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Simple Summary: Prostate cancer represents a highly prevalent form of cancer worldwide, with
timely detection and treatment being crucial for achieving a high survival rate. Manual segmentation,
which is the process of manually identifying different anatomical structures or tissues within an
image, is the most prevalent detection method. However, it is a time-consuming and subjective task
constrained by the radiologists’ expertise, which underpins the demand for automated segmentation
methods. In this study, we conduct a comprehensive and rigorous comparison of multiple prevalent
deep learning-based automatic segmentation models for the prostate gland and both peripheral and
transition zones, using multi-parametric MRI data.

Abstract: Prostate cancer is one of the most common forms of cancer globally, affecting roughly one
in every eight men according to the American Cancer Society. Although the survival rate for prostate
cancer is significantly high given the very high incidence rate, there is an urgent need to improve
and develop new clinical aid systems to help detect and treat prostate cancer in a timely manner.
In this retrospective study, our contributions are twofold: First, we perform a comparative unified
study of different commonly used segmentation models for prostate gland and zone (peripheral and
transition) segmentation. Second, we present and evaluate an additional research question regarding
the effectiveness of using an object detector as a pre-processing step to aid in the segmentation process.
We perform a thorough evaluation of the deep learning models on two public datasets, where one
is used for cross-validation and the other as an external test set. Overall, the results reveal that the
choice of model is relatively inconsequential, as the majority produce non-significantly different
scores, apart from nnU-Net which consistently outperforms others, and that the models trained
on data cropped by the object detector often generalize better, despite performing worse during
cross-validation.

Keywords: prostate cancer; prostate segmentation; prostate detection; deep learning

1. Introduction

Prostate cancer is one of the most common cancer types in the world, affecting roughly
one in every eight men according to the American Cancer Society. Despite its high survival
rate (5-year relative rates of ≈100% for localized and regional, 30% for distant), it was the
third most prominent cancer in 2020 [1]. Therefore, there is an urgent need to develop
methods that may aid in early detection and better characterization of disease aggres-
siveness [2,3]. The latter will make possible the avoidance of over-treatment in patients
with non-aggressive disease and the amplification of treatment in patients with aggres-
sive disease. Manual segmentation is still the most common practice, a time-consuming
task also limited by the subjectiveness of the radiologists’ expertise, resulting in high
interobserver variability.
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Most automatic segmentation processes developed for clinical applications are based
on convolutional neural networks (CNNs), many being variations of the classic Unet
architecture [4]. For prostate segmentation, the proposed models continue to improve as
shown by the mean dice score used for the following results.Guo et al. [5] presented a two-
step pipeline where a stacked sparse auto-encoder was used to learn deep features, and then
a sparse patch matching method used those features to infer prostate likelihood, obtaining
a Dice score of 87.8 ± 4.0. Milletari et al. [6] presented Vnet, a volumetric adaptation
of unet, achieving a Dice score of 86.9± 3.3. Zhu et al. [7] used deep supervised layers
on Unet with additional 1 × 1 convolutions, obtaining 88.5 Dice. Dai et al. [8] used the
object detection and segmentation model Mask-RCNN, achieving 88± 4 and 64± 11 Dice
in the segmentation of prostatic gland and intraprostatic lesions, respectively. Zavala-
Romero et al. [9] presented a multistream 3D model that employed the three standard
planes of an MRI volume as inputs and was trained with data from different scanners,
achieving Dice scores of 90.5± 2.7 for the full gland and 79.9± 9.4 for the peripheral zone
when using data from one scanner, and 89.2± 3.6 and 81.1± 7.9 when combining data
from both scanners. Aldoj et al. [10] presented a Unet variation with two stacked dense
blocks in each level of the downsampling and upsampling paths, obtaining Dice scores of
91.2± 0.8, 76.4± 2 and 89.2± 0.8 for full gland, peripheral and central zones, respectively.
Duran et al. [11] presented an attention Unet [12] variation, where an additional decoder
was added to perform both gland segmentation as well as multi-class lesion segmentation,
achieving a Dice score of 87.5± 1.3. Recently, Hung et al. [13] proposed a new take on skip
connections, using a transformer to capture the cross-slice information at multiple levels,
with the main advantage being that this can be incorporated into most architectures, such as
the nnU-Net model.

As of late, more complex and novel architectures and paradigms have been adopted
for biomedical imaging segmentation. When dealing with large amounts of data, vision
transformer architectures have shown great promise for biomedical segmentation [14–18].
These visions transformer models have the advantage of using self-attention mechanisms,
allowing them to learn complex patterns, and to also capture the global spatial depen-
dencies of the images, which is highly advantageous for segmentations. As previously
mentioned, since manual segmentation suffers from several limitations, most data end up
being unlabeled. Self-Supervised learning strategies have been used to leverage these unla-
beled data to improve the performance of segmentation models by first pre-training them
on pretext tasks [19–21]. Lastly, another paradigm that has been recently used for biomedi-
cal image segmentation is knowledge distillation, where models are first trained on a larger
task (e.g., multi-centre data ) and are then used to help train other models for more domain-
specific tasks [22] (e.g., single-centre data). This technique has already been adopted
by some researchers for prostate segmentation [23–25] and is shown to improve overall
model performance.

One major problem that presents with most previously addressed Unet-based auto-
matic prostate segmentation works are the different evaluation conditions presented, where
the same model produces different results depending on the new architecture being pro-
posed and what it needs to outperform the previous models, regardless of the correctness
of the experimental settings. What we propose is not a new method but a comparative
study of several of the most common, as well as some new some variations, of Unet-based
segmentation models for prostate gland and zone segmentation. Additionally, we present
and evaluate another research question, regarding the impact of using an object detector
model as a pre-processing step in order to crop the MRI volumes around the prostate
gland, reducing computational strain and improving segmentation quality by reducing
the redundant area of the volumes without simply resizing the data. We examined this
question by comparing the results of the different models in both full and cropped T2W
MRI volumes, during cross-validation and in an additional external dataset.
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2. Materials and Methods
2.1. Data

