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INTRODUCTION
In abdominal pathology, diagnosis is usually obtained by 
combining information from physical examination, labora-
tory tests, imaging, and tissue biopsy. The latter plays a key 
role in detecting, characterising, and providing molecular 
information from the extracted tissues. Unfortunately, due 
to tumour heterogeneity, the retrieved specimens usually 
do not fully represent the lesion.1 Moreover, biopsy pres-
ents several drawbacks including the risk of adverse events, 
such as bleeding, physical, and psychological discomfort.2

The advent of anatomic and functional diagnostic imaging 
has improved the non-invasive characterisation of tissues 
and brought a decrease in the overall number of biop-
sies.3 However, considerable limitations still exist, because 
imaging mainly provides a subjective evaluation that is 
strongly influenced by reader experience and that retains 
a variable degree of uncertainty. Contextually, new tech-
nologies are unveiling the molecular complexity of the 
disease, in particular cancer, through the analysis of tissue 
specimens. Therefore, there is an emerging need to provide 
deeper insight into the molecular drivers of disease through 

imaging. This paradigmatic shift is encompassed in the defi-
nition of virtual biopsy (VB), a test that provides promising 
outcomes compared to traditional biopsy by extracting 
quantitative information from radiological images not 
accessible through visual inspection. Data are processed to 
deliver information on the patient’s phenotypic expression, 
or molecular drivers of disease, creating a bridge between 
traditional radiology, pathology, genomics, and artifi-
cial intelligence (AI). The information extracted by VB is 
complementary to that obtained through traditional visual 
inspection of radiologists, since it is imperceptible to the 
human eye.4 In the future, VB could partially substitute 
traditional biopsy and have the following potential bene-
fits (Figure 1): complication risks of VB are null; costs are 
low since the information is extracted from readily avail-
able radiological images; the report can be immediately 
provided to the patient, affecting positively the treatment 
timetable.1

VB biomarkers are mainly obtained with radiomics, the 
extraction of quantitative features from medical images 
followed by the conversion of radiological information 
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ABSTRACT

In recent years, researchers have explored new ways to obtain information from pathological tissues, also exploring 
non-invasive techniques, such as virtual biopsy (VB). VB can be defined as a test that provides promising outcomes 
compared to traditional biopsy by extracting quantitative information from radiological images not accessible through 
traditional visual inspection. Data are processed in such a way that they can be correlated with the patient’s pheno-
typic expression, or with molecular patterns and mutations, creating a bridge between traditional radiology, pathology, 
genomics, and artificial intelligence (AI). Radiomics is the backbone of VB, since it allows the extraction and selec-
tion of features from radiological images, feeding them into AI models in order to derive lesions' pathological char-
acteristics and molecular status. Presently, the output of VB provides only a gross approximation of the findings of 
tissue biopsy. However, in the future, with the improvement of imaging resolution and processing techniques, VB could 
partially substitute the classical surgical or percutaneous biopsy, with the advantage of being non-invasive, comprehen-
sive, accounting for lesion heterogeneity, and low cost. In this review, we investigate the concept of VB in abdominal 
pathology, focusing on its pipeline development and potential benefits.
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into mineable high-dimensional data.4,5 Radiogenomics is 
an emerging area within radiomics aimed at creating a bridge 
between phenotype and genotype. It investigates the correlation 
between quantitative radiomics features and the corresponding 
gene expression profiles.1 In this review, we will investigate the 
role of VB in abdominal pathology, focusing on its pipeline 
development and potential benefits.

