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Preface

This volume contains 47 of the papers accepted for presentation at the workshops hosted
by the 21st International Conference on Image Analysis and Processing (ICIAP 2022),
held in Lecce, Italy, during May 23–27, 2022. ICIAP is organized every two years by
CVPL, the group of Italian researchers affiliated with the International Association for
Pattern Recognition (IAPR). The aim of the conference is to bring together researchers
working on image processing, computer vision, and pattern recognition from around the
world. Topics traditionally covered are related to computer vision, pattern recognition,
and image processing, addressing both theoretical and applicative aspects.

In total, 16 different workshops were selected to complement ICIAP 2022 in Lecce.
All the 16 workshops have received a total of 157 submissions, and after a peer-review
selection process, carried out by the individual workshop organizers, ultimately led to
the selection of 96 papers, with an overall acceptance rate of 61%.

This volume contains 47 papers (out of 96) from the following workshops:

• Medical Imaging Analysis for Covid-19 (MIA COVID)
• Artificial Intelligence for preterm infants’ healthCare (AI-Care)
• Binary is the new Black (and White): Recent Advances on Binary Image Processing
• Towards a Complete Analysis of People: From Face and Body to Clothes (T-CAP)
• Workshop on Small-Drone Surveillance, Detection and Counteraction Techniques
(WOSDETC)

• Artificial Intelligence for Digital Humanities (AI4DH)
• Human Behavior Analysis for Smart City Environment Safety (HBAxSCES)
• Learning in Precision Livestock Farming (LPLF)
• Novel Benchmarks and Approaches for Real-World Continual Learning (CL4REAL)
• Medical Transformers (MEDXF)

The papers accepted for the other workshops are included in the companion volume
(LNCS 13373).

Medical Imaging Analysis for Covid-19 (MIA COVID), organized by Fares
Bougourzi (ISASI-CNR, Italy), Cosimo Distante (ISASI-CNR, Italy), Abdelmalik
Taleb-Ahmed (Université Polytechnique Hauts-de-France, France), Fadi Dornaika
(University of the Basque Country, Spain), and Abdenour Hadid (Université
Polytechnique Hauts-de-France, France), provided an overview of the potential
applications of AI in combating this pandemic using medical imaging methods.

Artificial Intelligence for preterm infants’ healthCare (AI-Care), organized by Sara
Moccia (Scuola Superiore Sant’Anna, Pisa, Italy) along with Emanuele Frontoni and
Lucia Migliorelli (Università Politecnica delle Marche, Italy), aimed to group expert AI
researchers in the field of preterm infant monitoring to discuss the most recent research
work and highlight current challenges and needs.

Binary is the new Black (andWhite): Recent Advances on Binary Image Processing
covered anything using, implementing, or improving binary image analysis, a specific
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area of image processing, which is less mainstream nowadays, but which still supports
most computer vision systems implementations. It was organized by Costantino Grana
and Federico Bolelli (Università degli Studi di Modena e Reggio Emilia, Italy).

Towards a Complete Analysis of People: From Face and Body to Clothes
(T-CAP), organized byMohamed Daoudi (IMT Nord Europe, France), Roberto Vezzani
(Università degli Studi di Modena e Reggio Emilia, Italy), Marcella Cornia (Università
degli Studi di Modena e Reggio Emilia, Italy), Guido Borghi (Università di Bologna,
Italy), Claudio Ferrari, (Università di Parma, Italy), Federico Becattini (Università di
Firenze, Italy), and Andrea Pilzer (Aalto University, Finland), aimed to improve the
communication between researchers and companies and to develop novel ideas that can
shape the future of this area, in terms of motivations, methodologies, prospective trends,
and potential industrial applications.

The Workshop on Small-Drone Surveillance, Detection and Counteraction
Techniques (WOSDETC) aimed at bringing together researchers from both academia
and industry, to share recent advances in this field. It was organized by Angelo
Coluccia (Università del Salento, Italy), Alessio Fascista (Università del Salento,
Italy), Arne Schumann (Fraunhofer IOSB, Germany), Lars Sommer (Fraunhofer IOSB,
Germany), Anastasios Dimou (Information Technologies Institute, Greece), Dimitrios
Zarpalas (Information Technologies Institute, Greece) Nabin Sharma (University of
Technology Sydney, Australia), and Mrunalini Nalamat (University of Technology
Sydney, Australia).

Artificial Intelligence for Digital Humanities (AI4DH) aimed to encourage and high-
light novel strategies and original research in applying artificial intelligence techniques
in digital humanities research, such as data discovery, digital data creation, manage-
ment, data analytics in literature, linguistics, culture heritage, media, social science,
history,music and acoustics, and artificial intelligence for digital humanities in pedagogy
and academic curricula. It was organized by Marina Paolanti and Emanuele Frontoni
(Università Politecnica delle Marche, Italy), Francesca Matrone (Politecnico di Torino,
Italy), and Silvia Cascianelli, Marcella Cornia, and Lorenzo Baraldi (Università degli
Studi di Modena e Reggio Emilia, Italy).

HumanBehaviorAnalysis for SmartCityEnvironment Safety (HBAxSCES) focused
on smart cities that aim to ensure secure and safe physical and digital environments for
the well-being of citizens. Among other things, ICT systems are reliant on evolving
artificial intelligence, pattern recognition, computer vision, 3D simulations and digital
twin techniques to make environments more resilient. This workshop was organized by
Alessandro Bruno, Zoheir Sabeur, Deniz Chetinkaya, Muntadher Sallal, and Banafshe
Arbab-Zavar (Bournemouth University, UK).

Learning in Precision Livestock Farming (LPLF) aimed to attract novel and original
contributions on the analysis, study, and proposal of innovative machine and deep
learning techniques applied to the automatic monitoring of animals in intensive farms,
helping to improve the living conditions of the animals. It was organized by Simone
Palazzo, Simona Porto, Claudia Arcidiacono, and Giulia Castagnolo (Università di
Catania, Italy) together with Marcella Guarino (Università di Milano, Italy).

Novel Benchmarks and Approaches for Real-World Continual Learning
(CL4REAL), organized by Simone Palazzo andGiovanni Bellitto (Università di Catania,
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Italy), Angelo Porrello andMatteo Boschini (Università degli Studi di Modena e Reggio
Emilia, Italy), and Vincenzo Lomonaco (Università di Pisa, Italy), aimed to attract novel
and original contributions exploring the intersection of continual learning and real-world
applications.

Medical Transformers (MEDXF) focused on the employment of transformer
architectures for medical imaging, with the objective of extending the state of the art
of this topic, presenting novel solutions to typical problems in medical image analysis
and, just as importantly, investigating the limits and pitfalls of these new techniques
in specific and socially-critical domains. It was organized by Ulas Bagc and Zheyuan
Zhang (NorthwesternUniversity,USA) alongwithSimonePalazzo andFederica Proietto
Salanitri (Università di Catania, Italy).

Wewarmly thank all the workshop organizers whomade such an interesting program
possible and we hope that ICIAP 2022 has given us a chance to design a future where
technologies allow people to live comfortably, healthily, and in peace.

May 2022 Pier Luigi Mazzeo
Emanuele Frontoni
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Abstract. This study is devoted to ways of forming routes taking into account
external natural and artificial factors, and the perception of such factors by the trav-
eler. The route is built based on preliminary knowledge of an area and is updated
with information obtained during travel. Orientation along the route is carried
out using signs (waymarks, billboards) and other natural and artificial references
which clarify preliminary knowledge of the area. The final and intermediate targets
along the route are determined by spatial objects—“points of interest” or “points
of attraction”—which are either chosen in advance or occur unpredictably during
movement along the route. At the same time, the available accuracy, completeness
and degree of relevance of local maps do not always provide the information nec-
essary for travelers. The interface of route creation acts as an intermediary between
the preliminary idea of the route and the observable external environment. The
interface can supplement incomplete or unavailable information; it helps to search
for appropriate objects based on given attributes. Currently digital applications are
often used as such interfaces. Objects on the route are constantly changing their
properties over time—both according to a previously known schedule and as a
result of random events. The appearance of unexpected obstacles, and sudden
changes in lighting and weather conditions, force travelers to significantly change
their routes and choose new route options. The framework can be used both for
optimizing navigation and tourism services and for preparing project designs for
landscaping and development of suburban terrains.

Keywords: Route formation · Wayfinding · Choice of routes

1 Introduction

A route is a path that specifies movement relative to spatial landmarks or geographical
coordinates, indicating the start, end, and intermediate waypoints. When moving along
the route, different types of transport infrastructure can be used for different segments.
When planning the route, preliminary information can be prepared—both a route plan
(map) and a schedule. The scale of the planned route determines the features of its
formation While on short-distance route segments, objects of interest can be observed
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immediately, on long-distance routes the points of interest selected and the details of such
objects may be changed and adjusted on site. When analyzing route tracks, researchers
usually integrate them with other data for an efficient pathway analysis, primarily data
on objects of interest and map data. Urban road networks and terrain relief have a huge
impact on route formation for people and vehicles [1].

Fig. 1. A chaotic and stable movement B. Most popular route and most direct route. C. Popular
routes’ heatmap in Venice

Figure 1 shows ways to representation of navigation strategies: A. Difference
between chaotic and stable movement (oscillation variability due to POI or hidden
object, snap-to-line-object variability, linear segment variability of a track) [2]. B. A
sample of difference routes, from Capitol Hill to Golden Triangle. Most popular route:
2.5miles/Most direct route: 1.4miles (source: https://metroview.strava.com/map/demo).
C. Popular routes’ heatmap in Venice (see Sect. 3).

2 Orientation and Perception Along the Route When Using
the Navigation Interface

2.1 Mental Maps and Traveler Environment in Route Network Sustainability

A mental map or plan [3] allows a person to imagine a terrain with sets of key elements
located therein and to imagine possible ways to interact with the surrounding environ-
ment. Most often, such a map is drawn up rather conditionally and unclearly, and for
an ordinary survey walk, it may not have an exact route plan or direction selection
algorithm.

In the case of medium- or long-distance travel, the endpoint is usually not visible at
the start of the route. It is even possible that the target as such is simply absent—if, for

https://metroview.strava.com/map/demo
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instance, a person takes a walk in a large landscaped park that was previously unknown
to him or her (Fig. 2).

On the one hand, the person has a general “mental” image of future travel (“mental
outline map”). On the other hand, a set of spatial objects can serve as an interactive
interfacewith the outside ambient. Some of these objects serve only as signs (waymarks),
helping to choose the route. Other objects can be points of attraction, and intermediate
targets on the way.

Transport plans are designed not only by forecasting the processes of freight and
passenger transport services but also by taking into account population density, types of
development, terrain relief, and climatic conditions.

Fig. 2. Standard mental plan of a walk in a little-explored location

Thoughtful plans for the future development of territories have been supplement-
ing the natural growth of urban infrastructure from its inception. The most sustainable
solutions always include already existing routes. Thus, pedestrian paths are first created
in suburban areas; then, these paths become lanes that are paved with slabs and taken
into account in further landscaping. In densely populated areas, the future direction of
urban growth is managed by creating new centers of attraction. The targeted attraction
of urban residents can promote the investors’ interest in purchasing real estate or in the
infrastructural development of the territory.

A study byMargara [4] provides an overview of modern algorithms and methods for
adapting data structures, which are memory-effective and allow for parallel processing
of event flows.

Points of attraction that a person can purposefully move to or accidentally turn to
when they see a sign that attracts them can have a significant impact on the route. With
similar data being collected every day bymobile providers across the world, the prospect
of being able to map contemporary and changing human population distributions over
relatively short intervals exists, paving the way for new applications and a near real-time
understanding of patterns and processes in human geography [5].

Long-term solutions should be reflected in the real world, not in the information
field, by building an infrastructure of tunnels, overpasses, dams that connect difficult
and dangerous, but closely located sections of the path.

Areas with a large number of points of attraction can change during the day, sea-
sonally or on weekends (Fig. 3). Peculiarities of the creation of pedestrian and transport
infrastructure in many cities are associated with their historical development.
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Fig. 3. A. Points of attraction in France (source: https://www.eurekalert.org/pub_releases/2014-
10/uos-rpa102814.php). B. Map of Naples, 1761 [6]

The methods of urban studies used in instrumental design in Venice highlight the
value of the urban form of the city [7].