We used two publicly available datasets containing retrospective data, one to train
both the object detection and the segmentation models (ProstateX), the other to serve as
an external test set to assess the quality of the segmentation models (Medical Decathlon
prostate dataset). The ProstateX dataset (https://wiki.cancerimagingarchive.net/pages/
viewpage.action?pageId=23691656SPIE-AAPM-NCIPROSTATExchallenge, accessed on
2 January 2023) is a collection of prostate MRI volumes that include T2W, DWI and ADC
modalities. These volumes were obtained by the Prostate MR Reference Center — Radboud
University Medical Centre (Radboudumc) in the Netherlands, using two Siemens 3T MR
scanners (MAGNETOM Trio and Skyra). Regarding the acquisition of the images, the
following description was provided by the challenge’s organizers: “T2-weighted images
were acquired using a turbo spin echo sequence and had a resolution of around 0.5 mm in
plane and a slice thickness of 3.6 mm. The DWI series were acquired with a single-shot echo
planar imaging sequence with a resolution of 2-mm in-plane and 3.6-mm slice thickness
and with diffusion-encoding gradients in three directions. A total of three b-values were
acquired (50, 400, and 800), and subsequently, the apparent diffusion coefficient (ADC) map
was calculated by the scanner software. All images were acquired without an endorectal
coil”.

Regarding the segmentations, the prostate gland segmentations were performed by a
senior radiologist from the Champalimaud Foundation, while the transition and peripheral
zone segmentations were obtained from the public dataset repository. We applied bias field
correction, using N4ITK ([26]), to the T2W volumes, and all the masks were resampled to
be on the same space and have the same orientation and spacing as the volumes. A total of
153 volumes were used for the gland segmentation, while for the peripheral and transition
zone segmentation, a total of 139 volumes was used.

As an external test dataset, we used the publicly available prostate segmentation
dataset from the Medical Segmentation Decathlon ([27]), which was acquired at the Rad-
boud University Medical Centre (Radboudumc) in the Netherlands. This dataset consists of
32 MRI volumes of coregistered T2W and ADC modalities, along with segmentation masks
with distinct classes for the transition and peripheral zones. We extracted the T2W volumes
and, similarly to the ProstateX, performed bias field correction and resampled the masks,
and made new masks by joining both classes to obtain a prostate mask. The model of the
scanner used to take these MRIs is not disclosed.

2.2. Prostate Detection

To prepare the data for object detection, the volumes were converted into 2D 16-bit PNG
images (we chose to use 16-bit images so we keep the notion of depth while working in 2D)
where the empty slices were discarded. The edge coordinates of the ground truth bounding
boxes were obtained from the prostate gland masks. We used these images to train a variation
of the YoLo-v4 Open source code available here: https://github.com/ultralytics/yolov5 ,
accessed on 2 January 2023, [28] object detection architecture to locate the prostate gland
and accurately draw a bounding box around it (Figure 3). After predicting the bounding
boxes, we extracted the coordinates of the edges of the largest bounding box in the volumes,
added padding of 40 pixels in each direction, and cropped the entire volume with that
box. Using the largest bounding box plus an additional padding, we ensure that all slices
contain the entire prostate gland and some additional area. Figure 1 provides a comparison
between a standard and cropped slice of a T2W volume.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656SPIE-AAPM-NCIPROSTATExchallenge
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656SPIE-AAPM-NCIPROSTATExchallenge
https://github.com/ultralytics/yolov5
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Figure 1. Comparison between original and cropped volumes. Both images correspond to the middle
slice of the volumes. The image on the left represents the original full size slice, while the image on
the right represents the cropped version.

2.3. T2W Pre-Processing and Augmentation

Before feeding the T2W volumes to the segmentation models, the following pre-
processing techniques were applied: Orientation transformation to ensure the models were
in RAS+ orientation; Intensity rescaling transformation to ensure the voxel intensity of
the volumes was in [−1, 1]; Z normalization transformation; Cropping the images into a
smaller 160 × 160 × 32 size. This last transformation was done to reduce the total unused
area, making it less computationally expensive, and to ensure that the volumes had an
appropriate number of slices for the segmentation models. It was only applied to the
volumes that had not been previously cropped by the object detector. In addition, the
following augmentation transformations were applied: Random affine transformations,
including rescaling, translation and rotation; Random changes to the contrast of the volumes
by raising their values to the power of γ, where γ = 0.5; Application of random MRI motion
artifacts, and random bias field artifacts. Examples of volumes after pre-processing and
augmentation are shown in Figure 2.

Figure 2. Example of a batch of 16 images, and their respective segmentation masks, from the
ProstateX dataset after being pre-processed and augmented. Each image corresponds to the tenth
slice of the volume. The images show the effect of the affine transformations as well as the random
bias field augmentations.
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2.4. Segmentation Models

In this study, we conducted an extensive analysis of various popular Unet-based
models from the literature that either had a publicly available implementation or provided
enough detail to be reproducible. These models utilized mechanisms falling into three
distinct categories: Dense blocks, Recurrent connections, and Attention mechanisms. The
inclusion of a diverse range of mechanisms facilitated a thorough investigation of the utility
of each mechanism, given that most Unet variations exhibit only minor differences between
one another. Additionally, we introduced new networks that build upon the previously
published models by incorporating additional combinations of mechanisms. This enabled
us to evaluate the performance of these models against established ones, leading to more
reliable and informative results.

In total, 13 segmentation models were compared, including: Unet, Unet++ [29],
Residual Unet (ResNet) , Attention Unet (aunet) [12], Dense Attention Unet (daunet),
Dense-2 Unet (d2unet) [10], Dense-2 Attention Unet (d2aunet), Recurrent Residual Unet
(r2unet) [30], Recurrent Residual Attention Unet (r2aunet), nnU-Net [31], Vnet [6], highRes-
Net [32], SegResNet [33].

For the Unets, the standard convolution blocks in the downwards path are composed
of two convolution operators with a kernel size 3 and stride of 1, followed by a batch nor-
malization, a ReLU activation function and lastly a maxpool operation for dimensionality
reduction. The convolution blocks on the upwards path are composed of an upsample
operation with scale 2 to double the size of the previous input, and a convolution of kernel
size 2 and stride of 1, followed by a batch normalization and ReLU activation.