THE VIRTUAL BIOPSY PIPELINE
Model development
The first step of the VB pipeline consists of the collection of 
data (Figure 2a). To develop a robust radiomics/radiogenomics 
model, multi-dimensional and multi-institutional data should 
be collected including high-quality annotated medical images, 
clinical, pathological, and molecular data. This will ensure gener-
alisability across imaging protocols and patient populations. 
The second step consists of data harmonisation (Figure  2b) to 
reduce data variability that is performed either by normalisa-
tion, by histogram-matching—where intensity histograms are 
transformed to match a reference histogram—or, finally, by the 
ComBat method.6 To achieve a reliable output, the data set is 
divided into groups: the first group is used to train the model, 
the second to test and fine-tune it, and the last for its validation. 
Validation data sets can be internal, when applied in a similar 
clinical setting and population of the training set, or external, 
when applied in different clinical settings or populations with 
different characteristics, e.g. with varying disease prevalence.4,7 
External validation ensures wider generalisability of the model.

Once the image data sets have been pre-processed, lesions are 
highlighted by tracing either 2D regions of interest (ROIs) or 
3D volume of interest (VOIs) to differentiate them from the 
neighbouring structures (Figure  2c). This task is called “ROI 

Segmentation” and can be either manual, semi-automatic, or 
fully automatic. Manual and semi-automatic segmentation 
methods are time-consuming and may lead to high intra- and 
interobserver variability.8 Moreover, the development of auto-
matic segmentation systems is hampered by the lack of large 
annotated data sets, large variability in cancer and organ shapes 
and tissue heterogeneity.

The third step in the workflow is features extraction (FE) from 
the segmented ROIs (Figure  2d). Typically in the initial stage, 
a large number of features is extracted including: (a) first-order 
features, from gray-level intensity histograms and lesion shape; 
b) second-order features, related to the spatial relationship 
between pixels, calculated using different matrices, e.g. gray-
level co-occurrence (GLCM), gray-level run-length (GLRLM), 
gray-level dependence (GLDM), gray-level size zone (GLSZM), 
neighbouring gray tone difference (NGTDM); (c) transform-
based features, e.g. Wavelet, Gabor, Laws, Laplacian.

A features selection (FS) step will allow (Figure  2e) to select, 
as input of the model, only features that are reproducible, non-
redundant, and relevant for the task. Moreover, FS is crucial to 
develop robust and generalisable models, since the higher the 
number of features in a model and/or the lower the number 
of cases, the higher the risk of overadaptation of the model to 
the training data, in other words of overfitting.4 Finally, FS will 
reduce the computational cost, while improving the performance 
of the model.9 Some FS methods use a score, based on the rela-
tionship between each feature and the desired output, evaluated 
using statistical techniques (e.g. area under the receiver oper-
ating characteristic (ROC) curve (AUC), Mann–Whitney U test, 
Pearson χ2 test). Others are based on machine learning (ML), 
where FS is performed automatically by one of the following 

Figure 1. Scheme of the proposed virtual biopsy pathway. The patient undergoes the MRI imaging process, then the virtual biopsy 
will be performed instead of a traditional tissue biopsy. Finally, according to the results, the radiologist will write the clinical report 
processed image.
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methods: genetic algorithms,10 maximum relevance minimum 
redundancy,11,12 affinity propagation,10 least absolute shrinkage, 
and selection operator.13–16 Finally, in the last step (Figure 2f), 
the radiomics methods are developed using algorithms such as 
logistic regression,14,17 k-nearest neighbour,18 naïve Bayes clas-
sifier,19 support vector machines,20,21 random forest,22,23 neural 
network24,25 and deep learning (DL).26,27 The main characteristic 
of DL is that it does not require the steps of FE and FS, since 
information is automatically extracted from the images by the 
algorithm (Figure 2g).

Clinical validation
After developing and tuning the model on the training and 
testing data sets, the algorithm is validated on different data sets, 
to evaluate its robustness, reliability, and generalisability. The 
goal of the clinical validation is to assess if VB can detect and/
or characterise tissues in a similar way to conventional biopsy, 
to drive treatment choice, and to predict patient outcomes. For 
the above reasons, a robust and reliable gold-standard should 
be always available, as the result of conventional biopsy or addi-
tional tests performed on the tissues.