Often, the natural of the environment, including elevation differences, boundaries of
water bodies, and soil features, served as the basis for the formation of new routes. The
most successful and sustainable routes were constantly visited by travelers. Along the
roads, tourism service centers were developed, which could later become independent
and developed settlements. The formation of routes that differ from each other passes
through a series of stable or blank states of the environment or other information. Even
if the geometric distance is fixed, due to weather and other unexpected factors, traveling
time from one city to another may be variable [8].

The traveler can take a risk and create a short-term transition through the gap. If it
is convenient and visible, such a gap transition may start to be used frequently. But the
presence of a gap transition does not solve, but rather exacerbates the problem of risk
with frequent repetition.

To reduce this risk in practice, if funding is available, an overpass can be built near
a place where short-term movements often occur. Such a solution will have greater
sustainability and significantly less risk. For example, if an overpass is built along the
path of repetitive migration of animals when they cross a highway, then instead of risky
trajectories, there is an alternative long-term solution that allows animals to cross the
highway above the road. The familiar old solution of running the highway in front of
cars does not disappear, but there is a new choice that animals can use.

Many routes constantly encounter gaps in spatiotemporal capabilities, such as rivers,
the lack of a path between two neighboring roads, tides, etc. (Fig. 4).

Fig. 4. A. Real-time deer incidents ( source: https://roadecology.ucdavis.edu/hotspots/map). B.
Overpass: animal crossing bridge in Luxembourg (49°40′01.2"N 6°22′29.0"E)

https://www.eurekalert.org/pub_releases/2014-10/uos-rpa102814.php
https://roadecology.ucdavis.edu/hotspots/map
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The interface, consisting of reference points located in certain specific places and
having information content, allows people and animals to proceed to the formation of a
new trajectory “here and now” based on the waymark signs. This new trajectory may be
risky, but it may be the only quick solution to overcome a short section of the path.

2.2 Aggregation of Information for Navigation Tasks

Route data that captures the location of moving objects at certain time intervals has long
been an important tool for studying human behavior and solving transport problems.
Natural objects that are located close to each other for a long time usually have similar
or dependent components that determine their structure and content. To a lesser extent,
this applies to artificial objects. Tobler’s first law [9] assumes the dependence of some
attributes of objects that are close to each other. In an unfamiliar environment, a person
searches for previously encountered objects and signs in order to recognize other ones.
The uncertainty generated by a little-known situation results in an attempt to orientate
and search for fragments of previously encountered elements [10]. The search allows
identification of suitable objects and supplements thereto. Missing points can be added
based on the available parts of other objects.

Points with known attributes can also serve as reference points. Reference points
have stable locations, but their locations can change over time. The complex nature
of reference points allows them to be used as a tool for operations with objects and
attributes, and as a framework for spatial positioning. The relative positions of points
and objects form the structural code of the track points.With small changes, the structural
code may remain the same, with significant changes in the data set of the environment;
a new structural code is formed from some stable or repetitive components/elements
of the environment. Natural perceptual organization can be described in terms of topo-
logical invariants; topological perception precedes the perception of other properties of
attributes; and primitives of visual form perception are geometric invariants at different
levels of structural stability [11].

Going outdoors, a person is guided—when choosing a route—by signs, including
road signs, that are known andmeaningful to him or her. The sufficiency and redundancy
of a set of signs determine the time needed for a person to make a choice and the
optimality of the choice itself (Fig. 5). Uncertainty in choosing the route occurs with a
lack of known signs and also when the signs are redundant and provide multiple choices.

Fig. 5. A. Sign on a hiking trail near Zermatt, Switzerland. B. Crossing signs in London
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Signs are not always located in places convenient for data collection. Sometimes signs
that are necessary to create a complete picture are located at a considerable distance
from others.

In problems of detecting visual changes, researchers have shown that objects embed-
ded in a contextually heterogeneous scene tend to be detected faster than objects embed-
ded in a contextually homogeneous scene. This discovery is very curious, given that a
contextually homogeneous scene includes many signals that should aid in perception,
e.g. types of objects and their probable location [12].

2.3 Planning, Detailing, and Optimizing a Middle-Distance Route

A person identifies recognizable signs in the environment, both replacing each other in
the same place and moving from one place to another. Walking down the street, taking
the escalator in the subway, and based on the perceived spatiotemporal series of objects
(local attractions and their number), a person determines how much distance he or she
has traveled, and how much time has passed. In cities people pay more attention to road
signs, and not to other “noisy” information, which allows them to pass any sections of
the path quickly.

In addition to the existing “points of interest” on a map of the area, a traveler can
find new "points of attraction” that unexpectedly invite attention. They can become
intermediate points on the route.

A “wayfinding” interface is a method of interaction between a human, an event on
the route and the route itself. Events on a route represented in the form of objects or signs
have a real-time impact on choice of the subsequent path. These events create an interface
for a person to plan and optimize the route. Furthermore these events are used in the
interface when adding new points on the route and when changing the movement along
the route. This interface can take various forms, from a mental plan existing only in
the mind to a digital map stored in a navigation application. When solving the route
optimization problem, a user can change conditions by moving, adding, or fixing route
points selected according to given criteria.

Unlike static orientation elements, dynamic elements are not constant in their prop-
erties over time. Natural objects can change their visual properties depending on the time
of day and season. Artificial objects can change their other attributes without changing
visually over time: public facilities (museums, cafes, shops, etc.) have opening hours;
public transport runs on a schedule, possibly, with long breaks. Spatial synchronicity of
two points on the map, in the absence of other data, makes it possible to determine at
least the distance between such points and shows for how long a person will walk on a
traversable terrain if the distance is short enough. The issues of a simultaneous search
for several objects are discussed in [13].

The presence of a distinguishable choice between two options does not imply the
presence of a predisposition to one of them. In this situation, preparation is necessary for
the solution: surveying in situationwith clarificationof route details, external interference
to the situation, outside signs or so on. As an alternative to a choice, it is also possible
try to avoid a choice. Sometimes, due to an ambiguous situation, draft picks appear
(Fig. 6). Besides, there may be unforeseen road incidents requiring a significant change
in the route, including heavy traffic or traffic jams, or meeting wild animals (Fig. 4A).
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Fig. 6. A. Planned route with and without details. B. Actual route with additional details

An important reason for the change or complete cancellation of a route may be
the discrepancy between expected and real events.

Human choice does not necessarily imply selection of the shortest path length or the
path that can be traversed in the shortest time. Unexpected signs, such as obstacle signs,
can significantly change the route and set of points to be visited. The line of sight of the
short route endpoint is obscured by visual obstructions; the route may deviate greatly
from the straight line and detour along the visible road section.

Figure 7 shows a comparison of linearity, the shortest route and popular trampling
paths near the farm.

Fig. 7. Line-of-sight way (yellow dotted line) and alternative curve way (red dotted line) (site
43°23′10.9"N 10°51′21.0"E) (Color figure online)

2.4 Smart Routes Application Interface

Interface usability is improved by highlighting significant places and the ability to place
and remove points in a dynamic way. The interface should allowmovement and addition
of points, and fixation of points during re-optimization; the main interface functions are
selection, placement, and removal of points. The interface is defined by a) data exchange
and retrieval, b) the speed of processes and internal exchanges, and c) generalized coor-
dinates. The time for changes and the transport speed should be aligned with the user’s
response speed and that of the tools and programs used. The interface also needs to align
the velocities of perception, movement, and reception of new data, including virtual data
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along the path, e.g. when using smart applications for a bike ride. (A sample interface
for cyclists: https://www.bikemap.net/en/r/3954524/#10.19/48.1851/11.6073).

The user of a smart application interface has a designed set of tools that allows quick
responses to events on the road. Additional points in the interface arise from both the
human side and external events. It is possible to make adjustments for the user when
planning routes, taking into account his or her route history. When optimizing a route,
taking into account points of interest, the interface can use a dynamic segmentation of
events along the route.

3 GIS Applications in the Study of Navigation Behavior

3.1 Materials and Methods

In this work Strava tracks dataset were studied. Strava is a social fitness service that
allows users to share, compare and compete with other users’ personal fitness data via
mobile and online apps. Focusing on cyclists and runners, Strava lets users track their
rides and runs via mobile apps or GPS device to analyze their performance. The Strava
API provides several methods through which users can send and receive Strava data
from a mobile device. To access Strava dataset the open Strava V3 API was used (API
Endpoint: https://www.strava.com/api/v3; Docs Home Page URL: https://developers.str
ava.com/docs). Spatial data were analyzed using the geographical information system
QGIS (https://qgis.org).

The routes on the territory of Venice were selected for a period of 2 years. For this
purpose, a list of id pedestrians in historical Venice was obtained. According to this list,
a set of tracks in gpx format was requested and received via API. Based on this set of
tracks, a heatmap of the distribution density of track points was formed (see Fig. 8).
Differences in the length, variability and shape of the tracks were identified for the cases
of most popular routes and most direct routes from point A to point B.

In addition, the factors on the environment that influenced the formation of
preferences along the routes were revealed (Fig. 8).

The comparative analysis was performed for the following data sets spatially dis-
tributed urban structure, including amenities on routes; themain components of tracking,
such as location, length, linearity of paths: and heatmap of pedestrian activities.

Fig. 8. A. Calculated shortest routes from the Zattere terminal to Punta della Dogana; routes’
heatmap in Dorsoduro. B. Influence on the route of drinking water locations

https://www.bikemap.net/en/r/3954524/#10.19/48.1851/11.6073
https://www.strava.com/api/v3
https://developers.strava.com/docs
https://qgis.org
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The following operations were performed:

– selection of tracks in Venice from Strava dataset;
– inserting tracks dataset to QGIS project;
– loading a basic map from OpenStreetMap using the OpenLayers Plugin;
– calculation shortest path with Online Routing Mapper Plugin;
– creating a density heatmap for routes;
– selection of drinking water points using Overpass API (https://overpass-turbo.eu);
– comparison shortest paths, heatmap of routes and amenities on routes (drinking water.

The data were processed using QGIS geoalgorithms (http://qgis.org) and Plugin
(Table 1).

Table 1. Spatial data processing applications.

Plugin Description

OpenLayers Plugin
https://github.com/sourcepole/qgis-openla
yers-plugin

QGIS plugin embeds OpenLayers (http://ope
nlayers.org) functionality

Heatmap
https://docs.qgis.org/3.16/en/docs/user_m
anual/processing_algs/qgis/interpolation.
html#qgisheatmapkerneldensityestimation

Creates a density (heatmap) raster of an input
point vector layer using kernel density
estimation
The density is calculated based on the number
of points in a location, with larger numbers of
clustered points resulting in larger values

Online Routing Mapper
https://cbsuygulama.wordpress.com/online-
routing-mapper-en

Shortest Path Analysis with Online Routing
Mapper Plugin. Generate routes by using
online services (Google Directions, Here,
MapBox, YourNavigation, OSRM etc.)

3.2 Results

In this study, Strava tracks datasets obtained for popular routes and calculated direct
(shortest) routes (about 1–5 km) were analyzed.

Table 2 shows the result of analyzing the parameters of routes calculated using
navigation algorithms and the parameters of real tracks from Strava. The comparison
between direct and popular routes was tested for different types of territory - the whole
of Venice, only Dorsoduro, Venice Lido. More than 1000 real tracks were analyzed for
each type of territory. The percent of coincidences of popular routes and direct routes
from one to another point is not higher 18% in Venice (if consider all popular routes and
determine how many of them are direct). The result is statistically significant (p < .05).

https://overpass-turbo.eu
http://qgis.org
https://github.com/sourcepole/qgis-openlayers-plugin
http://openlayers.org
https://docs.qgis.org/3.16/en/docs/user_manual/processing_algs/qgis/interpolation.html#qgisheatmapkerneldensityestimation
https://cbsuygulama.wordpress.com/online-routing-mapper-en
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Table 2. The parameters of routes and real tracks

Coincident of
popular routes
and direct routes,
%

Variability of the
distance from the
real track to the
nearest popular
route, ma

Route variation
of real track
direction
(max-min), angle
degreeb

Route variability
of real track
direction, angle
degreea

Set1 (Venice) 18% 98 81 48

Set2 (Dorsoduro) 41% 127 64 46

Set3 (Lido) 57% 193 36 38
a Mean value for all 100-m sections in single track (averaged for all tracks in the set).
b For the entire track (averaged for all tracks in the set).