For the dense unets, the dense blocks are composed of four blocks, with each one
having two convolution operations with kernel size 1 and stride of 1, where after each
convolution there is a batch normalization and a ReLU activation function. For the transi-
tion blocks also used in the dense unets, we perform an upsample operation with scale 2
and a convolution with kernel size 3 and stride of 1, followed by batch normalization and
ReLU activation. Regarding the Dense-2 Unet, our implementation differs from the one
presented in the original article. As this article does not include enough information to
fully replicate the model, we chose the parameters for the dense blocks and convolution
blocks to be similar to the ones of the remaining networks.

The recurrent residual blocks are equal to the ones described in Zahangir et al. [30], and
are composed of two residual operation and two convolution blocks, each one having one
convolution operation with kernel size 3 and stride of 1, followed by a batch normalization
and ReLU activation.

The attention mechanisms are equal to those described in Oktay et al. [12], where we
calculate Wg, Wx and ψ, each composed of a convolution of kernel size 1 and stride of 1,
and then compute σ(ψ(ReLU(Wg + Wx))).

At the start of each Unet, a single convolution block, composed of a convolution of
kernel size 3 and stride of 1, followed by a batch normalization and ReLU activation, is
applied to double the channels from 32 to 64, so we end up with 1024 channels at the
bottleneck area of the unets.

Regarding the Vnet, SegResNet and highResNet, we used the models made available
by the MONAI package [34]. We used the 3D full resolution version of the nnunet, which
is equal to the one described in [31], and publicly available at https://github.com/MIC-
DKFZ/nnUNet, accessed on 2 January 2023. All other models were implemented in
Pytorch[35].

2.5. Training and Evaluation
2.5.1. Detection

The detection model was trained with the ProstateX volumes, which differed in size
(320× 320, 384× 384, 640× 640) with a varying number of slices (minimum 19, maximum
27).

https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
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All volumes were normalized to zero mean and one unit of standard deviation, resized
to 256× 256, and separated in 2D slices. The slices with no prostate were removed, ending
with a total of 2801 images. The remaining 2801 images were split into 70% training and
30% validation. To avoid data leakage, we ensured all slices belonging to a volume were
only present in one of the sets.

To set the initial parameters for the object detector model, we used the genetic algo-
rithm based hyperparameter evolution included in the package, that ran for 100 generations,
with 90% mutation and 10% crossover probabilities. The fitness function used to evaluate
this evolution is the weighted average between the mean average precision with a thresh-
old of 0.5 (mAP@0.5), which contributed with 10%, and the mean average precision with
different thresholds, from 0.5 to 0.95 in steps of 0.05 (mAP@0.5:0.95), which contributed
with the remaining 90%. Then, after having set the initial values for the hyperparameters,
the model was trained for 350 epochs.

2.5.2. Segmentation

The datasets were split with 5-fold cross-validation. All models except the nnU-Net
were trained for a maximum number of 1500 epochs, using early stopping with patience 30.
The optimizer was Weighted Adam (AdamW) with a starting learning rate of 1 × 10−4,
Cosine Annealing learning rate decay, and weight decay of 4 × 10−5. For nnU-Net, we
used the default parameters, training for 1000 epochs with the Ranger optimizer [36]. All
models were trained using Pytorch-Lightning.

To assess the quality of the models, we use Mean Dice score (MDS) with 95% confi-
dence interval (CI), Mean Hausdorf distance (MHD) and Mean surface distance (MSD).

The Dice score is a widely used metric for segmentation tasks, and it measures the
overlap between the ground truth and predicted masks. The higher the score, the better
the segmentation.

DS(X, Y) =
2|X ∩Y|
|X|+ |Y|

The Hausdorff distance (HD) measures how far two points are in two images. In this
case, how far a point from the predicted mask if from its nearest point in the ground truth
mask, essentially indicating the largest segmentation error present in the predicted mask.
Low values mean small errors.

HD(X, Y) = max
x∈X

min
y∈Y
||x− y||

The Surface distance (SD)measures the difference between the surface of the predicted
mask and the ground truth mask. Low values mean small differences.

SD(X, Y) = min
x∈X,y∈Y

||y− x||

2.6. Loss Function

Initially, our loss function was the standard averaged sum of Dice (Equation (2)) and
Crossentropy (Equation (1)), called Dice CE loss (Equation (3)). It produced good results
for the mid regions of the prostate, but struggled with the small and irregular shapes
present in both apex and base. Therefore, we included both Focal (Equation (4)) ([37]) and
Tversky (Equation (5)) losses, as they mitigate this issue by focusing on the hard negative ex-
amples, reducing both false negatives and false positives. The final loss function was named
Focal Tversky Dice Crossentropy loss (FTDCEL) (Equation (6)), an averaged sum of all
previously mentioned loss functions, all having the same weight (FTDCEL) (Equation (6)).
All of these loss functions were implemented using the MONAI package [34].

CE =

{
−log(p) if y = 1
−log(1− p) otherwise

(1)
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DL(p, p̂) =
2pp̂ + 1

p + p̂ + 1
(2)

DCE(p, p̂) =
DL(p, p̂) + CE(p, p̂)

2
(3)

rewriting CE as pt =

{
p if y = 1
1− p otherwise

FL(pt) = −αt(1− pt)
γlog(pt)

(4)

TL(p, p̂) = 1− 1 + pp̂
1 + pp̂ + β(1− p) p̂ + (1− β)p(1− p̂)

(5)

FTDCEL(p, p̂) =
DCE(p, p̂) + FL(p, p̂) + TL(p, p̂)

3
(6)

3. Results
3.1. Object Detection

To evaluate the object detection model we followed the procedure described in
Section 2.5.1 for four different variations of the yolo model, a small, medium, large and
extra-large. Figure A1 shows the results obtained on the medium model which is the one
that produced the best results.

