Unet (AUnet)31; Dense Attention Unet (DUnet); Dense-2 Unet (D2Unet)32; Dense-2 Atten-
tion Unet (D2AUnet); Recurrent Residual Unet (R2Unet)33; Recurrent Residual Attention Unet (R2AUnet).

Taking these segmentation models, we removed the decoder part of the network and devised three different 
strategies to extract the deep features from the bottleneck (Fig.  2). The first approach consisted of averaging 
all the feature maps into a single one before flattening it, producing 200 features. For the second and third 
approaches, we removed all spatial dependencies of the feature maps by performing pooling operations, one 
version with Max-pooling and another Average-pooling, per feature map. This reducing each feature map to 
a single value, which were then concatenated, producing sets of 1024 features. The 8 different neural networks 
described were combined with the 3 different strategies for calculating the features, resulting in 24 deep datasets. 
In addition, the best radiomics dataset, selected in RQ I, was combined with the different whole gland deep 
features datasets to produce another 24 hybrid datasets.

https://pyradiomics.readthedocs.io/en/latest/
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Train/test split.  The train/test split was performed at a patient level with the Python scikit-learn package 
(version 0.23.2)34–36. The hold-out test set consisted of 33% randomly selected patients and the split was stratified 
so that both train and test sets have the same proportion of True labels. The patient list of the original split was 
used to split the remaining datasets, ensuring that the patients belonging to the hold-out test set did not differ 
between datasets and avoiding data leakage. The hold-out test set comprised of 58 patients.

Dataset pre‑processing.  All the steps described in this section were performed on the train set.
Features with zero or near-zero variance were identified and excluded with the nearZeroVar method of the 

R caret package (version 6.086)37.
Feature correlation was then assessed. Feature pairs were considered correlated if their Spearman correla-

tion was higher than 0.75. Out of the two, the feature with the highest average correlation across all features was 
eliminated.

Feature values were scaled to have 0 mean and standard deviation equal to 1.
To cope with the imbalanced nature of the data, the SMOTE (synthetic minority oversampling technique)38 

algorithm was applied.
Finally, due to the high-dimensional feature space, we also explored a computationally “light” tree-based fea-

ture selection algorithm, where features with the highest tree importance were selected. The number of features 
selected was a hyperparameter optimized during model training.

Model development.  The scikit-learn implementation of two machine learning algorithms was used: Ran-
dom Forest Classifier39 and Logistic Regression. These were chosen since they are on opposite ends of the bias-
variance spectrum. Hyperparameter tuning was performed for each algorithm with an exhaustive grid search 
and each parameter combination was evaluated through cross-validation. The classifiers’ probabilities were cali-
brated (method = isotonic) using the Python scikit-learn package (version 0.23.2)34–36.

Model evaluation.  The probabilistic decision threshold for binary classification was chosen to achieve at 
least 90% sensitivity on the training set. For that reason, the area under the receiver operating characteristics 
curve (AUC) was used for hyperparameter tuning and pipeline selection since it is a metric invariable to the 
decision threshold. The pipelines were validated internally through 3-fold cross-validation, and the one with 
the highest cross-validation AUC was selected for each approach. For RQ I, the selected classifiers were applied 
to three hold-out test sets: each independent radiologist’s test set (approaches 2 and 3) and the resampled radi-
ologists’ test set (approach 7). These hold-out test sets were chosen for being the ones that resemble real-world 
scenarios the most. For RQ II, the classifiers were applied to the hold-out test set respective to the same dataset 
as used for training. The overall pipeline followed in this study can be found in Fig. 3.

Statistical comparison of classifiers.  The classifiers selected for each approach were compared with 
McNemar’s test implemented by the mlextend python package (version 0.21.0)40. P-values were corrected for 
multiple comparisons with the FDR method and statistical significance was considered at α = 0.05 for all tests.
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Figure 2.   Representation of the deep feature extraction procedure from the segmentation models. These 
features are extracted from the bottleneck of the encoder-decoder model following three different strategies.
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SHAP importance of predictive variables.  A SHapley Additive exPlanations (SHAP) analysis41 was 
used to identify the most relevant variables for the prediction. This was completed using the Python package 
shap (version 0.38.1).