4 Conclusion

In this work we demonstrated the usability of spatial data processing methods for com-
parative analysis of track records.We have shown that detection of typical tracks enriches
the possibilities of track analysis processing.

On the basis of an initially indistinct representation of the terrain, it becomes pos-
sible to build a route and additionally to identify new significant landmarks and points
of attraction in practice. Thus, by varying the positions of signposts and other visual
architectural and landscape elements, one can artificially adjust the appeal of certain
places, while creating stable points of attraction.

The traveler’s choice may be inclined either to routes with a good overview, or to
direct routes, or to routes with a large number of attractions.

For the smart spatial development of the urban structure, it is necessary to prepare
for travelers the possibilities of alternative choices, with the creation of passages, water
crossings, and additional points of interest on the route.

For example, after the construction of bridges, and also after the repair of one of
the broken bridges on the Fondamenta Zattere Ai Saloni embankment in Venice, longer
straightened routes with increased overview became possible for tourists.
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Abstract. This review article about Few-Shot Learning techniques is
focused on Computer Vision Applications based on Deep Convolutional
Neural Networks. A general discussion about Few-Shot Learning is given,
featuring a context-constrained description, a short list of applications,
a description of a couple of commonly used techniques and a discussion
of the most used benchmarks for FSL computer vision applications. In
addition, the paper features a few examples of recent publications in
which FSL techniques are used for training models in the context of
Human Behaviour Analysis and Smart City Environment Safety. These
examples give some insight about the performance of state-of-the-art
FSL algorithms, what metrics do they achieve, and how many samples
are needed for accomplishing that.
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Human Behaviour Analysis · Smart City Environment Safety

1 Introduction

In September 2012 the Convolutional Neural Networks (CNNs) were in the
spotlight of the Computer Vision community when a model developed by Alex
Krizhevsky, Ilya Sutskever and Geoffrey Hinton [18] had an outstanding per-
formance at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[33]. This CNN model started the so-called “Deep Learning revolution”, which
is still booming as of today. During this period, novel computer vision appli-
cations have arisen, allowing practitioners and researchers to tackle previously
unsolvable problems and to create new out-of-the-box solutions. Although pow-
erful, Deep Learning (DL) techniques have their own set of problems, being data
and computer power their most limiting requirements. Since they are Machine
Learning (ML) algorithms, they need large amounts of data for training, which
in turn require high computational power to process.

Many researchers have focused their work on mitigating these problems, cre-
ating a variety of techniques that softens the workload needed to create labelled
datasets for supervised training. Some of them consist of using low-complexity
labels for training models for high-complexity tasks [49]; others try to augment
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 14–25, 2022.
https://doi.org/10.1007/978-3-031-13324-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13324-4_2&domain=pdf
http://orcid.org/0000-0001-7317-6267
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datasets by generating synthetic data [27,28], and others try to reuse previously
learnt features [50]. Please note that there are other approaches beside the afore-
mentioned three. Among the last of the three highlighted strategies there is a
family of techniques called “Few-Shot Learning” (FSL), which includes “One-
Shot Learning” and “Zero-Shot Learning”.

For image classification tasks, supervised training of ML models require large
amounts of annotated data for each of the classes or categories. Few-Shot Learn-
ing comprises those techniques designed for enabling a trained model to learn
a new category from few examples. Thus, “One-Shot” would ideally need a sin-
gle example of the new category to be able to learn how to classify it, whereas
“Zero-Shot” would only need its description. Although those techniques are fea-
sible for some tasks and data-types (see [38] for One-Shot and [32] for Zero-Shot),
most applications require more samples to perform accurately. For example, a
previous work from the author shows how a model trained for classifying dif-
ferent plant species needed 80 samples to classify at 90% accuracy a new-learnt
class [3]. The true potential of Few-Shot Learning is its power to provide neu-
ral networks with adaptability and agility, which are features where CNNs do
not traditionally shine on. This “learning speed” comes at a cost on accuracy
and overall performance, although in many cases it is an acceptable trade-off.
Also, while under regular conditions data scarcity hinders ML algorithms’ per-
formance, potentially down to unacceptable levels, the application of FSL can
enable the use of ML algorithms when data is scarce.

This review article discusses the latest developments in Few-Shot Learn-
ing techniques applied to Computer Vision models, focusing in the contexts of
Human Behaviour Analysis and Smart City Environment Safety applications. In
it, there are answers to some questions related to the number of samples needed
for training accurate networks using FSL, the trade-off between number of sam-
ples and performance in this context, and others. This document is divided in
5 sections. The first one is the introduction. The second, called “Description of
Few-Shot Learning”, discusses about Few-Shot Learning as a whole, and has 3
subsections titled “Applications of FSL”, “FSL Techniques” and “FSL Bench-
marks for Computer Vision”. The third, “FSL for Human Behaviour Analysis
applications”, discusses two recent papers featuring FSL in this thematic. The
fourth is called “Few-Shot for Smart City Environment Safety applications”
and, similarly to the third, includes the discussion of three recent papers on that
matter. The fifth and last section is a brief conclusion.

2 Description of Few-Shot Learning

In its broader sense, Few-Shot Learning is a category of Machine Learning tech-
niques where the training dataset contains a limited number of supervised sam-
ples.

Since this is a broad description, common ML techniques such as data aug-
mentation would be considered FSL as well, since this method enables accurate
training with a limited sampling of annotated data. Nevertheless, in the context
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of this article the definition of Few-Shot Learning is constrained to the follow-
ing: a family of Machine Learning methods that reuse previous knowledge for
training accurate models using very limited training samples.

It is noteworthy to say that in the context of Computer Vision FSL is usually
referred to image classification tasks, although it can be used also for object
detection, semantic segmentation and hybrid tasks such as image description
with text, among others.

2.1 Applications of FSL

Few-Shot Learning allows to train models with limited training datasets, thus
reducing the amount of samples needed for supervised learning processes. There
are several scenarios where reduced datasets are needed, and consequently FSL
techniques can be applied:

– Extreme data. Data is called “extreme” when it has at least one of these
characteristics: great volume, great variations in values, great complexity or
sparsity. Few-Shot Learning can be applied in those situations where acquiring
sufficient amounts of labelled data is hard or impossible. It is the case of
analyzing ancient Chinese documents [22] and hieroglyphs (oracle characters)
[14]; or new drug discovery problems as discussed by Altae-Tran et al. [1] for
example.

– Cut costs. Annotating large amounts of data is a time-consuming process.
Also, processing large datasets costs more computational power than smaller
ones. Since FSL can be used to reduce the amount of data needed for training,
it can be applied to reduce costs in both dataset generation and computer
utilization expenses.

– Improve learning processes. In some cases, Few-Shot can be applied to parts
of datasets to increase the quality of training rounds. This is the case of
imbalanced datasets where some classes are underrepresented in relation to
others within the same dataset. It also can be used for weakly-supervised
learning when the dataset contains mixtures of annotated and non-annotated
data. In addition, FSL is capable of boosting some transfer learning methods
such as domain adaptation.

Also, beside the general applications mentioned above, there are many pos-
sible fields of application. This document focuses on Computer Vision, but it is
noteworthy to mention that FSL is widely applied in all sorts of Machine Learn-
ing related methods: Natural Language Processing (NLP), language translation,
regression, reinforcement learning, data classification, sound recognition [8], sen-
sor calibration [43], smart city insight transfer [39], etc.

2.2 FSL Techniques

Some techniques use the knowledge for reducing the complexity of the Neural
Networks graphs themselves, while others use it for optimizing the weights and
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parameters of the artificial neurons and the gradients. In this section the two
most used FSL techniques are presented. Both intend to reuse prior knowledge
to reduce the amount of data needed for successful learning.

Different taxonomies have been proposed for FSL techniques in several sur-
veys and review articles, offering formal descriptions for transfer learning, meta
learning, distance learning, embedding learning, etc. [2,16,25,41]. It is notewor-
thy to say that many of these techniques share common traits and, depending on
the context of application, some of them do not present sufficient unique char-
acteristics to be distinguished from one another. For that reason, at this point
in time it cannot be assumed that the categories themselves are standardized
and fixed. In this regard, what it is called “multi-task learning” in one paper
can be part of the “meta-learning” family in another. In this document there
are short discussions about a couple of techniques but the category names are
not intended to be taken as fixed, immutable references.

Metric Learning. In some papers it is also referred as “embedding learning”
[41]. This technique consists on transforming the input data (the samples) into a
lower-dimensional embedding located in a space where distances represent simi-
larity between the different encoded samples. In the embedding space, two sim-
ilar samples would lay at small distances whereas dissimilar samples will be far
from each other. This sample discrimination can be applied to effectively reuse
prior knowledge about the samples themselves, and thus drastically reduce the
training samples needed for learning. This is possible mainly because the embed-
ding space allows for fast an simple comparisons of samples, whereas in other
approaches complex operations are needed to effectively process the embeddings
into predictions. In this case the encoding functions are already pre-trained, and
can be fine-tuned with few examples by applying a specific loss function that
forces the neural network’s parameters to encode the samples in a given space in
where the distances are related to the samples’ similarity. In this sense, metric
learning can be used for other applications besides Few-Shot Learning [15]. It has
proven to be effective for learning tasks that involve comparison like signature
verification [6], product design [4] or face recognition [26], among others.

In distance metric learning, the main feature is the training loss function,
as it is responsible for setting the characteristics of the embedding space. The
most used loss functions in metric learning are contrastive loss [7], triplet loss
[34,42] and multi-class N-pair loss [36]. Recent research works explore novel loss
functions for specific tasks, like Additive Angular Margin Loss (ArcLoss) for face
recognition [10]. Other approaches use ensemble loss functions for better gener-
alization of metric learning models [45]. The encoding space is usually Euclidean
for simplicity reasons, but there are other research lines were both known and
novel geometries are explored.

Multi-task Learning. In some research articles it is also called “meta-learning”
[2], because “multi-task learning” is part of the that family of ML algorithms.
This approach uses learning procedures where different learning tasks are trained
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simultaneously, thus achieving to share parameters between them which gradu-
ally increases the generalization capabilities of the model. In order to learn dif-
ferent tasks, the model needs to make abstractions and learn more generic infor-
mation. In multi-task learning there are two types of knowledge: task-agnostic
and task-specific information. The first of them refers to all the preprocessing
steps needed to aggregate and interpret features into embeddings. The second is
about how to interpret such embeddings into actual predictions, which is specific
for each given task.

The most common approach of multi-task learning is to directly share com-
mon layers (the encoder) and put different ones at the end in order to process
each task’s output. In many cases, constrains would be applied to the artificial
neurons so the Few-Shot task can only update parameters from the task-specific
layers, while the encoder’s parameters (task-generic or task-agnostic) can be
changed by all of the tasks. Another approach would be to have separate CNN
encoders for each task and them concatenate the resulting feature vectors at
the end of the feature extractor. In this case all encoders would contribute to
the same loss function, and regularization terms would be applied to force the
parameters of the different Neural Network layers to be similar, thus aligning
the training process of each individual encoder.

2.3 FSL Benchmarks for Computer Vision

As of today, the most important benchmark for testing Few-Shot Learning meth-
ods applied to Computer Vision is Google Research’s Meta-Dataset [37], “a
dataset of datasets for learning to learn from few examples”. More specifically,
the most complete benchmark is its second version, named VTAB+MD [11],
which is a combination of the Visual Task Adaptation Benchmark (VTAB) [47]
and the Meta-Dataset. The Meta-Dataset is composed of a selection of images
from many other datasets, namely ImageNet, Omniglot, FGVC-Aircraft, Birds-
CUB-200-2011, DTD, Quick Draw, FGVCx Fungi, VGG Flower, Traffic Signs
(GTSRB) and MSCOCO. It has a total of 4934 different classes. In addition
to the collection of images, it has an unique protocol for evaluating Few-Shot
algorithms, which improves the two previous FSL benchmark dataset, Omniglot
[20] and Mini-ImageNet [38], in several ways:

1. The combination of several datasets of different domains results in a more
realistic data heterogeneity, which allows for testing the model’s capacity to
generalize unseen datasets. It also tests their ability for training with unbal-
anced datasets in terms of number of samples per class.