As shown in Figure A1, the results obtained were very accurate, with high confidence
values on all prostate sections, including the apex, achieving a Precision, Recall, mAP@0.5
and mAP@0.5:0.95 of 0.9709, 0.9534, 0.9653 and 0.6965, respectively. As for the loss values,
which represent the error meaning lower values are better, this model obtained a bounding
box loss (Box loss), which is the measure of how well the predicted bounding box covers
the target, of 0.0227 and an object confidence loss (Obj loss), which measures the probability
that the target exists inside the predicted bounding box, of 0.0034, on the validation data.
Figure 3 (bottom row) illustrates a batch of the obtained results. As shown, both the apex,
base and middle area of the prostate is properly detected with a high degree of confidence.

Figure 3. Comparison between original prostate images, masks and predicted volumes. The top row
consists of random slices from different volumes, the second row consists of the respective prostate
masks, and the third row consists of the respective predicted bounding boxes, with confidence value
of the prostate on each of the images.
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3.2. Gland Segmentation

Regarding the segmentation of the prostate gland (Table 1A and Figure 4), when
working with the full volumes we can see that the nnunet is significantly better than all
other models, by ≈2%, achieving a mean Dice score (MDS) of 0.9289± 0.0046. This is
further corroborated when looking at the boxplots as we can see that most models have a
high degree of dispersion, as opposed to the nnunet. A mean Hausdorff distance (MHD) of
5.7155 is considerably better than the ones obtained by the remaining models. It can also
be observed that despite small differences, there is no statistical difference between the
Dice score results obtained by the other models, although being discernible that some, such
as daunet, d2uNet, Vnet and especially the highresnet, have substantially greater MHD
values. From Figure 1 right we can see that nnunet is the model that better generalizes,
achieving a MDS of 0.8678 on the external test set, a result far greater than most other
models, along with a MHD of 10.0231, which is the smallest by far between all models.

When segmenting the prostate gland using the volumes cropped by the object detec-
tion model (Figure 1 left and Figure 4), the results are quite different. There is no single
significantly best model, there are however four models that under-perform, and nine
which have similar scores. The best, although not significantly better, Dice score is obtained
by the d2auNet, with a value of 0.9158± 0.0068. Looking at the boxplots we can see that
the majority of the models, apart from the r2Net and highResNet, present a low degree of
dispersion. Looking at the MHD and average surface distance (ASD), we can further see
that the choice of the model is mostly inconsequential, with the exception of highresnet.
These results still hold for the external test set (Figure 1 right), where we can see that all
models, again with the exception of highresnet, have a very similar generalization capabil-
ity with a MDS of ±0.85. Comparing the performance of full and cropped volume models,
looking at Table A1 it is possible see that for 11 of the 13 models there is no significative
difference, with the only two exceptions being the Vnet, where it does in fact improve the
Dice scores, and the nnU-Net which has the opposite effect, worsening model performance.
Looking at the boxplots in Figure 4, we can see that on all metrics the results show less
dispersion, which is a good indication. However, when observing the difference between
the results on the external test set, we can see that the vast majority of models do improve
their generalization capability using cropped data, achieving higher MDS scores and lower
MHD scores.

Figure 5 shows a comparison between full volume and cropped volume segmentations
of both nnU-Net and d2aunet, as they were the models with the highest Dice score in each
task. In this case, despite having a lower MDS, the segmentations provided by the cropped
models are arguably better than those provided by the full volumes, with the difference
being explained by the difference in size when calculating this metric. In smaller volumes, a
wrongly calculated pixel will have more impact in the calculation of the MDS than on larger
volumes, which may explain why a model with a slightly lower MDS (0.014 difference) can
provide more accurate segmentations.
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Figure 4. Boxplots showing the distribution of Dice, Hausdorff distance (HD) and Surface distance
scores per model during cross-validation for the gland segmentation task. Each segment contains a
pair of boxplots, where the left one corresponds to the results of the model on the full data, and the
right one on the cropped data.

Table 1. (A) Results obtained by the segmentation models on prostate gland segmentation task.
The results presented are the mean scores from the validation data over the five-fold models.The
best results (based on Table A1) for both the full and cropped volumes are presented in green. (B)
Results obtained on the external test set by the segmentation models trained on the prostate gland
segmentation task. The results presented are the mean scores of the 5-fold models over all the samples
on the external test set. The best results for both the full and cropped volumes are presented in red.

(A)

Gland Cropped Gland

MDS CI MHD (mm) ASD (mm) MDS CI MHD
(mm) ASD (mm)

unet 0.9082 0.0154 11.5690 0.8732 0.9094 0.0064 7.0381 0.6990
unet++ 0.9066 0.0108 9.7262 0.9289 0.9081 0.0037 7.9955 0.7533
runet 0.9081 0.0078 8.8370 0.7610 0.9083 0.0062 7.3480 0.7186
aunet 0.9052 0.0151 11.5549 1.0364 0.9105 0.0079 7.0760 0.7047
daunet 0.9023 0.0203 13.5009 1.0892 0.9123 0.0076 7.1538 0.7265
d2unet 0.9078 0.0170 12.5156 1.2563 0.9145 0.0047 6.6846 0.6664
d2aunet 0.9110 0.0115 9.9763 0.7997 0.9158 0.0068 7.6787 0.6715
r2unet 0.9084 0.0087 9.6704 0.8259 0.9117 0.0081 7.0649 0.6994
r2aunet 0.9069 0.0110 10.1465 0.8990 0.9130 0.0036 7.1827 0.7096
vnet 0.8991 0.0062 12.5448 1.0621 0.9067 0.0070 7.2024 0.7220
segresnet 0.8960 0.0117 9.3760 0.8540 0.9048 0.0051 6.9018 0.7490
highresnet 0.8980 0.0130 31.1897 2.1118 0.9029 0.0084 25.8385 0.7533
nnunet 0.9289 0.0046 5.7155 0.9218 0.9139 0.0044 6.2565 0.7406

(B)