Figure 2. The VB steps are divided as following: (a) data collection, where radiological images, clinical and genetic data are 
acquired; (b) data hormonisation, where all data are normalised according different methods; (c) ROI segmentation: the radiolog-
ical images are segmented according to the area of interest. The development of VB signature can be performed using Machine 
Learning, which includes the following steps: (d) features extraction, (e) features selection and (f) model development; if Deep 
Learning is used, the only necessary steps will be (g) model development. ROI, region of interest; VB, Virtual Biopsy.
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Algorithm performances can be assessed using different metrics, 
i.e. accuracy, sensitivity, specificity, negative- and positive-
predictive value. However, one of the most used metrics in clin-
ical validation is the ROC curve analysis. This method consists 
in computing the ROC curve, a graphical plot that illustrates 
the true-positive rate against the false-positive rate at various 
threshold settings given by a classifier system and measuring 
the area under the curve (AUC), evaluating the probability that 
the model ranks a random positive example more highly than 
a random negative one. In cases where there are wide dispar-
ities between classification groups, AUC values may not be a 
reliable metric since it doesn’t differentiate false-negative from 
false-positive elements. AUC ranges between 0 and 1, where 1 
indicates the 100% correct prediction.

In literature, most VB studies rely on retrospective data collection. 
In such conditions, algorithm performances might be overesti-
mated since patients enrolled for both model development and 
validation fulfilled specific inclusion criteria, which may not be 
representative of a global clinical reality. Efforts should be made 
to overcome the issue to develop more generalisable models. One 
way to accomplish this task is to enrol patients prospectively. 
Indeed, in prospective cohort studies, although some partici-
pants might harbour risk factors, the group of interest does not 
have a confirmed clinical outcome. Only prospectively validated 
radiomics models will have the opportunity to be introduced 
into clinical practice.

METHODS AND MATERIALS
This review provides an overview of VB applications in abdom-
inal oncologic pathology. Relevant articles, published from 
January 2019 to December 2021, were identified by searching on 
Google Scholar and PubMed. Searches were manually supple-
mented, and retrieval of any additional articles meeting eligi-
bility criteria was included in the reference list. Keywords used to 
select articles were: virtual biopsy, radiomics, abdominal organ 
(prostate, pancreas, liver, bladder, colorectal, uterus, gynaeco-
logical, kidney, gastrointestinal stromal tumour (GIST)), detec-
tion, characterisation, and radiogenomics. Published studies 
fulfilling the following criteria were included: (i) oncologic-
related; (ii) the gold-standard was the biopsy outcome; (iii) the 
aim of the paper was at least one of the following: detection, 
characterisation, radiogenomic analysis of the disease; (iv) the 
VB system radiomics pipeline was described in detail, including 
the feature extraction method, selection, and development of 
ML and/or DL models; (v) the study was written in English; 
(vi) the developed model was validated (either internally or 
externally).

Using this search strategy, 63 out of 109 articles met the inclu-
sion criteria and were considered relevant for this review. Among 
them, 10 were related to the prostate, 13 to the female pelvic area, 
30 to the gastrointestinal (GI) tract, and 10 to miscellaneous 
organs.

No ethical approval was required for this study.

RESULTS
Gastroenteric tract
Gastrointestinal stromal tumour
GISTs VB studies are presented in Supp Table 1.11,28–33 GISTs are 
the most common of the rare non-epithelial neoplasms of the 
GI tract, accounting for 0.1–3% of malignancies34 and are classi-
fied into four groups, very-low, low, intermediate, and high risk 
of cancer, according to pathological tumour size, location, and 
mitotic count. Treatment depends on risk category and disease 
stage. VB biomarkers have been developed to classify patient 
risk, taking into account lesion heterogeneity. In particular, 
Song et al11 and Zhang et al28 developed models based on CT 
scans, capable of stratifying patients between low and high risk, 
yielding an AUC of 0.85 and 0.94, respectively. Other studies, 
such as those from Zhang et al30 and Zhao et al29 developed 
radiogenomics models to evaluate Ki-67 expression, to predict 
disease-specific survival and risk of recurrence. Of the above, 
preliminary assessment of the Ki-67 expression was the most 
promising (AUC = 0.78 in both studies).