2. Its large scale and dataset mixture allows the evaluation protocol to take into
account the ability of the different few-shot techniques to form relationships
between classes. For example, if the model can do fine-grain classification for
detecting different species of birds while being able to distinguish birds from
common objects like dinner tables.

3. The data has been selected and structured in a such a way that it mimics
realistic class unbalance, allowing the evaluation of the different models in
different numbers of samples per class.



A Survey on Few-Shot Learning for Computer Vision 19

4. This benchmark has a clear evaluation guideline that combines different ML
tasks, which in turn allows to evaluate the models’ capacity of learning from
different sources. It also has a set of baselines aimed to measure the benefit of
meta-learning, i.e. whether the training process benefits from using more data,
learning from different sources, reusing knowledge from pre-trained weights
and meta-training parameters.

The Meta-Dataset protocol computes the model’s rank by decreasing order
of accuracy. As of today, the best performing model on Meta-Dataset bench-
mark 2021’s model code-name “TSA”, from Task-Specific Attention [23,24],
achieved number 1 position on the Meta-Dataset with 1.65 mean rank across
all datasets. The paper, titled “Cross-domain Few-shot Learning with Task-
specific Adapters”, proposes a novel multi-task learning methodology that com-
bines task-agnostic with task-specific approaches. This is done by directly attach-
ing task-specific adapters to pre-trained task-agnostic models. The article also
features a new architecture for said adapters.

3 FSL for Human Behaviour Analysis Applications

In the context of Computer Vision, there are several tasks than can help Human
Behaviour Analysis (HBA). All of them can be predicted using Deep Neural
Networks, and for most of them there are recent research articles featuring FSL.
Here are some examples of such tasks along with a Few-Show citation: face
detection, face recognition [29,40,48], facial expression recognition [9], person
detection, person recognition, pose estimation, action recognition [12], person
re-identification [13], person tracking [21], hand gesture recognition [30], motion
prediction [46], etc. In this section two recent research articles on FSL are shortly
discussed, each featuring a different HBA application.

Face Recognition. Few-Shot Learning is a natural match for face recognition.
As explained in Sect. 2.2, metric learning is a technique that is not only used for
FSL, but also other applications such as face recognition. In this regard, the use
of the same loss functions such as triplet loss [34,42] or ArcFace loss [10] make
face recognition to naturally be a Few-Shot Learning application as well.

A. Putra and S. Setumin published in 2021 an article in which they made a
performance comparison of different activation functions on Siamese Networks
for Face Recognition [29]. Their Few-Shot technique was to combine multi-task
learning (parameter tying) with metric learning. In the article, the researchers
trained a Siamese network using different activation functions for the final
embedding prediction, which would in turn be used to measure distance (sim-
ilarity) between the outputs of the two branches of the network. The tested
activation functions were sigmoid, softmax, tanh, softplus and softsign. They
tested each activation function by learning 1 to 19 classes with only 1 supervised
sample (One-Shot Learning). In average, sigmoid activation function achieved
92% accuracy to recognize 19 new faces with only one sample for training using
this FSL approach.
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Action Recognition. In a recent publication (2021) by Mark Haddad [12], he
explored a method for One-Shot and Few-Shot learning for action recognition
tasks. The models had to learn classification of 10 different actions: bend, jack,
jump, pump-jump, run, side, skip, walk, wave 1 and wave 2. For that matter,
he encoded the movement of a few frames into an optical flow vectorized with
KMeans method. Therefore, movements were parametrized as KMeans clusters,
that can be treated as probability distrbutions for different sets of points that
represent each action. Using Kullback-Leibler divergence loss, a model can be
trained to perform metric learning with the aforementioned KMeans clusters. In
his thesis, Haddad performed tests for both One-Shot Learning and for K-shot,
being K a number between 1 and 8 samples. On the Weizmann Human Action
dataset, he achieved an average of 89.4% classification accuracy for One-Shot
Learning, increased to 98% with 8-Shot Learning (see Fig. 1).

Fig. 1. Extracted Fig. 3.5 from Haddad’s thesis [12]. Quote: “Classification accuracy
comparison between proposed method and others.” It shows results for two different
datasets: KTH and Weizmann.

4 Few-Shot for Smart City Environment Safety
Applications

In the context of Smart City Environment Security, there are some Computer
Vision applications that are extensively applied, specially related to traffic and
pedestrian surveillance. Yet another application is assessment for disasters and
emergencies that threaten safety of cities, both for its population or its infrastruc-
tures. Emergency response is a good fit for the application of Few-Shot Learning
methods since they are events where on-site data is usually scarce; and whose
changing nature make the models require flexibility and adaptability. There are
recent examples where FSL was effectively applied in emergencies such as the
ongoing pandemic caused by Covid-19. As one of many examples, Lai et al.
[19] used Deep Learning algorithms trained using Few-Shot techniques to clas-
sify lung lesions caused by COVID-19 using the small datasets available at the
time. In this section three research articles were FSL was applied are discussed.
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The first of them is related to Smart Cities Environment Safety, while the other
two are focused on disaster damage assessment as part of emergency response
applications.

Face Anti-spoofing. Recent developments in Deep Learning technology for
face reenactment have made possible very realistic impersonating. This is a risk
for governments and administrations, because it denies one of the traditional
identity proofs, which is face identification in live video. For that reason, many
researchers are working towards face anti-spoofing.

In 2021 Yang et al. published a paper on face anti-spoofing where they used
FSL techniques for achieving One-Shot Learning of new unseen face reenact-
ments [44]. They proposed a FSL technique called Few-Shot Domain Adapta-
tion, which combines data augmentation using photorealistic style transfer and
a complex compound loss function Ltotal.

Ltotal = LClS + λ1LCont + λ2LAdv + λ3LLfc (1)

LClS is cross-entropy loss. LCont is contrastive semantic alignment, which
is a term used for reducing distances in the encoding space for positive pairs
and increase them for the negatives (a form of metric learning). LAdv is the
progressive adversarial learning, a term used for constraining the parameters of
the different domain discriminators. LLfc is the less-forgetting constrain, which
is a mean square error penalization to prevent the parameters from shifting
excessively during training. The λs are trade-off parameters.

With this method they were able to detect face spoofing by training with a
single sample and they managed to beat the previous best working model by 5%
points in one of the tests (CMOS-ST benchmark when targeting HTER using
protocol C → O).

Disaster Damage Assessment. In this case there are two articles of interest
that are noteworthy to discuss.

E. Koukouraki, L. Vanneschi and M. Painho published in 2021 a research
article about urban damage detection after earthquake incidents from satellite
images, trained using FSL techniques. In it, they tested four different method-
ologies: cost-sensitive learning, oversampling, undersampling and Prototypical
Networks [35], each of them employing different data balancing methods. The
best working model was Prototypical Networks (ProtoNets), which combine
multi-task learning with metric learning by using distance loss functions to train
Siamese neural networks (see Fig. 2). It achieved precision and recall superior to
50% in all four classes (undamaged, minor damage, major damage and destroyed)
with average F-score of 64% over all classess.

In a similar work, J. Bowman and L. Yang studied further Few-Shot Learning
methods for post-disaster damage detection from satellite images [5]. In this case,
they use a FSL technique called “feature re-weighting” that is used for param-
eter tying (a type of multi-task learning approach) between classification and
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Fig. 2. Extracted Fig. 5 from Koukouraki et al. article [17]. It shows the network archi-
tecture used for the ProtoNets approach

object detection tasks. They used the encoder (feature extractor) from YOLO
[31], and then added an additional CNN model, the re-weighting module, to
generate re-weighting vectors for each class. These vectors are concatenated to
the embeddings from the feature extractor in order to extend them before the
final prediction takes place. In this manner, the re-weighting effectively fuses
task-agnostic and task-specific functionalities thus providing FSL capabilities.
With the addition of this module, they achieved to improve the mean average
precision (mAP) of the baseline YOLO from 0.270 to 0.289 when training with
30 samples. This means that when applying feature re-weighing, the model gave
a mAP almost 2% points better, when training with only 30 samples per class.

5 Conclusion

This review article about Few-Shot Learning techniques is different from others
because it is heavily focused on Computer Vision Applications based on Deep
Convolutional Neural Networks. Moreover, Sects. 3 and 4 feature commented
examples of articles were FSL techniques were used for face recognition, action
recognition, face anti-spoofing and post-disaster damage assessment from satel-
lite. These examples show how FSL algorithms can be effectively used to learn
from few supervised samples with competitive metrics in comparison to base-
line models. They show how metric learning and multi-task learning are FSL
techniques that combined offer current State of the Art results when training
with few samples. As final though, it is noteworthy to mention that this paper
emphasizes the importance of the loss function when it comes to meta-learning
and transfer learning.
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Abstract. Counter-terrorism and its preventive and response actions are crucial
factors in security planning and protection of mass events, soft targets and critical
infrastructures in urban environments. This paper presents a comprehensive Deci-
sion Support System developed under the umbrella of the S4AllCitites project, that
can be integrated with legacy systems deployed in the Smart Cities. The system
includes urban pedestrian and vehicular evacuation, considering ad-hoc predictive
models of the evolution of incendiary and mass shooting attacks in conjunction
with a probabilistic model for threat assessment in case of improvised explosive
devices. The main objective of the system is to provide decision support to public
or private security operators in the planning and real time phases in the preven-
tion or intervention against a possible attack, providing information on evacuation
strategies, the probability or expected impact of terrorist threats and the state of
the traffic network in normal or unusual conditions allowing the emergency to be
managed throughout its evolution.

Keywords: Security and safety · Evacuation · Terrorism · Threats · Fire and
smoke · Traffic · Simulation · Decision support system

1 Introduction

International terrorism has many dimensions and characteristics depending on factors
such as the historical and geographical context, political links or factors related to dif-
ferent terrorist groups and organizations (Tuman 2009). Today security and terrorism
are one of the most widespread problems that requires the attention of law enforcement
agencies, policy makers and political institutions due to the social and economic impact
it generates. Despite this dependence on factors, terrorist attacks have the purpose of
creating great harm and consternation in the population. Cities are a spotlight as they
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cluster large populations in small areas susceptible to terrorist attacks. Therefore, in the
field of anti-terrorist urban security, and more broadly in the context of mass events,
critical infrastructures and soft targets, it is mandatory to have adequate planning and
response strategies to deal with such emergencies. Hence, this paper proposes a Decision
Support System (DSS) that can be used during planning and response phases anticipat-
ing terrorist threats and while helping to address emergency management issues within
the context of smart cities.

According to the (Global Terrorism Database™ (GTD) 2021) more than half of the
attacks worldwide are Improvised Explosive Devices (IED), mass shooting, arsons or
incendiary/smoke devices attacks. The expected evolution of this kind of attacks (Martin
2016) (EUROPOL 2021) are the necessary foundation for the development of models
that can help to minimize their consequences.

More specifically, between 2010 and 2019 29.4% of terrorist attacks were targeted
against the population (Global Terrorism Database™ (GTD) 2021), with cities being a
major attraction for the terrorists. In this context there is an increment of smart cities
that use Information and Communication Technologies (ICT) to increase operational
efficiency, share information with the public and improve both the quality of government
services and citizen welfare. An important point is that smart cities also need to ensure a
secure and safe physical and digital ecosystem for the well-being of citizens. Therefore,
it is mandatory to utilize the capabilities already available in smart cities to improve
security and safety. These include, for example, anomaly detection, authentication and
identification of individuals, threat localisation, behavioural profiling, suspect tracking,
traffic monitoring, emergency management and many other capabilities related with
awareness, prevention and response (Laufs et al. 2020).

These capabilities have been studied from different perspectives leading to a wide
range of results including threats and individuals detection (Chackravarthy et al. 2018)
(Bellini et al. 2017), screening and tracking (Brust et al. 2017) (Anees and Kumar
2017), recognition-based authentication (Balla and Jadhao 2018; Boukerche et al. 2017)
or the improvement of legacy systems deployed throughout the city endowing them
with intelligence (Zingoni et al. 2017; Zhou et al. 2015). However, due to our particular
approach, we must emphasise that there are hardly any studies (Dbouk et al. 2014;
Bonatsos et al. 2013) that propose a comprehensive DSS involving at the same time
emergency management, real-time decision support and forecasting of threats evolution
and impact of most common terrorist attacks. The closest in these terms to the existing
literature is focused on the management of common crimes such as vandalism and
violence, both in terms of management (Fernández et al. 2013), information systems
(Truntsevsky et al. 2018), unusual traffic management (Hartama et al. 2017), evacuation
(Zhang et al. 2018) and to a lesser extent on the prediction of events such as robbery or
homicide (Noor et al. 2013; Araujo et al. 2017).