Gland Cropped Gland

MDS MHD (mm) ASD (mm) MDS MHD (mm) ASD (mm)

unet 0.8474 16.9045 2.3177 0.8595 9.9819 1.2044
unet++ 0.8544 25.7024 2.0092 0.8472 9.0465 1.3394
runet 0.8501 19.8740 1.9686 0.8547 9.9693 1.2591
aunet 0.8291 25.3664 2.5814 0.8521 9.9022 1.3618
daunet 0.8277 21.4430 2.1456 0.8579 10.6797 1.2818
d2unet 0.8528 15.2098 1.7646 0.8567 9.1642 1.3421
d2aunet 0.8464 13.6260 1.9367 0.8562 8.2389 1.3334
r2unet 0.8517 14.9619 1.7727 0.8546 8.7872 1.3819
r2aunet 0.8514 16.2630 1.9737 0.8573 10.3648 1.7792
vnet 0.8368 21.3305 2.7043 0.8548 9.6195 1.3882
segresnet 0.8479 17.4913 1.7528 0.8468 9.7496 1.3192
highresnet 0.7448 69.6783 11.5506 0.8092 35.0037 3.6740
nnunet 0.8678 10.0231 3.3704 0.8558 9.2565 1.6221
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(A) (B) (C) (D)

Figure 5. Segmentations of the prostate gland. Column (A) contains the volumes, column (B) contains
the ground truth, column (C) contains the nnU-Net segmentations and column (D) contains the
d2aunet segmentations. Rows are interleaved, showing a full volume and a model cropped by the
object detection model, respectively.
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3.3. Zone Segmentation

Starting with the transition zone (TZ) segmentation (Table 2A and Figure 6), we can see
that the nnU-Net outperformed all the other models, both on the full volume and cropped
volume modalities. On the full volume data, it achieved an MDS of 0.8760± 0.0099, which
is ≈3% better than all other models, while on the cropped data it further increased the
distance to the remaining models, by achieving a mean Dice score of 0.8561± 0.0133, ≈7%
better than the others. Regarding the maximum error, for full and cropped we obtained an
MHD distance of 8.7049 and 10.2390, respectively, which are notably smaller than the errors
obtained by the remaining models,±6 and±4 mm smaller for the full and cropped volumes,
respectively. However, when the models are evaluated on an external test set (Figure 2),
we can see that these results do not hold. For the full volume data the nnU-Net falls short,
dropping ≈15%, while most other variations of the Unet dropped far less, with the regular
Unet being the model with the best MDS of 0.77, despite having a larger maximum error.
On the cropped volumes, the nnU-Net remained the best performing model, with an MDS
of 0.7540.

When comparing the performance of full and cropped volume models, looking at
Tables A2 and 2, it is clear that the performance of all models drops significantly when
using the cropped data. One interesting particularity to note is that while in the majority of
the models, the dispersion of the results on the cropped data is similar to the dispersion
on the full data, when observing d2aunet we can see that dispersion of values for both the
Hausdorff and surface distances is greatly reduced (Figure 6). Figure 7 shows a comparison
between full volume and cropped volume segmentations of both nnU-Net and aunet, as
they were the models with the highest Dice scores during cross-validation.
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Figure 6. Boxplots showing the distribution of Dice, Hausdorff distance (HD) and Surface distance
scores per model during cross-validation for the transition segmentation task. Each segment contains
a pair of boxplots, where the left one corresponds to the results of the model on the full data, and the
right one on the cropped data.



Cancers 2023, 15, 1467 12 of 21

Table 2. (A) Results obtained on the external test set by the segmentation models trained on the
transitional zone segmentation task. The results presented are the mean scores of the 5-fold models
over all the samples on the external test set. The best results (based on Table A2) for both the full
and cropped volumes are presented in green. (B) Results obtained by the segmentation models on
transitional zone segmentation task. The results presented are the mean scores from the validation
data over the five folds. The best results for both the full and cropped volumes are presented in red.

(A)

Tz Cropped Tz

MDS CI MHD (mm) ASD (mm) MDS CI MHD (mm) ASD (mm)

unet 0.8423 0.0243 14.0153 1.0092 0.7790 0.0250 14.0153 1.3668
unet++ 0.8457 0.0254 14.0649 1.0042 0.7715 0.0278 14.0649 1.3840
runet 0.8469 0.0186 12.9054 0.9450 0.7895 0.0432 12.9054 1.3410
Aunet 0.8509 0.0164 14.8667 0.9109 0.7543 0.1045 14.8667 1.4419
daunet 0.8481 0.0155 14.6603 0.9105 0.7703 0.0311 14.6603 1.3604
d2unet 0.8447 0.0144 13.9448 0.9676 0.7790 0.0483 13.9448 1.4247
d2Aunet 0.8328 0.0456 14.5523 1.9611 0.7724 0.0351 14.5523 1.3411
r2unet 0.8390 0.0366 14.4749 1.0748 0.7788 0.0579 14.1360 1.3977
r2Aunet 0.8456 0.0152 13.1392 1.0938 0.7799 0.0365 13.1392 1.3406
vnet 0.8389 0.0172 12.4145 1.0663 0.7998 0.0282 12.4145 1.2589
segresnet 0.8234 0.0199 13.7308 1.2383 0.7729 0.0347 13.7308 1.3995
highresnet 0.8457 0.0186 15.0525 1.5373 0.8083 0.0212 15.0525 1.3386
nnunet 0.8760 0.0099 8.7049 1.2928 0.8561 0.0133 10.2390 1.1226

(B)

Tz Cropped Tz

MDS MHD (mm) ASD (mm) MDS MHD (mm) ASD (mm)

unet 0.7700 22.5822 2.4379 0.6424 16.8615 2.6838
unet++ 0.7681 19.8427 2.3727 0.6536 16.9354 2.4165
runet 0.7671 19.9993 2.0027 0.6477 17.0520 2.5169
Aunet 0.7680 21.7833 2.4354 0.6577 16.0525 2.5444
daunet 0.7688 19.6406 2.4507 0.6471 17.4325 2.5915
d2unet 0.7627 21.2574 2.4447 0.6581 17.3590 2.7397
d2Aunet 0.7638 22.9369 2.3869 0.6581 16.7426 2.5895
r2unet 0.7631 19.8119 2.5560 0.6523 17.3374 2.8883
r2Aunet 0.7672 21.2282 2.1350 0.6553 14.3813 2.6186
vnet 0.7643 20.3670 2.8237 0.6603 18.4141 2.8833
segresnet 0.7381 19.6969 2.6089 0.6482 18.0439 2.7591
highresnet 0.7209 46.6032 6.4525 0.6381 22.3236 3.6603
nnunet 0.7300 16.9107 7.4144 0.7540 14.4592 2.1459
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(A) (B) (C) (D)

Figure 7. Segmentations of the transition zone. Column (A) contains the volumes, column (B)
contains the ground truth, column (C) contains the nnunet segmentations and column (D) contains
the aunet segmentations. Rows are interleaved, showing a full volume and a model cropped by the
object detection model, respectively.