Colorectal cancer
VB studies on colorectal cancer (CRC) are presented in Supp 
Table 2.35–43 In the context of CRC, VB could provide infor-
mation on tumour stage and grade. To this point, Ma et al40 
developed an MRI-based radiomics model dichotomising CRC 
patients into poor and high-to-moderate histological grade, and 
into T1-2 and T3-4 stages, resulting in an AUC of 0.86 and 0.81, 
respectively.

Regarding genotype characterisation, efforts have been made 
toward the detection of carriers of BRAF and RAS (KRAS and 
NRAS) gene mutations, which are usually associated with shorter 
disease-free and overall survival, that however may benefit from 
tailored therapies. Assessment is usually performed through 
genetic molecular profiling of tissue biopsy which carries several 
drawbacks, as discussed in previous sections. Cui et al35 were 
able to demonstrate that radiomics can predict RAS and BRAF 
mutation status in patients with CRC with acceptable perfor-
mances (AUC of 0.74).

Liver cancer
VB studies on primary neoplasms, the most common being hepa-
tocellular carcinoma (HCC), and liver metastases are reported in 
Supp Table 3.18,44–49 Wu et al46 developed a VB model to clas-
sify patients with HCC according to tumour stage by integrating 
radiomics and clinical features. The model they developed 
showed encouraging results (AUC = 0.80). VB approaches were 
also proposed to explore the relationships between the immune 
cell microenvironment and tumour initiation, progression, and 
dissemination. For example, Hectors et al49 assessed early HCC 
recurrence predicting values of radiomics and genomics features 
to immunotherapy targets (CTLA-4 and PD-1), yielding prom-
ising results (AUC = 0.76). There is a need to develop improved 
methods to accurately predict the gene-mutational status of liver 
metastases, to select the best treatment for each patient, paving 
the way to precision oncology. One example was provided by 
Shi et al,18 who investigated whether radiomics and/or semantic 
features could classify patients with CRC liver metastasis 
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according to their mutational status. They found that, based on 
the status of RAS and BRAF, they were able to develop and vali-
date a combined score to distinguish between mutant and wild-
type lesions, yielding promising performances (AUC = 0.79).

Pancreatic cancer
VB studies on pancreatic cancer are reported in Supp Table 
4.22,23,50–57 Pancreatic adenocarcinoma (PDAC) comprises 90% 
of pancreatic neoplasms, the remaining being pancreatic neuro-
endocrine tumours (PNET; 2–10%) and other rare subtypes. Due 
to the late onset of symptoms, most patients with PDAC are diag-
nosed with locally advanced (30–35%) or metastatic (50–55%) 
disease,58 while smaller PDACs (≤2 cm) are inconspicuous and 
may evade detection. VB could potentially allow the detection 
of pancreatic cancer in an earlier stage when the disease is still 
curable. Several AI models have been proposed for this purpose. 
For example, Chen et al51 developed a CT-based model to inves-
tigate whether ML radiomics could differentiate between PDAC 
and non-cancerous tissue with encouraging performances (accu-
racy of 0.86). Once the cancer diagnosis has been made, it will be 
necessary to determine the tumour grade. Preliminary studies 
have shown promising results in the classification both of PDAC 
and PNET with VB. To this point, Gu et al23 developed and vali-
dated a nomogram, which includes both radiomics and clinical 
features, to non-invasively classify Grade 1 vs 2/3 PNET patients.