Thus, this study jointly addresses the facets of predicting and assess the impact
of terrorist attacks (IED, mass shooting and arson), together with the management of
emergency situations in terms of pedestrian and vehicular intervention, evacuation and
monitoring by proposing a comprehensive conceptual and computational model that
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implements a DSS. This system involves different data sources and computer simu-
lations providing support to decision makers/operators to make appropriate planning,
management or response decision (Turban 1995).

2 Material and Method

2.1 Conceptual Model

On the basis of the initial definition of a smart city, a three-layers structure can be used
to formalise the mathematical model of the proposed DSS (Decision Support System),
see Fig. 1.

Fig. 1. Conceptual model – mathematical modelled schema of layer in smart cities.

Threat Assessment Layer: Comprises a set of soft targets, crowded areas and infra-
structures S = {s0, s1, . . . , sn} where security monitoring is desired. A soft-target can
be defined as sk = {B,P,A,D,O}, where B = {(φ0, θ0), (φ1, θ1), . . . , (φk , θk)} repre-
sents an enclosed and geographically defined area (longitude, latitude), P is the spatial
distribution of people,A is the security assets deployed (e.g. controls, cameras or patrols)
and Dand O is the set of safe areas and obstacles inside the scenario that are defined by
geographical coordinates. Threats being monitored in these areas are therefore defined
as Ti = {L,C}, where L = (φ, θ) is the location andC ∈ {Arson, Smoke, IED,Weapon}
is the category.

Pedestrian Movement Layer: Topological definition of pedestrian transitable areas is
replicated through the graph Gp = {N ,E}, which is arranged by N = {n0, n1, . . . , nn}
set of nodes and E = {e0, e1, . . . , em} set of edges. Each node ni = {L, d , s} is
defined by its geographic location and occupant density as well as its current status
s ∈ {Passable, Impassable,Evacuate, Safe}. Likewise, each edge ei = {d , no, nd , f }
represents transitable zones and it is defined by people density, origin and destination
nodes and available flow.
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Traffic Layer: Traffic network is represented through the graph Gt = {V ,E}, where
V = {v0, v1, . . . , vn} are the vehicular transit reference points associated with physical
locations and E = {e0, e1, . . . , em} represents the reachability associations similar to
the pedestrian layer but within a traffic environment where the density and flow mea-
surements represent vehicles instead of people. For the generation of traffic profiles, this
layer considers the different usual zones Z of origin and destination of trips, which in
turn are related by proximity to a node of the traffic network, generating a set of paths
P between them and an origin-destination weighted matrix W = Z × Z (Fig. 2).

Fig. 2. Conceptual model – graphical representation of mathematical layer-based model. From
left to right: threat assessment layer, pedestrian movement layer and traffic layer.

Threat Assessment Layer
This layer assesses the threats andpossible impacts/consequences of three type of attacks:

1. Arson and Smoke Bomb: Fire Dynamics Simulator (McGrattan et al. 2017) is used
for the most likely locations of this type of attacks by simulating several scenarios
changing the actual combustion parameters, different wind and fire loads. The gen-
erated results providing artificial measurements Mf (si) = {m0,m1, . . . ,mk}, (e.g.
visibility, Fractional Effective Dose (FED)) are classified and stored in a structured
way for further use.

2. Improvise Explosive Device (IED): This approach is based on (Cuesta et al. 2019).
The boundary box of each soft-target sk is calculated and subdivided into small
regions shaping a fine grid of squared cells. For each cell cij within the grid, the risk
function is calculated as follows:

R
(
sk , cij

) = wdt · dt
(
cij,E

) + wda · da
(
cij,A

) + wdr · dr
(
cij,B

)

+ wp · p(cij,P
)
,

where the functions studied have associated weights {wdt,wda,wdr,wp} that can be
modified (e.g. to give more weight to one or another parameter) but, as a general
rule, balance the risk function. The rest of the functions that are measured in the
equation are:
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– dt
(
cij,E

) → Inverse (1-p) normalized distance from cell cij to the nearest exit
(negative correlation).

– da
(
cij,A

)→ Inverse normalized distance from cell cij to the nearest asset.
– dr

(
cij,B

)→Normalized radial distance fromcell cij to the boundary box (positive
correlation).

– p(cij,P) → Normalized population density inside cell cij.

After processing all the cells, a matrix Mr(si) of risk values is provided which is
associated with the threat level, resulting in a probability map with critical locations of
IEDs for each soft-target.

3. Mass Shooting Attack (MSA): The soft-target space si is discretized through uni-
formly distributed reference points and mapped onto nodes of a reachability directed
graphG = {N ,E},N = {n0, n1, . . . , nk} for pathing purposes. The optimal path (i.e.
minimum distance) from each starting location P = {p0, p1, . . . , pm} is calculated,
considering the location (static and/or dynamic) of the attacker(s) Al , by means of
Backtracking approach with associated cost function:

cf
(
ni, nj

) =
dmean(nj,E)

max
nghbs(ni)
n (dmean(n,E))

+ dmin(nj,E)

max
nghbs(ni)
n (dmin(n,E))

+ u(nj)

max
nghbs(ni)
n (u(n))

dmean(nj,Al)

max
nghbs(ni)
n (dmean(nj,Al))

where function nghbs(ni) represents the neighbours of a particular node, function
dmean/max(n, S) is the mean/max distance from node n to a set S of locations and
u(n) is the density of population in the surrounding of n. In conclusion, this function
represents three important factors: 1) the proximity of a node to an exit/safe area,
2) the spatial availability of that node, and 3) the risk associated with the location
of the attacker(s). Following these paths, a microsimulation approach is used to
represent the movement and behaviour of people involved considering interactions
between agents and repulsion forces between terrorists, people, scenario boundaries
and obstacles through a Social Force model (Helbing and Molnár 1995). A physical
shooting dynamics approach is followed (Abreu et al. 2019) to represent persons
hit by gunfire, where the probability of being hit is estimated and the number of
casualties Mv(si) are calculated through a stochastic approach.

Results generated by these methodologies can be summarised as a set of geographic
locations linked to counter-terrorism security-related information enabling the lower
layers to increase their level of intelligence to enable more accurate modelling results.

Pedestrian Movement Layer
This layer uses threat assessment layer inputs {Mf ,Mr,Mv} and the pedestrianmovement
layer the status s for each node ni in the associated graph Gp to update nodes to be
evacuated, safe nodes and affectednodes that are impassable.Also, the occupant densities
of the different nodes and edges of the network are updated through one of the following
approaches depending on the capabilities of the smart city: 1) historical-based estimates
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of the expected occupancy, 2) real-time monitoring of occupancy through cameras, Wi-
Fi location devices, access controls or similar, and 3) random assumptions of occupancy
following expected distributions. This graph is considered as an active graph and it is
used to produce a preliminary calculation of shortest paths using Dijkstra’s algorithm.
Its subsequent optimization is carried out considering nodes availability and through a
weightedMultiple Criteria Decision Analysis (MCDA) for the assessment of conflicting
nodes through its score function:

S(ni) = wf ·
nghbs(ni)∑

n

(F(n)) + wc · C(ni) + wfn ·
nghbs(ni)∑

n

(C(n)) + wdt · dt(ni)

where {wf ,wc,wfn,wdt} are the associated weights with the MCDA and although they
are generally assigned the same weight for each variable, they can be modified in each
iteration of the optimisation to obtain the required results. Functions F(n) and C(n)
represent the available flow for a particular node considering all the related edges and
congestions per node.After this, a set of candidate graphsSg = {G0,G1, . . . ,Gk} solving
these conflicts is generated following an iterative process and another score function is
applied to choose the optimal graph considering the total estimation of evacuation time
te(Gi) for each graph and the sumof individual node congestionswith associatedweights.

S(Gi) = wt · te(Gi) + wsc ·
∑n∈Ni

n
(C(n))

Once the optimal graph has been found, it becomes the active graph again, which
can be iteratively re-optimised when the model inputs change. This model provides
evacuation routing, estimated egress times and mobility profiles, forecasting the number
of people who will go to specific locations in a precise time period by determining and
modelling the initial impact on the traffic network.

Traffic Layer
This layer provides a real time expected traffic evolution on different road sections
according to date and time after a calibration of the network based on traffic historical
data or data obtained through the traffic monitoring sensors deployed in the smart city.
This calibration process starts from an uncalibrated network represented by the graph
Gt which solves for the shortest paths considering availability constraints of the road
sections and updating theW origin-destinationmatrix via path-based (Jayakrishnan et al.
1994) and bush-bashed B algorithms (Dial 2006). Accordingly, following an iterative
process for origin-destination matrix adjustment based on gradient approach (Spiess
1990) with some adjustments for large traffic models (Kolovský et al. 2018), the model
optimises the set of paths P and the matrixW based on real traffic data, paying attention
to discrepancies between model and reality.

2.2 System Architecture

All these methodologies have been integrated together in a comprehensive DSS that,
following the architecture presented in Fig. 3, assists security decisionmakers in the
planning and response phases by leveraging some of the resources and devices already
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deployed in the smart cities. Examples of resources and devices include cameras, mon-
itoring Wi-Fi devices, access control sensors, etc. These devices could help to estimate
the number of people in specific locations or for example traffic monitoring systems
make real-time simulation of unusual traffic flow more reliable.

The architecture follows a producer-consumer approach with a centralized dis-
tributed data stream platform (Apache Kafka) for the exchange of information between
layers. Each layer in turn is implemented as an independent module that has a Graphical
User Interface (GUI) for configuration purposes andApplication Programming Interface
(API) that provides on-demand service to the rest of the layers, except for fire and smoke
simulations that, due to the computational cost, must be pre-simulated and stored locally
for further use in specific scenarios, if needed.

Fig. 3. DSS architecture overview diagram.

3 Case Study

After the development of the system, a comprehensive case study was performed based
on data provided by Správa Informačnich Technologii Mĕsta Plznĕ, p.o. as partner of the
S4AllCities project. The soft-target scenario was the Doosan Arena stadium in the city
of Pilsen (Czech Republic). A detailed description of the stadium and its surrounding
areas as well as the city of Pilsen itself was available, including information such as:

• Doosan Arena 3D model obtained via Lidar and RGB scanning using DJI Zenmuse
L1 and DJI Zenmuse P1 cameras.

• Initial locations of a possible smoke bomb as well as its device-like specifications
(Antari Z 3000 II fog machine).

• One-year traffic data providing a dataset of 250 million observations
• from 627 road built-in sensors, with a 90 s granularity in time, traffic model calibrated
by the traffic data (Jedlicka et al. 2020).

• 2D map of the areas surrounding the stadium with expected attendance (11700 spec-
tators + 3300 people), transit locations, security assets usually deployed, car parks
and other minor details (Fig. 4).
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Fig. 4. City of Pilsen case study schema with initial “smoke bomb” explosive device location. 1)
Doosan Arena stadium (green), 2) Surrounding areas (red) and 3) Parking spaces (blue). (Color
figure online)

The next step after the simulation, training and calibration of the models with the
provided data, was the definition of four use cases to validate all the capabilities of the
system listed in Table 1.

Table. 1. Use cases considered in the case study of the city of Pilsen.