Regarding the peripheral zone (PZ) segmentation (Figures 3 and 8), when working
with the full volumes we can see that the nnU-Net outperformed all other models, achieving
an MDS of 0.8029± 0.0063, ≈5% better than the remaining models, but also the smallest
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error, with an MHD of 9.8693, less than half of the average of most other models. When
working with the cropped volumes, we can see that there is no statistically significant
difference between any of the models. They all produce very similar values for all evaluated
metrics (MDS, MHD, ASD). Looking at Figure 8, we can also see that the distribution and
dispersion are very similar, with only a few outliers such as the aunet when measuring the
HD and the d2unet when measuring the SD. When testing the models on the external test
set (Figure 3), we can see that while using the full volumes the results hold, with nnU-Net
still being the top performing model with an MDS of 0.6835 and having the lowest MHD of
only 13.4527. For the cropped volumes, the d2unet was the best-performing model, with
an MDS of 0.6387, and the lowest MHD of 16.3358.

When comparing the performance of full and cropped volume models, looking at
Tables A3 and 3, we can see that there is no statistical difference between using full or
cropped data when segmenting this zone, apart from the nnU-Net that similarly to what
was shown in the two previous zones performs significantly worse. However, similarly
to what was observable on the gland analysis, we can see that many of the models show
small improvements on the external test set, most noticeably when examining the MHD
values, showing again that cropping may improve the generalization capabilities. Figure 9
shows a comparison between full volume and cropped volume segmentations of both
nnU-Net and highResNet, as they were the models with the highest Dice score during
cross-validation. When looking at the full volume segmentations, we can observe a large
difference between the nnU-Net and the highResNet. While the first produces smooth
and well-defined segmentations, the latter shows clear signs of poorly defined edges and
obvious noise in some cases.
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Figure 8. Boxplots showing the distribution of Dice, Hausdorff distance (HD) and Surface distance
scores per model during cross-validation for the peripheral segmentation task. Each segment contains
a pair of boxplots, where the left one corresponds to the results of the model on the full data, and the
right one on the cropped data.



Cancers 2023, 15, 1467 15 of 21

(A) (B) (C) (D)

Figure 9. Segmentations of the peripheral zone. Column (A) contains the volumes, column (B)
contains the ground truth, column (C) contains the nnU-Net segmentations and column (D) contains
the highResNet segmentations. Rows are interleaved, showing a full volume and a model cropped
by the object detection model, respectively.
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Table 3. (A) Results obtained on the external test set by the segmentation models trained on the
peripheral zone segmentation task. The results presented are the mean scores of the 5-fold models
over all the samples on the external test set. The best results (based on Table A3) for both the full and
cropped volumes are presented in green. (B) Results obtained by the segmentation models on the
peripheral zone segmentation task. The results presented are the mean scores from the validation
data over the five folds. The best results for both the full and cropped volumes are presented in red.

(A)

Pz Cropped Pz

MDS CI MHD (mm) ASD (mm) MDS CI MHD (mm) ASD (mm)

unet 0.7545 0.0300 22.1193 1.5215 0.7656 0.0326 15.8711 1.1443
unet++ 0.7557 0.0363 21.6545 1.4484 0.7666 0.0328 15.8122 1.1031
runet 0.7472 0.0296 23.0029 1.4938 0.7627 0.0243 15.8278 1.1482
aunet 0.7632 0.0280 19.6521 1.2725 0.7611 0.0360 15.0016 1.1684
daunet 0.7576 0.0384 20.1854 1.3109 0.7655 0.0349 15.1258 1.1131
d2unet 0.7597 0.0336 22.9687 1.4304 0.7644 0.0327 15.5292 1.0531
d2aunet 0.7614 0.0219 21.2204 1.5646 0.7677 0.0258 15.0999 1.1449
r2unet 0.7563 0.0280 24.6377 1.2007 0.7700 0.0307 15.4505 1.1609
r2aunet 0.7656 0.0294 19.6629 1.2778 0.7689 0.0343 14.8106 1.1195
vnet 0.7420 0.0315 22.0089 1.7818 0.7573 0.0297 15.9604 1.1659
segresnet 0.7329 0.0285 21.4516 1.4579 0.7456 0.0380 15.9265 1.2347
highresnet 0.7560 0.0301 35.7066 2.2781 0.7719 0.0203 18.4239 1.1279
nnunet 0.8029 0.0063 9.8693 1.0210 0.7686 0.0110 14.4054 1.1633

(B) Pz Cropped Pz

MDS MHD (mm) ASD (mm) MDS MHD (mm) ASD (mm)

unet 0.6160 26.9297 2.7719 0.6217 21.3145 2.0339
unet++ 0.6129 37.0787 3.5482 0.6064 19.8930 2.3919
runet 0.5828 19.5994 2.8543 0.6104 22.1387 2.4339
aunet 0.6224 20.8184 2.5188 0.6141 20.3642 2.5048
daunet 0.6282 23.0450 3.0015 0.6252 20.2531 2.0680
d2unet 0.6222 18.9975 2.5521 0.6387 16.3358 1.9674
d2aunet 0.6218 26.7974 2.6237 0.6372 17.8484 2.1356
r2unet 0.6273 27.9654 2.5934 0.6308 21.7236 2.2581
r2aunet 0.6228 21.5421 2.7400 0.6300 17.1794 2.0054
vnet 0.5848 40.8916 4.7720 0.5853 23.1373 2.5561
segresnet 0.6106 21.5214 2.5409 0.5339 41.5031 4.4359
highresnet 0.5669 60.2008 5.0504 0.6075 19.7673 2.8573
nnunet 0.6835 13.4527 1.8224 0.6038 17.6085 2.5589

4. Discussion

We conducted an extensive analysis of several commonly used segmentation models for
prostate gland and zone segmentation on a unified pipeline with the same settings for all. In
addition, we answered the research question regarding the effectiveness of using an object
detector to crop the MRI volumes around the prostate gland to aid during the segmentation
process.