Intraductal papillary mucinous neoplasms (IPMNs) represent 
a heterogeneous group of cystic pancreatic neoplasms. The 
management of IPMN remains controversial. Until not long 
ago, surgical resection was recommended to prevent the onset of 
malignant pancreatic cancer. Unfortunately, this strategy has led 
to overtreatment and postoperative complications, leading to an 
increase in the risk of co-morbidity and mortality of 50 and 4% of 
cases, respectively.50 Current guidelines recommend the mainte-
nance of a balance between the risk of potential malignant trans-
formation and the risks of pancreatic resection,59 suggesting that 
only patients with high-grade dysplasia (HGD) should undergo 
surgery.60 In this context, the VB system to pre-operatively 
assess IPMN grade could support the decision process, reducing 
the drawbacks of an invasive biopsy. An example is given by 
Tobaly et al,50 who developed a CT-based model to differentiate 
between LGD, HGD, and invasive IPMN. Despite the challenge 
of constructively integrating clinical–biological and radiological 
data, their radiomics model showed encouraging performances 
(AUC = 0.71) in a large validation set (n = 112) and was able 
to reliably differentiate the different IPMN grades, particu-
larly benign (low-grade dysplasia) from malignant (high-grade 
dysplasia and invasive carcinoma) ones, potentially contributing 
to better patient management.

Urogenital tract
Kidney cancer
Renal cell carcinoma (RCC) comprises three main histopatho-
logical subtypes: clear cell (ccRCC) (90% incidence; poorer prog-
nosis), papillary (pRCC), and chromophobe (cRCC), the former 
two representing 80–90% of all cases.61,62 Diagnosis of different 
subtypes is not readily obtained by imaging and biopsy, which 
plays a key role in confirming cancer diagnosis, carries a 14% 

non-diagnostic rate in patients with small renal masses and has 
a low negative predictive value (70%) in ruling-out cancer. VB 
has been proposed to overcome some of the limitations of the 
current diagnostic pipeline (Supp Table 5).12,62–65 Indeed, Said 
et al62 successfully implemented an ML-based model to differ-
entiate RCC from benign tissue and to classify renal masses into 
different histotypes based on MRI examinations.

The current standard of care for the management of RCC is 
partial, or radical nephrectomy. However, the rising incidence 
and increasing detection of small lower risk RCC have led to 
alternative less invasive treatment options, such as percutaneous 
ablation or lesion monitoring within wait-and-see or active 
surveillance programmes. In this context, pre-treatment assess-
ment of tumour aggressiveness is of key importance for clinical 
decision-making. Based on MRI, Purkayastha et al12 developed 
a non-invasive VB model to differentiate between low- and 
high-grade RCC, yielding an AUC of 0.59. Also, Gurbani et al65 
were able to discriminate kidney cancer grade on CT scans, with 
an AUC of 0.67 in the internal validation set. Further analysis 
should be carried out on multicentric data sets and by combining 
clinical and/or pathological features in the ML model.

Bladder cancer
Bladder cancer (BCa) can be stratified into low- and high-
grade based on the presence or not of invasion of the muscle 
layer. Unfortunately, grade assessment is not always conclusive. 
Moreover, although most non-muscle-invasive bladder cancers 
(NMIBCas) are low grade and have an indolent natural history, 
approximately 20–25% of NMIBCas may progress locally, with 
invasion of the muscolaris propria, or develop distant metas-
tases.66–69 Currently, cystoscopy together with histological eval-
uation of the resected tissues is the mainstay of diagnosis and 
clinical staging of BCa. However, as biopsy is unlikely to sample 
every part of the tumour, staging may be inaccurate, and up to 
25% of muscle-invasive bladder cancers can be initially misdiag-
nosed as NMIBCas. Repeated examinations improve the diag-
nostic yield, but this implies higher costs and may be distressing 
for the patient.