# Scenario Feature Details

1 Stadium interior Smoke bomb “Smoke bomb” type device triggering
evacuation of the stadium

2 Adjacent area in front of the stadium IED + MSA Risks of IED and MSA attacks, due to
a possible combined attack by two
perpetrators. 3300 people uniform
distributed in transitable areas are
considered

3 Stadium interior and adjacent areas Pedestrian Evacuation Evacuation of the stadium and
neighbouring areas to the car parks
considering risks

4 Pilsen city Vehicular Evacuation Simulation of the impact of unusual
vehicle flows on the city’s traffic
network

For each of these use cases, the DSS provided results, starting by retrieving the out-
put of the smoke propagation FDS analysis (virtual smoke machine tuned on Antari Z
3000 II fog machine, North-West wind direction) followed by the simulation of threats
and likely impact of attacks (Fig. 5). It is important to note that the information provided
to the system operator includes the visualization of both the evolution of the different
incidents and the data associated with the artificial scenario measurements (IED prob-
ability, FED, visibility and casualties). On the other hand, a simulation of pedestrian
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evacuation and traffic network unusual behaviour impact is also generated as shown
in Fig. 5, where the operator is informed about the predicted evacuation times, routes,
recognition of traffic/pedestrian congestion and the possibility of dynamically recalcu-
lating these results according to the risks deemed appropriate by, for example, cutting
roads or blocking pedestrian evacuation nodes.

Fig. 5. DSS Graphical user interfaces. Top-Left: Smoke propagation from FDS simulation, Top-
Right: IED and MSA threat assessment and impact analysis, Bot-Left: Pedestrian evacuation
management and Bot-Right: Traffic network unusual status simulation.

The simulation of our use cases showed that for the case study of the Doosan Arena
stadium and the city of Pilsen the most likely dispersion of the smoke from the device
would be initially south-east without affecting additional exits from the stadium (after
about 5 min, smoke whirls start sticking to the outer South tribune, Fig. 5, Top-Left). In
the case of explosive device threat levels and potential casualties, this would result in
the blocking of the front exits of the stadium, as a two-shooter attack in this area would
result in an estimated of 139 casualties (dead + wounded) considering two minutes
intervention time, in addition to considering the potential locations of explosive devices,
as shown in the lighter areas of the heat map in Fig. 5. As shown in Fig. 5, the pedestrian
evacuation would be directed mainly to the nearest car parks by using the remaining
exits available in the stadium. The effect of these pedestrian evacuation profiles would
increase in approx. 700 vehicles per the first hour in the northern traffic section and 900
vehicles per the first hour in the southern section, leaving a high density of vehicles in
both directions, as shown in Fig. 5.



Decision-Support System for Safety and Security Assessment and Management 35

4 Conclusions and Discussion

The emerging technologies implemented in smart cities as well as new tools andmethod-
ologies for computer simulation applied to threat analysis and citizen security are a
breakthrough in the fight against terrorism. In this paper we present the methodological
design based on three layers (threat, pedestrian and traffic layers) and implementation
of a DSS that allows private operators, law enforcement agencies and local authorities
to efficiently protect city soft-targets. Within this system, support is provided for both
threat analysis and emergency management of pedestrian evacuation and its impact on
the metropolitan traffic network. In addition, this paper presents a case study based on
real data in the city of Pilsen where the correct functioning of the different layers that
make up the system was evaluated and the benefits and characteristics of the system
were presented in a more illustrative way, among which is the study of the analysis of
the main terrorist threats, the complete management of an evacuation and the monitoring
for decision-making of the state of the traffic network.

Itmust also be considered that this systemhas certain limitations that can be corrected
in later developments. The first of these is that it does not cover all types of threats
within the city. Actual reports suggest that future trends (EUROPOL 2021) in terrorism
will evolve to simpler and less expensive (knife attacks) or combined attacks (cascading
attacks or sabotage of critical infrastructures). Conversely, there would be an exploratory
branch of the possible direct interaction of terrorist threats with the traffic network, being
able to carry out developments in the field of anti-ramming measures in urban planning.
From our point of view, all these limitations are not an obstacle but rather open up future
branches of research and lead to the development of increasingly complete security and
safety systems.

Acknowledgements. The project (S4AllCities) has received funding from the European Union’s
H2020 research and innovation programme under grant agreement No. 883522.
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Abstract. Artificial intelligence (AI) has experienced a recent increase in use
across a wide variety of domains, such as image processing for security applica-
tions. Deep learning, a subset of AI, is particularly useful for those image pro-
cessing applications. Deep learning methods can achieve state-of-the-art results
on computer vision for image classification, object detection, and face recog-
nition applications. This allows to automate video surveillance reducing human
intervention.

At the same time, although deep learning is a very intensive task in terms of
computing resources, hardware and software improvements have emerged, allow-
ing embedded systems to implement sophisticated machine learning algorithms at
the edge. Hardware manufacturers have developed powerful co-processors specif-
ically designed to execute deep learning algorithms. But also, new lightweight
open-sourcemiddleware for constrained resources devices such as EdgeX foundry
have emerged to facilitate the collection and processing of data at sensor level,
with communication capabilities to cloud enterprise applications.

The aimof thiswork is to show and describe the development of Smart Camera
Systems within S4AllCities H2020 project, following the edge approach.

Keywords: Horizon2020 · Edge · EdgeX foundry · Machine vision · Artificial
intelligence · Deep learning

1 Introduction

The aim of S4AllCities EU-funded project is to make cities’ infrastructures, services,
ICT systems and Internet of Things more resilient while promoting intelligence and
information sharing amongst security stakeholders, to foster good safety and security
practices in European cities. The project will integrate advanced technological and orga-
nizational solutions, being edge-oriented resource-constrained image-based processing
systems for surveillance one of them.
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Traditional video surveillance systems demand human intervention to some extent.
However, as the number of IP or other types of cameras increases explosively, a fully
automatic video recognition framework becomes essential, replacing the manual moni-
toring. The video data captured by the camera are transmitted to the cloud server to do
the entire recognition processes, which may hamper real-time video recognition due to
transmission delays through the communication channel.

In this context, recent trends in IoT applications adopt edge computing that appears to
decrease latency and computational processing. The edge computing technology allows
computation to be performed at the network edge so that computing happens near data
sources or directly in the real-world application as an end device. This is possible due
to advances in the manufacturing of new processors [1]. Such devices request services
and information from the cloud as well as perform several real-time computing tasks
(e.g., storage, caching, filtering, processing, etc.) of the data sent to and from the cloud.
Hence, edge computing is able to fully contribute to situational awareness applications
[2, 3] that continuously generate enormous amounts of data of several types providing
also a homogeneous approach for data processing and generation of associated alerts
or events or raw information. In summary, edge computing can be used for real-time
smart city environments under the public safety aspect enabling: i) context-awareness,
ii) geo-distributed capabilities, iii) low latency, and iv) migration of computing resources
from the remote cloud to the network edge.

In this background, [4], provided in their study amodular architecture with deep neu-
ral networks as a solution for real-time video analytics in an edge-computing environ-
ment. In their modular architecture two networks of Front-CNN (Convolutional Neural
Network) and Back-CNN were exploited. Experimental results on the public datasets of
UCF-Crime [5] and UR-Fall Detection [6] highlighted the potential of their approach.
In [7] a video streaming optimization method in the IIoT environment was proposed
under the edge computing concept. In the same framework, the author of [8] designed
an edge enhanced deep learning system for large-scale video stream analytics system.
In their proposed methodology, they performed an initial processing of the data close
to the data source at edge and fog nodes, resulting in significant reduction in the data
that is transferred and stored in the cloud. The results on the adopted object recognition
scenario showed high efficiency gain in the throughput of the system by employing a
combination of edge, in-transit and cloud resources when compared to a cloud-only
approach. The authors of [9] focused on leveraging edge intelligence for video analyt-
ics in smart city applications. Their approach encompasses architecture, methods, and
algorithms for: i) dividing the burdensome processing of large-scale video streams into
various machine learning tasks; and ii) deploying these tasks as a workflow of data pro-
cessing in edge devices equipped with hardware accelerators for neural networks. In
[8], the authors investigated an architectural approach for supporting scalable real-time
video stream processing using edge and in-transit computing. Concerning the privacy
aspect, the authors of [11] proposed how to consider to a privacy-oriented framework
when video feeds are exploited for surveillance applications.

The aim of this work is to provide an overview of two different edge computing
machine vision systems developed withing S4AllCities EU funded project [12].
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2 Edge Computing Machine Vision Systems in S4AllCities Project

Within S4AllCities project, an edge computing platform namely, Distribute Edge Com-
puting Internet of Things (DECIoT) is being developed. The DECIoT is a scalable,
secure, flexible, fully controlled, potentially interoperable, and modular open-source
framework that ensures information sharing with other platforms or systems [13].
Through the DECIoT, computation, data storage, and information sharing are performed
together, directly in the edge device, in a real-time manner.

To complement the DECIoT, two different edge computing based machine vision
systems are being developed:

• Dedicated ad-hoc hardware platform based on the I.MX8MPLUS [14] integratedwith
the DECIoTwhich focuses onmachine learning and vision algorithms. The focus was
on the development and manufacture of the device more than in the application itself.
Anyway, to test the suitability of the platform, a people detection algorithm was
embedded (Fig. 1).

Fig. 1. S4AllCities Hardware platform based on the I.MX8M PLUS.

• Conducting additional experiments in terms of real-world applications associated
with the video analytics system for person detection combined with edge computing,
namely Video Analytics Edge Computing (VAEC) system, that documented in [17].
The VAEC system is also integrated with the DECIoT in order to provide enhanced
situation awareness for person detection through a video streaming feed on an embed-
ded edge devicewithGPUprocessing and a lightweight object detection deep learning
scheme.
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3 Integration with the Distributed Edge Computing Platform
(DECIoT)

In general, the DECIoT platform is able to address among others the problem of gather-
ing, filtering and aggregating data, interacts with the IoT devices, provides security and
system management, provides alerts and notifications, executes commands, stores data
temporarily for local persistence, transforms/process data and in the end exports the data
in formats and structures that meet the needs of other platforms. This whole process is
being done by using open source microservices that are state-of-the-art in the area of
distributed edge IoT solutions.

The DECIoT is based on the open, highly flexible and scalable edge computing
framework namely EdgeX foundry [15]. TheDECIoT platform consist ofmultiple layers
and each layer containsmultiplemicroservices. The communications between themicro-
service within the same or different layers can be done either directly with the use of
REST APIs or with the use of a message bus that follows a pub/sub mechanism. Both
of them are being exploited in this study. DECIoT consists of a collection of reference
implementation services and SDK tools. The micro services and SDKs are written in
Go [15] or C programming languages. A detailed documentation and implementation of
the DECIoT has been provided in [17]. In the following we present the different layers
of DECIoT adopted in this study (see also Fig. 2).

• TheDevice ServiceLayer: TheMQTTDevice Servicewas used to receive information
from the object detection process. Between the object detection process and theMQTT
Device Service, there is a MQTT broker (Mosquito) [18].

• The Core Services Layer: For storing data, as well as commanding and registering
devices. This microservices are implemented with the use of Consul, Redis, and
adapters developed in Go for integration with all other microservices.

• The Support Services Layer: Here, the relevant microservices were not exploited as
no logging, scheduling, and data filtering was needed.

• The Application Services Layer: A new Application Service has been implemented
to send data to a smart city’s platform using Go language [16]. In the Smart Spaces
Safety and Security for All Cities project [19] the Apache Kafka [20] was considered
that is the middleware of a smart city platform.

Fig. 2. DECIoT architecture.
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4 Hardware Platform for Machine Vision Based on the I.MX8M
PLUS

The embedded platform for machine vision based on the i.MX8M integrates a Neural
Co-Processing Unit (NPU) which is able to process 2.3 Tera-operations per second
(TOPS), enabling the NPU to run deep learning model inference in real time. In order to
develop and deploy the Deep Learning application in the embedded processors, the eIQ
Machine Learning Framework provided by NXP was used. The framework integrates a
Tensorflow Lite library with a python (also C++) API that allows the integration of deep
learning models into embedded application. This API is also responsible for converting
and deploying the highly parallel tensor calculus into NPU to optimize both performance
and processing time.

In order to demonstrate the embedded platformcapabilities, an object detection appli-
cation was implemented, specifically oriented to people detection. This application uses
state-of-the-art SSD object detection model with mobilenet feature extractor backbone,
whose architecture is shown in Fig. 3.

Fig. 3. Mobilenet SSD model architecture.

The application processes video frames searching the presence of the people in
the image using a second CMOS camera that provides a second video stream. The
performance test gives a 30 ms execution time average resulting in approximately 30
fps video processing. This video processing is modified adding the detection boxes and
scores in real time and displayed (only for demonstration purposes) in the evaluation kit
display as shown in Fig. 4.