First, we trained an object detector model to perform bounding box detection on the
prostate gland, in order to later crop the images. We employed a variation of the Yolo-v4
model to detect the prostate on 2D slices, which provided very good results, with box and
confidence validation losses of 0.0227 and 0.0034, respectively. These results show that it is
fairly easy to train a robust prostate detection model, raising the hypothesis for a feature
work of leveraging the learned local representations of such a model and using them to aid
in a segmentation task.

Using the results obtained from the object detection, we produced a new version of
the ProstateX dataset where the volumes were cropped around the gland, reducing the
overall size of the image and computational power required. We then trained 13 different
commonly used segmentation models, with some additional new variations, on both the
full and cropped volumes. The models were subsequently validated on the prostate dataset
from the medical imaging decathlon, both on the original and on a cropped version.



Cancers 2023, 15, 1467 17 of 21

When comparing the performance of the models on the full volume segmentation tasks,
two main conclusions can be drawn. The first being that the nnU-Net is the overall best
model, outperforming all other during cross-validation on the three different segmentation
tasks, while still being the model that better generalized on the external test set, on two
out of three tasks. Interestingly, despite not being the worst performing model on the
external transitional data, it was the one with the highest ASD value, meaning that while
it did not make the largest mistakes, it did make the most mistakes out of all models.
The second conclusion is that, excluding the nnU-Net, when choosing between the other
models, the decision is almost inconsequential. While SegResNet and Vnet produced
results significantly worse than some other models, the remaining show no significant
differences between each other for the three segmentation tasks.

When comparing the performance of the models on the cropped volume segmentation
tasks, the results are not as clear as when using the full volumes. One common aspect among
all three segmentation tasks is that the nnU-Net is either the best-performing model, or is at
least one of the best. While for the transitional segmentation task, the nnU-Net is the clear
winner, for both the gland and peripheral segmentation tasks, the choice of the model is
almost inconsequential, with the exception of only four models on the gland task, which
perform significantly worse. Regarding the performance on the external test set, there is no
clear indication of an overall better model. While for the transition segmentation task, the
nnU-Net is clearly better than the other models, and for the remaining two tasks, the results
are very similar.

Lastly, comparing the performance of the models when using the two types of data,
it is observable that overall the model performance during cross-validation is either the
same, or statistically significantly worse. The clearest case being the nnU-Net, where it
consistently hinders performance. This is most likely due to the way nnU-Net processes the
data, since it is based on a set of heuristics that are applied based on the characteristics of
the data, characteristics that are changed when the volumes are cropped. However, in both
the gland and peripheral zone segmentation task, it is also observable that the cropped
models generalize better, despite their poorer performance during cross-validation, hinting
that it is worthwhile to further explore this approach, ideally on a larger dataset and with
data to rule out any hypothesis regarding data quantity.

5. Conclusions

In this paper, we perform a comparative study using several of the latest, commonest,
and certain variations of Unet-based segmentation models for prostate gland and zone
segmentation. We answer the research question regarding the impact of using an object
detector model as a pre-processing step in order to crop the MRI volumes around the
prostate gland. Regarding the comparison of the different architectures, it is clear that
overall there are statistically significant differences between the vast majority of models,
regardless of the mechanisms they employ, apart from the nnU-Net model [31], which
consistently outperforms all other models. Concerning the object detector, it is shown
that despite being straightforward to train and obtain good results for prostate detection,
overall the segmentation results are the same or statistically significantly worse.
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Figure A1. Evolution of the different metrics during the training of the prostate detection model. The
figure contains the Recall, Precision, mAP@0., mAP@0.5 : 0.95, and both the object and box loss for
the training and validation sets.

Figure A1. Evolution of the different metrics during the training of the prostate detection model. The
figure contains the Recall, Precision, mAP@0., mAP@0.5 : 0.95, and both the object and box loss for
the training and validation sets.
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Table A1. p-values using Kruskal–Wallis for the dice scores obtained in the cross-validation of the
gland segmentation task. On the top area we compare the performance of the different architectures
on the full data, and on the bottom on the cropped data. On the diagonal we present the comparison
of the same architecture on both data types. Significant values (p < 0.05) are highlighted in green.

Gland unet unet++ d2unet d2aunet runet aunet daunet r2unet r2aunet segresnet highresnet vnet nnunet

unet 0.6015 0.3472 0.9168 0.7540 0.9168 0.7540 0.6015 0.7540 0.9168 0.1745 0.1745 0.2506 0.009
unet++ 0.4647 0.9168 0.4647 0.3472 0.9168 0.7540 0.7540 0.9168 0.9168 0.0758 0.1172 0.1172 0.009
d2unet 0.1172 0.0283 0.3472 0.7540 0.9168 0.7540 0.4647 0.9168 0.6015 0.0758 0.2506 0.1172 0.009
d2aunet 0.1172 0.0283 0.9168 0.6015 0.6015 0.2506 0.4647 0.4647 0.6015 0.0472 0.0758 0.0472 0.009
runet 0.7540 0.6015 0.0758 0.0758 0.9168 0.7540 0.7540 0.7540 0.7540 0.0472 0.1172 0.0472 0.009
aunet 0.6015 0.6015 0.6015 0.2506 0.6015 0.3472 0.9168 0.7540 0.7540 0.3472 0.3472 0.3472 0.009
daunet 0.6015 0.2506 0.6015 0.4647 0.4647 0.6015 0.2506 0.7540 0.6015 0.3472 0.4647 0.4647 0.009
r2unet 0.4647 0.6015 0.7540 0.3472 0.4647 0.7540 0.7540 0.2506 0.9168 0.0472 0.1745 0.0758 0.009