Results
Research question I.  Hold‑out test set performance.  For five of the approaches, the selected pipeline in-
cluded Random Forest, while for the remaining approaches, 1 and 5, it performed better whilst using Logistic 
Regression. The training hyperparameters, the decision threshold, and the number of features can be found in 
the supplementary material (SM 2).

Applying the selected classifiers to rad1, rad2, and resampledRad hold-out test sets, Table 1a–c), respectively, 
we can see that the resampledRad dataset consistently produces the highest performing classifiers, following 
approach 7. On the contrary, the lowest-performing models were obtained by approach 1, which consisted of 
training classifiers only with features robust to segmentation differences.

Statistical comparison of classifiers.  The p-value results for the statistical comparison of the classifiers with FDR 
correction can be found in Table 2. As expected, there is a statistically significant difference between the higher 
performing classifiers, rad1, rad2, and resampledRad (approaches 2, 3, and 7, respectively), and the lowest per-
forming classifiers stableRad1 and intersectionRad (approaches 1 and 6, respectively). Furthermore, the differ-
ences between training classifiers with rad1, rad2, or resampledRad data proved statistically non-significant. 
Therefore, the resampledRad dataset was selected for further analysis.

Figure 4 shows ROC curve for the resampledRad classifier. The decision threshold chosen for this classifier 
was 0.32, which ensured a minimum 0.9 sensitivity on the train set. Analysing Fig. 4, it is possible to conclude 
that the decision threshold would need to be lowered to at least 0.25 to reach a sensitivity of 0.9 across the test 
sets, providing evidence of overfitting.

Predictive variables selected.  The resampledRad classifier utilizes 40 radiomic features, the majority of which 
was calculated from the ADC map (24/40 features). The T2W and DWI images contributed with 7 and 9 fea-
tures, respectively. As far as image filters are concerned, gradient was the most substantial contributor with 12 
features, this was followed by the original image with 6 features, and the remaining filters contributed between 1 
and 4 features, with the exception of the square filter, which was the only one not represented. Regarding types 
of radiomic features, the most represented group is texture, with 28 features included. First-order and shape 
contributed with 9 and 3 features, respectively.

SHAP importance analysis.  Regarding each feature’s contribution to model output, a shap analysis was per-
formed, attempting to explain the predictions of each hold-out test set. The five features with the highest impact 
were consistent on the three hold-out test sets. Thus, as an example, the shap analysis for the predictions of the 
resampledRad classifier on the resampledRad test set is displayed in Fig. 5. The feature DWI_gradient_glcm_
lmc1 is inversely associated with a clinically significant output, while the remaining four features are directly 
associated with it.

Figure 3.   Overall model development pipeline followed in this study.
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Research question II.  The deep and hybrid classifiers with the highest performance were selected. The deep 
features dataset that performed the highest was extracted from a Dense-2 Attention Unet and calculated through 
the max pooling approach, while the selected hybrid dataset was composed of resampledRad radiomic features 
and deep features extracted from a Dense-2 Unet and calculated through max pooling.

Comparing the classifiers trained with radiomic or deep features (Table 3), we can see that the classifier 
trained with deep features shows a higher cross-validation performance, however, the larger difference between 
CV and hold-out test performance indicates a larger degree of overfitting. These results are concordant with what 
is currently found in the literature18. Looking at the classifier trained with the hybrid dataset, we can see that it 
achieves a similar cross-validation performance to the other models. However, even though it is less overfitted, 
the classifier with the lowest degree of overfitting is still the radiomics one.

Table 1.   Classification performance on three different hold-out test sets. One from each radiologist (subtables 
a and b) and one with resampled radiologists (subtable c). The highest value per column is highlighted in bold.

(a)

Training data

rad1 Hold-out test-set performance

F2 CohensKappa AUC​ Sensitivity Specificity

stableRad1 0.6696 0.2042 0.7625 0.7895 0.4615

Rad1 0.7353 0.4636 0.7827 0.7895 0.7179

Rad2 0.7143 0.5110 0.8219 0.7368 0.7949

avgRad 0.6881 0.2758 0.7584 0.7895 0.5385

unionRad 0.7522 0.3073 0.7814 0.8947 0.4872

intersectionRad 0.6364 0.1863 0.6802 0.7368 0.4872

resampledRad 0.7767 0.5055 0.8198 0.8421 0.7179

(b)