The application computes the number of people in the image, a square with object
position in the image and a reliability score for each of the object in the image. This
information is also transmitted via MQTT to the DECIoT. However, it is not part of this
work to provide evaluation setup for this model.
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Fig. 4. People detected.

5 VAEC System

In [16], the performance of VAEC systemwas evaluated through several real-time exper-
iments for person detection in the following terms: (i) in several light conditions, (ii)
using several types of camera sensors, and (iii) in several viewing perspectives. However,
the aforementioned experiments considered only in outdoor cases. Here, we expand the
evaluation of VAEC system in indoor cases utilizing some representative videos from
UCF-Crime dataset associated with real-world applications (arson and burglary/space
violation). The VAEC system adopts a lightweight deep learning model with a CNN
architecture for object detection, that is the pre-trained YOLOv5s [21], with high infer-
ence speed. In the literature, YOLOv5 has a great potential for object detection tasks
in several applications with various challenges such as complexity of the scene, shad-
ows, light conditions, viewing perspective of the objects, etc. [22–24]. Table 1 depicts
representative consecutive video frames for five selected videos (V1 to V5) of the UCF-
Crime dataset associated with the object detection results (colored bounding boxes and
the relevant detection probability percentages superimposed to the video frames). For
the quantitative assessment of the object detection process, four objective criteria were
adopted according to the ISPRS guidelines [24], namely, completeness (CM), correct-
ness (CR), quality (Q), and F1 score measures per object (person) based on the True
Positive (TP), False Positive (FP), and False Negative (FN) entries,), given as:

CM = ‖TP‖
‖TP‖ + ‖FN‖ (1)

and

CR = ‖TP‖
‖TP‖ + ‖FP‖ (2)
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Table 1. Results of person detection per video of the UCF-Crime dataset [5]. Quantitative person
detection results per video for representative videos

Video ID

V1

V2 

V3 

V4

V5
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and

Q = ‖TP‖
‖TP‖ + ‖FP‖ + ‖FN‖ (3)

and

F1 = 2 × CR × CM

CR + CM
(4)

where TP, FP, and FN denote true positives, false positives, and false negatives, respec-
tively. The TP entries are the persons that exist in the scene and thus, were correctly
detected. The FP entries are the persons that do not exist in scene and thus, were incor-
rectly detected. The FN entries are the persons that exist in the scene but were not
detected.

The quantitative assessment results for the person detection process for videos V1 to
V5 are provided in Table 2. The achieved results of the YOLOv5s (average values of CM
= 81.2%, CR = 90.2%, Q = 74.9%, and F1 = 85.3%) are considered to be satisfactory,
proving its suitability and efficiency for such applications with several challenges. Also,
the achieved results are quite similar with those of [17] indicating a homogeneous and
stable performance of the YOLOv5s both in indoor and outdoor environments.

Table 2. Quantitative person detection results per video for representative videos frames.

Experiment ID Object detection process F1 score

CM (%) CR (%) Q (%)

VID1 83.3 100.0 83.3 90.9

VID2 80.0 94.1 76.2 86.5

VID3 81.8 81.8 69.2 81.8

VID4 75.0 75.0 60.0 75.0

VID5 85.7 100.0 85.7 92.3

Average 81.2 90.2 74.9 85.3

The achieved results of theYOLOv5s adopted from theVAECsystem, are considered
to be satisfactory, proving its suitability and efficiency for real-word applications with
several challenges.

6 Conclusions

The current approach demonstrates the suitability of edge computing systems for
machine vision applications for safety and security. This approach was demonstrated
through two different edge computing systems developed within the framework of
S4AllCities EU funded project. The evaluation of the object detection model was only
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provided by the VAEC system through ISPRS guidelines, as it was not pretended to per-
form this evaluation for the I.MX8M PLUS hardware platform at this stage. However,
both systems integrate the open-source framework, EdgeX foundry, a framework that
allows the interoperability between devices and applications in the edge.

Acknowledgments. This work is a part of the S4AllCities project. This project has received
funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 883522. Content reflects only the authors’ view and the Research Executive
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Abstract. The concept of Digital Twins offers the possibility of moving
work from a physical environment to a virtual or digital environment and
the ability to predict asset conditions in the future, or when it is physi-
cally undesirable, by exploiting the digital model. This in turn leads to
significant reductions in the resources required to design, produce and
maintain assets and resources. In the field of energy management, DTs
are also starting to be considered as valuable analysis tools, as a digi-
tal twin facilitates real-time synchronisation between a real-world model
(physical model) and its virtual copy for improved energy monitoring,
prediction, and efficiency enhancement; thus, it can significantly reduce
the overall energy consumption. A typical problem of DTs is the man-
agement of the data to be fed from the physical twin to the DT (and
possibly the other way around), as one has to decide whether to store
them within the DT or not, and one also has to decide whether to use
different (depending on the data sources) or unified data governance
models. To this end, an energy data space is proposed to allow the man-
agement of the necessary data in a way that is more functional to the
DT concept.

Keywords: Energy · Datalake · Digital Twin · Open Data · Fairness

1 Introduction

Global energy requirements are continuously increasing. Conventional methods
of producing more energy to meet this growth pose a great threat to the envi-
ronment. CO2 emissions and other bi-products of energy production have direct
consequences on everyday life. Therefore, we need to understand and improve
the energy efficiency at both producer and consumer sides. ICT-enabled smart
energy grids and sensors are being installed globally to measure energy consump-
tion and limit the environmental impact: these smart objects produce large vol-
umes of data, generated by different devices and in different formats, so that they
embody the concept of Gartner’s ‘Big Data 3Vs’ [15] - volume, velocity and vari-
ety. For the purpose of knowledge discovery, this data needs to be collected and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 47–58, 2022.
https://doi.org/10.1007/978-3-031-13324-4_5
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analyzed, and the extracted insights from the analysis need to be visualized for
easy and effective understanding. More specifically, the integration of AI models
(of physical objects) and Big Data analytics for IoT data processing [4] is driving
one of the most recent and probably one of the most important advances in the
technology, namely Digital Twin (DT). DT models are gaining more and more
interest because of their potential and impact in application areas such as man-
ufacturing aerospace, healthcare and medicine. DTs can be defined as (physical
and/or virtual) machines or computer models that simulate, emulate, mirror or
“twin” the life of a physical entity, which may be an object, a process, a human
or a human-related property. Each DT is connected to its physical twin through
a unique key, which identifies the physical twin and thus establishes a bijective
relationship between the DT and its twin. To face these challenges, a highly
scalable and flexible data analysis platform for automating the whole process
is required. A first model that can meet these requirements is an architecture
that draws elements from classic data warehouse systems on the one hand and
from pure data lake systems on the other hand. This model, defined as Data
Lakehouse [2], together with other paradigms like polystore databases, can be
implemented and tested with real life data from smart energy devices in order
to contribute to the realization of a society that follows the innovative Circular
Economy paradigm, a system where resource input and waste, emission, and
energy leakage are minimized by slowing, closing, and narrowing material and
energy loops [9]. The new schema will contain heterogeneous data sources and
will be processed in order to be compliant to FAIR (Findable, Interoperable,
Accessible, Reusable) principles: a well-documented and highly re-usable data
set enables the ultimate aim to trusted, effective and sustained reuse of research
resources [18]. This paper aims at identifying featuring architectural aspects
and modelling challenges for an Energy Data Space to be adopted nationwide in
Italy. The work is structured as in the following: the second section presents an
overview of the background and the state of art, with reference to the rise of the
new ‘Energy of Things’ characterised by heterogeneous large data sets, and to
three cutting-edge projects on this topic. The main goal of the this architectural
proposal is described in the third section. The last part is devoted to discussing
the impact and results of the solution’s development.

2 Background and State of Art

Nowadays, the concept of “Data Lake” is popular for accumulating data from
heterogeneous sources. Data lakes are used for storing large scale raw data as a
single big data repository, providing ingestion, exploration, and monitoring func-
tionality [17]. Data lakes, in contrast to data warehouses, are databases contain-
ing data from different sources in structured, unstructured and semi-structured
formats, along with capabilities of handling batch and real-time streams. More-
over, data lakes exhibit different implementation forms (e.g., on premises, cloud
or multi-cloud, and hybrid) [22]. Currently, data lakes have been exploited in
several application domains, ranging from digital humanities [7] to power grid
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management [16]. In order to get a full insight on the scenario analyzed, a gen-
eral overview has been built: at the beginning, the Circular Energy paradigm is
discussed, with a view on its heterogeneous energy-related data and on data key
principles for achieving FAIRness [8]. Then, as a starting point for this research,
some existent projects for the creation of a National Energy data repository are
explored: the first is an initiative for creating a digital twin of Earth, the second
is a Danish proposal for renewable energies, the third is a novel US initiative to
make energy data usable and discoverable by researchers.

2.1 Energy of Things

According to the United Nations Sustainable Development Goals agenda [19],
energy efficiency is one of the key factors for sustainable development: “ensuring
access to affordable, reliable, sustainable and modern energy for all by 2030 will
open a new world of opportunities for billions of people through new economic
opportunities and jobs”1. Furthermore, energy efficiency brings long-term eco-
nomic benefits by reducing the cost of fuel import/supply, energy production
and energy sector emissions. Effective analysis of real-time data in the energy
supply chain plays a key role in improving energy efficiency and more optimal
energy management [13]. Modern technologies, such as the Internet of Things
(IoT), offer a wide range of applications in the energy sector, i.e. in the areas of
energy supply, transmission, distribution and demand. With the new surging of
portable smart devices, consistently equipped with sensors, supported by more
and more performing cloud computing solutions, and densely used for mobile
social networking, human as sensor has become a promising sensing paradigm.
For this reason, the term ENERNET (Energy of Things) was recently introduced
by Steve Collier in an IEEE webinar on the future of energy: it is defined as a con-
vergence and a marriage between Smart Grids and IoT [6]. Emerging ENERNET
opens up other possibilities in order to have an affordable, reliable, secure and
sustainable supply of electrical power and energy. The novel sensing technologies
promote the data source into a new information space paradigm, which seam-
lessly integrates cyber-space (CS), physical space (PS) and social space (SS),
namely Cyber-Physical-Social Systems (CPSS) [21]. CPSS has a crucial role in
improving energy efficiency, increasing the share of renewable energy and reduc-
ing the environmental impact of energy use; this can be compliant to a context
of Circular Economy, a concept that has been framed by the Ellen MacArthur
Foundation as an industrial economy that is restorative or regenerative by inten-
tion and design [9]: it represents a system in which resource input and waste,
emission, and energy leakage are minimized by slowing, closing, and narrowing
material and energy loops. This can be achieved through long-lasting design,
maintenance, repair, reuse, re-manufacturing, refurbishing, and recycling. The
amount of available data for energy analysis is growing rapidly due to a large
number of data sources, such as smart cities installing sensors, IoT and per-
sonal devices capturing regular behaviour, human curated datasets (e.g. Open

1 https://sdgs.un.org/topics/energy.

https://sdgs.un.org/topics/energy
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Maps), large-scale collaborative data-driven research, satellite imagery, multi-
agent computer systems, and open government initiatives. This abundance of
data is diverse both in format (e.g. structured, images, graph-based, matrix,
time-series, geo-spatial, and textual) and in types of analysis performed (e.g.
linear algebra, classification, graph algorithms, and relational algebra). To help
different types of data and analysis activities, scientists and analysts often rely
on ad-hoc procedures to integrate various data sources. This typically means
manually curating how to clean, convert and integrate data. Such approaches
are delicate and time consuming. In addition, to perform the analysis, they
require bringing both data and computation into a single architecture, which
is typically a (distributed) system not suitable for all necessary computation.
Most analysts and programmers, however, are not well prepared to handle a
multitude of systems, handle transitions between systems robustly, or define the
correct framework for the assignment.