Full

r2aunet 0.2506 0.0283 0.6015 0.4647 0.1172 0.6015 0.7540 0.9168 0.4647 0.1745 0.2506 0.1745 0.009
segresnet 0.2506 0.1172 0.0163 0.0163 0.2506 0.1172 0.0283 0.0283 0.0163 0.1172 0.9168 0.7540 0.009
highresnet 0.1172 0.0758 0.0163 0.0163 0.1745 0.1172 0.0283 0.1172 0.0163 0.9168 0.4647 0.7540 0.009
vnet 0.3472 0.3472 0.0472 0.0472 0.4647 0.4647 0.1172 0.2506 0.0758 0.3472 0.4647 0.0472 0.009
nnunet 0.1745 0.0283 0.6015 0.6015 0.0758 0.4647 0.6015 0.9168 0.7540 0.0163 0.0163 0.0472 0.009

Cropped full vs.
cropped

Table A2. p-values using Kruskal–Wallis for the dice scores obtained in the cross-validation of
the transition segmentation task. On the top area we compare the performance of the different
architectures on the full data, and on the bottom on the cropped data. On the diagonal we present the
comparison of the same architecture on both data types. Significant values (p < 0.05) are highlighted
in green.

TZ unet unet++ d2unet d2aunet runet aunet daunet r2unet r2aunet segresnet highresnet vnet nnunet

unet 0.009 0.7540 0.7540 0.4647 0.4647 0.2506 0.7540 0.7540 0.7540 0.1172 0.9168 0.7540 0.0163
unet++ 0.7540 0.009 0.6015 0.6015 0.9168 0.7540 0.9168 0.4647 0.9168 0.1172 0.9168 0.4647 0.009
d2unet 0.7540 0.6015 0.009 0.3472 0.9168 0.6015 0.7540 0.6015 0.7540 0.0472 0.9168 0.3472 0.009
d2aunet 0.4647 0.6015 0.3472 0.0163 0.2506 0.2506 0.6015 0.9168 0.6015 0.4647 0.6015 0.7540 0.0163
runet 0.4647 0.9168 0.9168 0.2506 0.0472 0.3472 0.7540 0.6015 0.7540 0.0472 0.7540 0.1745 0.0163
aunet 0.2506 0.7540 0.6015 0.2506 0.3472 0.0163 0.7540 0.3472 0.6015 0.0472 0.7540 0.1745 0.0163
daunet 0.7540 0.9168 0.7540 0.6015 0.7540 0.7540 0.009 0.3472 0.4647 0.1172 0.7540 0.4647 0.009
r2unet 0.7540 0.4647 0.6015 0.9168 0.6015 0.3472 0.3472 0.0283 0.6015 0.4647 0.3472 0.9168 0.009

Full

r2aunet 0.7540 0.9168 0.7540 0.6015 0.7540 0.6015 0.4647 0.6015 0.009 0.0758 0.7540 0.3472 0.009
segresnet 0.1172 0.1172 0.0472 0.4647 0.0472 0.0472 0.1172 0.4647 0.0758 0.0163 0.1172 0.1745 0.009
highresnet 0.9168 0.9168 0.9168 0.6015 0.7540 0.7540 0.7540 0.3472 0.7540 0.1172 0.0283 0.7540 0.009
vnet 0.7540 0.4647 0.3472 0.7540 0.1745 0.1745 0.4647 0.9168 0.3472 0.1745 0.7540 0.0472 0.009
nnunet 0.0163 0.009 0.009 0.0163 0.0163 0.0163 0.009 0.009 0.009 0.009 0.009 0.009 0.0283

Cropped full vs.
cropped

Table A3. p-values using Kruskal–Wallis for the dice scores obtained in the cross-validation of
the peripheral segmentation task. On the top area we compare the performance of the different
architectures on the full data, and on the bottom on the cropped data. On the diagonal we present the
comparison of the same architecture on both data types. Significant values (p < 0.05) are highlighted
in green.

PZ unet unet++ d2unet d2aunet runet aunet daunet r2unet r2aunet segresnet highresnet vnet nnunet

unet 0.4647 0.6015 0.9168 0.6015 0.3472 0.4647 0.9168 0.9168 0.3472 0.1745 0.6015 0.1745 0.0163
unet++ 0.9168 0.4647 0.9168 0.1745 0.4647 0.3472 0.7540 0.6015 0.1745 0.1172 0.3472 0.2506 0.0283
d2unet 0.9168 0.9168 0.9168 0.6015 0.3472 0.6015 0.9168 0.7540 0.2506 0.0758 0.7540 0.2506 0.0163
d2aunet 0.9168 0.9168 0.9168 0.4647 0.0758 0.7540 0.4647 0.2506 0.4647 0.0758 0.7540 0.0758 0.0163
runet 0.7540 0.6015 0.9168 0.6015 0.2506 0.1745 0.4647 0.3472 0.1172 0.2506 0.3472 0.4647 0.009
aunet 0.7540 0.6015 0.9168 0.6015 0.9168 0.9168 0.4647 0.3472 0.7540 0.0758 0.7540 0.1745 0.0163
daunet 0.9168 0.7540 0.9168 0.7540 0.6015 0.6015 0.6015 0.9168 0.3472 0.1172 0.4647 0.3472 0.0283
r2unet 0.7540 0.9168 0.7540 0.9168 0.9168 0.6015 0.7540 0.3472 0.2506 0.0758 0.3472 0.1745 0.0163

Full

r2aunet 0.9168 0.9168 0.6015 0.9168 0.7540 0.7540 0.9168 0.7540 0.7540 0.0758 0.6015 0.0758 0.0163
segresnet 0.2506 0.1745 0.2506 0.1745 0.3472 0.4647 0.3472 0.1745 0.2506 0.3472 0.3472 0.3472 0.009
highresnet 0.9168 0.9168 0.7540 0.6015 0.3472 0.3472 0.4647 0.9168 0.7540 0.1172 0.3472 0.3472 0.0283
vnet 0.4647 0.4647 0.6015 0.4647 0.6015 0.7540 0.4647 0.4647 0.4647 0.6015 0.2506 0.1745 0.009
nnunet 0.9168 0.7540 0.7540 0.7540 0.4647 0.6015 0.9168 0.9168 0.7540 0.1745 0.6015 0.2506 0.0163

Cropped full vs.
cropped
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