Training data

rad2 Hold-out test-set performance

F2 CohensKappa AUC​ Sensitivity Specificity

stableRad1 0.6757 0.2275 0.7605 0.7895 0.4872

Rad1 0.7353 0.4636 0.7794 0.7895 0.7179

Rad2 0.6250 0.4208 0.8151 0.6316 0.7949

avgRad 0.7075 0.3525 0.7901 0.7895 0.6154

unionRad 0.7522 0.3073 0.7659 0.8947 0.4872

intersectionRad 0.6522 0.1371 0.6356 0.7895 0.3846

resampledRad 0.7843 0.5351 0.8381 0.8421 0.7436

(c)

Training data

resampledRad Hold-out test-set performance

F2 CohensKappa AUC​ Sensitivity Specificity

stableRad1 0.6696 0.2042 0.7537 0.7895 0.4615

Rad1 0.7353 0.4636 0.7841 0.7895 0.7179

Rad2 0.6633 0.4358 0.8192 0.6842 0.7692

avgRad 0.6944 0.3008 0.7746 0.7895 0.5641

unionRad 0.7522 0.3073 0.7827 0.8947 0.4872

intersectionRad 0.6522 0.1371 0.6430 0.7895 0.3846

resampledRad 0.7767 0.5055 0.8192 0.8421 0.7179

Table 2.   p-value results with FDR correction for the statistical comparison of classifier performance on the 
resampledRad hold-out test set. p-values< 0.05 are highlighted in bold. The column and the row corresponding 
to resampledRad and stableRad1, respectively, have been removed due to not containing information.

stableRad1 rad1 rad2 avgRad unionRad intersectionRad

rad1 0.0631

rad2 0.0466 0.7784

avgRad 0.6003 0.1511 0.1799

unionRad 0.7784 0.1624 0.1802 1.0000

intersectionRad 0.7784 0.0097 0.0223 0.1624 0.2958

resampledRad 0.0321 1.0000 1.0000 0.0969 0.0969 0.0097
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Figure 4.   Receiver Operator Characteristics Curve for the resampledRad classifier when applied to the rad1, 
rad2 and resampledRad hold-out test sets, respectively in blue, orange and green. Some of the probability 
decision thresholds are included as annotations.

Figure 5.   Summary beeswarm plot showing the five features with the highest impact on resampledRad model 
output according to a SHAP analysis explaining the model’s predictions for the resampledRad hold-out test set.

Table 3.   3-fold cross-validation, (a), and hold-out test set performance, (b), of classifiers trained with 
radiomic, deep and hybrid datasets.

(a)

Training data

3-fold cross-validation performance (95% CI)

F2 CohensKappa AUC​ Sensitivity Specificity

Rad 0.8830
(0.8129, 0.9570)

0.7350
(0.5300, 0.8562)

0.8679
(0.7654, 0.9281)

0.8920
(0.8164, 0.9762)

0.8439
(0.6697, 0.9163)

Deep 0.9577
(0.8267, 0.9675)

0.8609
(0.6684, 0.9235)

0.9311
(0.8338, 0.9615)

0.9753
(0.8135, 0.9762)

0.8870
(0.7701, 0.9639)

Hybrid 0.9392
(0.8236, 0.9892)

0.9164
(0.7175, 0.9444)

0.9583
(0.8585, 0.9722)

0.9306
(0.8056, 1)

0.9861
(0.8282, 0.9868)

(b)

Training data

Hold-out test-set performance

F2 CohensKappa AUC​ Sensitivity Specificity

Rad 0.7767 0.5055 0.8192 0.8421 0.7179

Deep 0.3333 0.2648 0.8131 0.2941 0.9355

Hybrid 0.5063 0.4062 0.8710 0.4706 0.9032
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Discussion
In the current study, radiomic and deep features where extracted from the whole prostate gland rather than the 
lesion. We attempted to answer the well-known issue of inter-reader variability introduced into the radiomics 
pipeline in the segmentation stage (RQ I). Finally, our study demonstrates the promising combination of radiomic 
and deep features for classifying prostate cancer disease aggressiveness (RQ II).

Publications extracting radiomic features from the whole prostate gland are rare, but there is evidence to 
support this method in contrast to single-lesion radiomics42,43. Previous work43 has reported that whole-gland 
radiomic features have higher stability to segmentation, since gland borders are easier to be defined compar-
ing to a lesion’s, and that these features produced classifiers with higher performance and less overfitting. This 
might be justified by the existence of regions in the prostate, outside of lesions, that have relevant information 
for the classification and would not be easily visually recognized and subsequently segmented by the radiologist.