Supp Table 666–70 reports on several studies addressing the 
assessment of involvement of the bladder wall with VB. Of note, 
Zhang et al67 developed a non-invasive DL-based VB model to 
pre-operatively stratify patients according to the muscle-invasive 
status of BCa. Their model, applied on the external validation 
set, outperformed the radiologists in terms of accuracy (reader1 
= 0.74. reader2 = 0.57, DL model = 0.75) and specificity, while 
sensitivity was lower. It could well be that radiologists in the 
study had a higher propensity to report the invasion of the 
muscular layer due to their fear of the consequences of missing 
MIBC. Regarding tumour grade staging, Wang et al66 proposed a 
radiomics model to pre-operatively discriminate low- and high-
grade BCa tumours, reaching high performances (AUC = 0.93). 
Finally, concerning BCa genotype characterisation, Lin et al70 
developed a nomogram incorporating radiomics, clinicopatho-
logical parameters, and RNA-sequence data for predicting the 
overall survival of patients with bladder urothelial carcinoma 
(BLCA), yielding an AUC of 0.96.



6 of 10 birpublications.org/bjro BJR Open;4:20220055

BJR|Open Defeudis et al

Ovarian cancer
VB studies on ovarian cancer (OC) are reported in Supp Table 
7.16,17,71–77 Epithelial OC (EOC) is the most common and lethal 
among gynaecologic malignancies since more than 80% of cases 
are diagnosed at an advanced stage.78 Currently, diagnosis and 
subtype classification of EOC into the serous, mucinous, clear-
cell, and endometrioid variants is obtained by incisional or aspi-
ration biopsy. Non-invasive assessment with VB could provide 
relevant information to the clinicians, potentially useful for 
treatment planning. A VB application example is provided by 
Pan et al,17 which have developed a classification system based on 
radiomics and semantic features to distinguish serous and muci-
nous pathological types in patients with pathology-confirmed 
ovarian cystadenoma, yielding excellent results (AUC of 0.92).

EOC is classified into two categories having different clinico-
pathological and molecular features. Type I is characterised by 
indolent behaviour and when confined to the ovary has an excel-
lent prognosis, while Type II has a far more aggressive behaviour, 
resulting in a poor overall prognosis. To non-invasively differ-
entiate between these two categories, an MRI-based radiomics 
model has been developed and externally validated (AUC = 0.85) 
by Jian et al.71 The authors were able to identify the most critical 
regions for differentiating between Type Ι and Type ΙΙ EOC, i.e. 
the border zone between the solid and cystic components and 
the less compact area of the solid component.

Few studies have integrated genetic features into radiomics 
signatures during model development. These studies explore the 
correlation between biological information, molecular signalling 
pathways, and tumour microenvironment, integrating radio-
mics features and genetic data. Meier et al,77 e.g. searched for the 
presence of associations between morphology-related radiomics 
features (GLCM) and BRCA mutational status (BRCA1, BRCA2 
and negative) in high-grade serous ovarian carcinoma (HGSOC) 
patients that underwent CT. Unfortunately, they did not find 
significant associations. Further analysis of other radiomics 
feature subgroups and advanced computational analysis will be 
required to quantitatively analyse phenotypic traits on standard 
of care CT.

Cervical and endometrial cancer
Among gynaecologic malignancies, endometrial cancer (EC) 
is characterised by a good prognosis, having a 5-year patient 
survival rate of 84%. However, if incorrectly staged, low-risk 
patients may undergo unnecessary surgery with overtreatment.79 
Opposite, high-risk patients could be undertreated, with a dismal 
survival rate. EC patients could therefore benefit from precision 
oncology diagnostic tools. Supp Table 815,25,80 presents studies on 
VB models for assessing tumour aggressiveness and evaluating 
genetic correlations in patients with EC. In particular, Fasmer 
et al80 developed an MRI-based model to non-invasively assess 
EC aggressiveness. Their radiomic signatures yielded prom-
ising results, proving the innovative ability of the VB to capture 
relevant markers from the whole volume, compared to the 
traditional biopsy which provides the outcome of a specimen. 
Moreover, Veeraraghavan et al15 developed a radiogenomics VB 
tool to non-invasively identify DNA mismatch repair deficient 
(MMR-D) and tumour mutational burden-high (TMB-H) in 

EC patients from CT. They were relatively accurate in identi-
fying both MMR-D (AUC = 0.78) and TMB-H (AUC = 0.87). 
In conclusion, VB may provide an adjunct tool to molecular 
profiling, given its potential advantage in the setting of intra-
tumor heterogeneity.