Radiomic features’ stability is essential for developing robust models to use in clinical scenarios. However, it 
is uncommon to find in the literature studies that assess this issue. From the studies that address it, most use the 
intraclass correlation coefficient to evaluate the agreement between readers and exclude features where a signifi-
cant disagreement is found, training classifiers using purely ’stable’ features44,45. The issue with this approach is 
that a disagreement between the segmentation borders does not necessarily mean the resulting features would not 
be good predictors, it simply means the readers do not agree on what its value should be. Hence, new approaches 
to combining information from two or more radiologists are of high importance. In this study, we addressed 
this with research question I.

Regarding this first research question, our results revealed that approach 1, corresponding to the evaluation 
of feature stability through inter-rater absolute agreement and subsequent removal of unstable features, a tech-
nique currently recommended by radiomics guidelines and evaluated in the radiomics quality score46, proved 
to produce the classifiers with the least ability to generalize to hold-out data. On the other hand, approach 7, 
corresponding to training classifiers with a radiomics dataset where segmentation masks were randomly chosen 
from the two available radiologists, proved to be the highest performing across all hold-out test sets. Support-
ing the hypothesis that the more heterogeneous the training data the more generalizable the classifier may be 
on unseen data. Additionally, the performance of such classifier was very similar on the different hold-out test 
sets, indicating its robustness to radiologists with different years of experience. This was further confirmed by 
the performance on the resampledRad test set, which simulates a real-world clinical environment, where a 
deployed model would be used by several physicians. Thus, these results are extremely relevant for the clinical 
translation of AI models. As of right now, but still staying vigilant to further validation studies, the results suggest 
that gathering segmentations from different radiologists will produce classifiers that are more robust to slight 
differences in segmentation margins.

Regarding research question II, the few publications comparing deep learning and radiomics-trained classical 
machine learning on the same classification problem18,19 reported higher performance on the train set when using 
deep learning, but lower performance on the test set when compared to classical machine learning algorithms 
trained with radiomic features. In this work, deep learning’s natural tendency for overfitting was confirmed, 
both on the deep and hybrid classifiers. Even though the hybrid classifier showed a lot less overfitting than the 
deep model, it was not enough to outperform the radiomics classifier. Despite this, we feel this hybrid approach 
is worth exploring further with larger datasets and externally validated.

This study has several limitations. First, this was a retrospective study, so a multi-center prospective analysis 
should be carried out to validate these results and investigate the impact these predictive models have on patient 
outcome. Second, only T2W, DWI, and ADC sequences were used. Other sequences, such as dynamic contrast-
enhanced MRI, could be worth exploring, however, since there are not consistently part of the MRI examina-
tion protocols they were not included in our models. Third, although the overall class imbalance was addressed 
through SMOTE upsampling of the minority class, we did not address the imbalanced nature of the anatomical 
location of lesions, with the large majority of lesions belonging to the peripheral zone. It would be interesting to 
investigate the model’s performance on the different anatomical zones independently. Fourth, using a publicly 
available dataset increased transparency but limited our access to clinical data, such as PSA levels, patient age, 
or PI-RADS score, which are fundamental components of a clinician’s assessment, but could not be included in 
our model. Fifth, proper assessment of real-world clinical performance is only possible through external valida-
tion. This important validation step will be addressed in future work. Finally, inherent to the Gleason system is 
the subjectivity of cancer grading, so we must keep in mind that the gold standard used in this study is subject 
to human error and inter or intra-observer variability. In addition, the definition of clinical significance might 
be based on more than the Gleason score alone, and variables such as tumour volume or tumour category might 
be relevant.

Conclusion
In conclusion, the results presented in this study are extremely relevant to the clinical translation of AI models. 
Heterogeneous radiomics datasets where segmentation masks come from more than one radiologist produced 
classifiers with the highest generalization power. Additionally, the combination of radiomic and deep features 
in the classification of prostate cancer disease aggressiveness is studied. Here, we have shown promising results 
with the hybrid approach, which is worth exploring further with larger datasets.

Data availability
The datasets analysed during the current study are available in the Cancer Imaging Archive repository, https://​
wiki.​cance​rimag​ingar​chive.​net/​pages/​viewp​age.​action?​pageId=​23691​656.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
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