Prostate cancer
Prostate cancer (PCa) diagnosis is now greatly supported by 
multiparametric MRI.81 Unfortunately, PCa detection is affected 
by the radiologist’s experience, scanning protocol, and MR equip-
ment.13 In this context, VB could undoubtedly bring a benefit to 
the patient. The opportunity to differentiate benign hypertrophy, 
inflammation, or normal prostatic tissue from PCa could allow 
the biopsy needle to be directed toward the most suspicious 
areas within the gland. Automatic lesion and prostate segmenta-
tion could make it easier and faster to perform fusion biopsy or 
could allow accurate radiotherapy planning, boosting the dose to 
cancer lesions. Moreover, biopsy is well known to underestimate, 
or overestimate disease grade due to lesion heterogeneity. Also, 
visual MRI assessment is not supportive, being not sufficiently 
granular to detect different levels of lesion aggressiveness.

Recent publications on prostate VB applications, presented in 
Supp Table 9,10,13,14,24,82–85 have shown that MRI-based VB 
models can distinguish cancer from benign prostatic tissue with 
an accuracy, evaluated by ROC analysis, between 0.89 and 0.94.14 
Further testing will have to be performed in a clinical environ-
ment to assess the performances of radiologists by adding the 
information provided by VB.86 Large data collections of high-
quality and well-annotated MRI examinations and metadata are 
being implemented, allowing a significant breakthrough.87

Just as tissue biopsy, VB may guide treatment selection in the 
future. Patients with indolent cancer, if correctly diagnosed, 
could be spared whole gland treatments. To this point, Giannini 
et al13 developed a fully automated computer-aided diagnosis 
system to localise, segment, and stratify PCa according to its 
aggressiveness. This prototype, which was externally validated 
on data from different MRI scanners yielded encouraging results 
(AUC = 0.81). Similarly, Nicoletti et al10 developed a radiomic 
model to distinguish between aggressive (GG ≥ 3) and indolent 
(GG ≤ 2) PCa, based on bi-parametric MRI, yielding similar 
results. Lastly, Woźnicki et al82 developed an ML-based model 
to categorise between: (a) histologically proven PCa and benign 
prostate lesions; (b) clinically significant (GG ≥ 2) vs non-
significant PCa. The main finding of the latter study was that the 
ML model showed higher predictive performance in comparison 
to the PIRADS as well as clinical biomarkers, such as PSA density 
and digital rectal examination.

CONCLUSIONS
This review discusses the evolving role of VB as an alternative 
to traditional tissue biopsy. VB has shown promise in abdom-
inal pathology in particular to detect and grade tumours, and 
may also provide information on their mutational status. Advan-
tages of VB include its low cost, the opportunity to assess the 
entire lesion, providing information on its heterogeneity, its non-
invasiveness, and its short turnaround time. However, VB has 
the disadvantage of having a low spatial and contrast resolution, 
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with respect to tissue biopsy that is able to explore processes at a 
subcellular level. For the above reasons, VB will never substitute 
tissue biopsy but will more probably limit its use to well-selected 
patients where imaging does not provide a conclusive diagnosis. 
The development of VB biomarkers is held back by the lack 
of large databases providing well-annotated and high-quality 
images, and their accompanying metadata, including robust 
reference standards, which limit the opportunity of performing 
extensive validation studies. Indeed, the variability introduced 
using different scanners, software, and acquisition protocols, as 
well as the different examined populations, may limit the gener-
alisability and reproducibility of the results.

In the future, more reliable holistic biomarkers will be devel-
oped by integrating the information derived from VB with 
that of other omics, paving the way to a personalised, precision 
approach to each patient.
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