2.2 Open Initiatives in Energy Computing Field

DestinE Data Lake. As part of the European Commission’s Green Deal and
Digital Strategy, Destination Earth (DestinE) [20] is a project focused on contri-
bution to achieving the goals of the double transition, green and digital. DestinE
is designed to unlock the potential of digital Earth system modelling. It will focus
on the impacts of climate change, aquatic and marine ecosystems, polar regions,
the cryosphere, biodiversity or extreme weather events, as well as possible adap-
tation and mitigation strategies. It will help predict major environmental disas-
ters and environmental degradation with unprecedented accuracy and reliabil-
ity. The heart of Destination Earth will be a unified cloud-based modelling and
simulation platform that will provide access to data, advanced computing infras-
tructure, software, artificial intelligence applications and analytics. As seen in
Fig. 1, the project will integrate digital twins (DTs) - digital replicas of different
aspects of the Earth system, such as weather and climate change projections,
food and water security, global ocean circulation and ocean biogeochemistry,
among others - and provide users with access to thematic information, services,
models, scenarios, simulations, forecasts and visualisations. The platform will
also allow the development of applications and the integration of user data.

The project, which is currently only submitted as a proposal to the Euro-
pean Commission in line with the European Data Strategy, will be implemented
gradually over the next 7–10 years starting in 2021. The basic operational plat-
form, digital twins and services will be developed as part of the Commission’s
digital programme, while Horizon Europe will provide research and innovation
opportunities that will support the further development of DestinE.

Flexible Energy Denmark. Flexible Energy Denmark (FED) [12] is a digiti-
sation project that aims to make Danish electricity consumption flexible, so that
it becomes possible to use excess electricity from wind turbines and solar cells.
The project brings together leading researchers, organisations, utilities, software
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Fig. 1. DestinE Data Lake as proposed in [20]

companies and numerous living laboratories in the country that provide real
data for the project. Specifically, FED collects data from a series of Living Labs
(LLs) in physical environments representative of real life. Raw data on electric-
ity, water and district heating consumption of many thousands of households, as
well as indoor climate data of two primary schools and 155 households in Aal-
borg end up 1–4 times a day in a Data lake, called FED Data Lake (FEDDL),
which is operated by the independent, non-profit national research centre Center
Denmark in Fredericia2 and enables efficient and advanced analysis. The FED
ecosystem includes:

– A data ecosystem (the Datalake containing a variety of energy-related data
that are mainly collected from the living labs in the project, but also from
other sources such as BBR (the Danish Registry of Buildings and Houses)
and DMI (Danish Meteorological Institute)

– An ecosystem for digital tools (tools based on artificial intelligence, are
enabled by Big Data from the data ecosystem)

– An ecosystem for digitisation solutions combining some of the tools developed,
with the aim of managing energy flexibility in Denmark.

FEDDL is built using only open source tools that can be run either on-premise
or in cloud environments.
2 https://www.centerdenmark.com/.

https://www.centerdenmark.com/
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Open Energy Data Initiative. The Open Energy Data Initiative (OEDI) [1]
is a centralized repository of valuable energy research datasets collected by U.S.
Department of Energy programs, offices, and national laboratories. Designed
to enable data discovery, OEDI facilitates access to a wide network of results,
including data available in technology-specific catalogs such as the Geother-
mal Data Repository and the Marine Hydrokinetic Data Repository. The initia-
tive aims to improve and automate access to high-value energy datasets across
U.S. Department of Energy (DOE) programs, offices, and national laboratories.
This platform is being deployed by the National Renewable Energy Laboratory
(NREL) to make data usable and discoverable by researchers and industry to
accelerate analysis and innovation development. Not only does the data lake
provide tools to create actionable insights for analysts and to provide high-value
open data, but it can also be used to conduct interesting data mashups or cal-
culations to develop new and expanded data sets (Fig. 2).

Fig. 2. Open Energy Data Initiative as depicted in [1]

OEDI leverages on Amazon Web Services (AWS) to enable analytics capa-
bilities, innovative dataset access and to trigger new relationships among cloud
partners. The data lake is based on consolidated AWS storage solutions for
datasets (i.e., AWS S3 buckets) with elastic load balancing, and AWS cloud-
optimized analytics tools (e.g., AWS Glue, AWS Athena) that to help users
consolidate data into non-standard formats, speed up analytics, and allow users
to pull or move small parts of analytics into their AWS accounts.3

3 https://openei.org/wiki/.

https://openei.org/wiki/
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3 Design of the Italian Energy Data Space

3.1 Logical Architecture

The ability to equip smart city services and infrastructures with sensors and
monitor them with IoT devices is extremely valuable for any kind of future pre-
paredness. It can help in the design and development of existing smart cities
and in the ongoing development of other smart cities. In addition to planning,
there are also benefits in the area of energy saving. This data provides an excel-
lent insight into how our utilities are distributed and how they are used [10].
The future of the smart city offers the opportunity to use digital twin tech-
nologies. It can drive growth by creating a living testbed within a virtual twin
that can do two things: first, test scenarios and second, allow the digital twin to
learn about the environment by analysing changes in the data it collects. The
collected data can be used for data analysis and monitoring. The potential of
digital twins will increase as the development of smart cities increases connec-
tivity and the amount of usable data [5]. In this context, the aim of the work
is to design a resource for the Internet of Energy, capable of collecting energy
data from Italian agencies, consortia and research centres, in order to develop
a “Google of Energy”, a system capable of indexing and searching energy Big
Data. It can be used to facilitate future studies in the energy sector and all
reliable infrastructures. Developing and consolidating a new approach to energy
management, throughout the analysis of data from institutional databases, sen-
sors, IoT devices, Industry 4.0 infrastructures, in the field of energy and its
eco-system, will help to use the Big Data potential to support the Green Deal’s
priority actions on issues such as climate change, circular economy, pollution,
biodiversity and deforestation.

Based on the model developed in the Danish National Energy Data Lake [12],
where a national repository for energy data is created, Fig. 3 gives an abstract
overview of the proposed Data Lake logical architecture: it is composed of five
separated layers, i.e., Data Sources, Data Collection/Ingestion, Data Storage,
Data Exploration, and Data Consumers, and four cross-cutting layers, i.e., Pri-
vacy and Data Protection layer, Access Management, Meta Data Governance
and Resources Management. Layers Data Sources and Data Consumers repre-
sent systems which are external to the Data LakeHouse structure.

Data Sources: Data sources considered for this purpose are Mobile Sensors and
IoT sensors capable of collecting energy and environmental data, Open Data
made available by Public Administrations or research centres and Living Labs.
Some of the sources for collecting source data are as follows:

– Open data: Energy Production and consumption
• GSE: it provides data at national and regional data about renewable

sources, transportation, energy counts;
• ARERA: monitoring of novel generation plants at national level, Data

about market, clients, production, consumption;
• ISTAT: energy production from renewable sources at national level and

consumption from families;
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Fig. 3. Logical view of the proposed architecture

• Terna: national data related to production, generation plants, interna-
tional benchmarks, peaks, consumption;

• Eurostat
∗ Energy statistics section: share of renewable energies, energy produc-

tivity, energy supply bu product, energy consumption by product;
∗ Sustainable development: primary energy consumption, population

lacking energy due to poverty;
– Industry 4.0: smart meters, data coming from power generation plants.
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Data Collection/Ingestion: The custom data collection enables data retrieval
from data sources requiring custom scripts, e.g. if the data is embedded into
HTML pages, APIs, or when files containing data are provided manually in
CSV, TSV and PDF formats. Data ingestion is the transportation of data from
assorted sources to a storage medium where it can be accessed, used, and ana-
lyzed by an organization. There are different ways of ingesting data, and the
design of a particular data ingestion layer can be based on various models or
architectures. The two considered kind of data ingestion are batch processing
and streaming processing. In the first one, the ingestion layer periodically col-
lects and groups source data and sends it to the destination system. Groups
may be processed based on any logical ordering, the activation of certain condi-
tions, or a simple schedule. Real-time processing (also called stream processing
or streaming) involves no grouping at all. Data is sourced, manipulated, and
loaded as soon as it’s created or recognized by the data ingestion layer.

Data Storage: The data lake storage problem asks for selecting appropriate
data stores to preserve ingested datasets. There are many solutions in the liter-
ature and they apply various relational and NoSQL databases [14], and present
different manners of data storage organization. There are solutions considering
heterogeneous data sources while others target at a particular type, e.g., rela-
tional tables. In order to host different types of data, the solutions could be
a universal format or allowing multiple formats. Some approaches rely on the
common relational or NoSQL stores while others have developed new storage
systems. The data storage systems could be on-premise or cloud-based [22].

This layer can be divided in three different zones:

– Raw data zone: all types of data are ingested without processing and stored
in their native format. This zone allows users to find the original version of
data for their analytics to facilitate subsequent treatments. The stored raw
data format can be different from the source format.

– Intermediate zone: after ingestion, the data lake is a vast collection of raw
datasets with certain metadata. To make the data usable for querying, a
number of solutions are proposed for further processing of the raw data,
e.g., find more metadata, discover hidden relationships, and perform data
integration, transformation or cleaning if necessary.

– Structured and unstructured zones: they stores all the available data for data
analytics and provides the access of data. This zone allows self-service data
consumption for different analytics (reporting, statistical analysis, business
intelligence analysis, machine learning algorithms) according to their format.

Data Exploration: The top layer focuses at the interaction of users with the
DataLake. It is important that useful information can be retrieved out of data
lakes. However, this is challenging due to a large number of ingested sources,
and the heterogeneity of data. Given data lake systems with a large number of
datasets, users may have knowledge for one or a few data sources, but rarely all
the datasets. The query formulation component should support users in creating
formal queries that express his information requirement. The data interaction
should cover all the functionalities which are required to work with the data,
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including visualization, annotation, selection and filtering of data, and basic
analytical methods. Users can first browse the existing data sources, including
their description, statistics, and schema; then she can write a query (SQL or
JSONiq4) for a single dataset, or use the user interface to make a keyword
search over the schema or the data. Alternatively, with certain knowledge of the
datasets, which could be learned through the previous exploration processes,
they can choose to integrate a subset of relevant datasets, and query them using
formal queries or keyword search [11].

An important kind of output that the architecture could provide, is the Fair
Data API: according to the FAIR data principles, research outputs are shared
in a way that enables and enhances reuse by humans and machines. The char-
acteristics of these resources can be oriented to achieve compliance with FAIR
guidelines. For example, output generated uses globally unique identifiers and
can assign other identifiers. The data elements described in FAIR correspond
to concepts and (meta)data objects modeled, as our DataLake resources and
described with rich metadata and context information. In the output of the
Data Lake, resources are retrievable via open APIs, that is, absolute URIs and
standard Representational State Transfer (REST) protocols.

Data Consumers: Human users play an essential role in the management of
data lakes. The users of a data lake are also data providers; the insight pro-
vided by the human helps the data in the data lake to mature over time. Data
consumers range from communities of interest (e.g., citizens groups and associ-
ations interested in performing pollution measurement, and factories and indus-
tries interested in their level of environmental pollution) to public authorities,
and from citizens (both single individuals and associations) to other end-user
categories such as schools or research-labs.

3.2 The Proposed Development Process

The steps for the development of the platform are based on the following phases.

1. The first part will focus on an in-depth study of the state of the art and anal-
ysis of existing architectures proposed in the second section. A first phase of
heterogeneous data collection from the various energy sources will be carried
out.

2. The second phase, aimed at scenario definition, will focus on interviews with
SMEs and stakeholders that can help in the design of a use case to prototype
the research results. This is aimed at an understanding to elicit the needs,
the current state of the art in energy generation, distribution and use.

3. Design of pilot projects and use case, also creating living labs for involving
prosumers and providers

4. Development of the digital platform for collecting data and providing data
services and tools

5. Incremental extension of use cases and further involvement of new providers,
consumers, stakeholders.

4 https://www.jsoniq.org/.

https://www.jsoniq.org/
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4 Conclusion

Knowledge of consumers’ energy consumption and indoor climate is worth its
weight in gold to utilities, industry and researchers. They use the data to plan
production and develop services and algorithms that control energy consump-
tion so that it becomes more flexible and renewable energy is not wasted. Our
ambition with the national platform is that it can form the basis for the release
of data from electricity, water, heat and potentially also gas, so that the data can
be used by commercial suppliers to develop new business models that support
data-driven models for the green transition. Creating a repository of national
energy data that respects the Fairness’ key principles, is the starting point to
provide an open and extensible platform to enable secure, resilient acquisition
and sharing of information with the aim to improve the well-being and inclusion
of citizens, produce a more effective response to pollution or other environmental
emergencies, and make Smart Cities and extended urban areas feel more secure
and safe to the citizens living in them. Further, endeavors from citizens and
joint academic-community science can assist with distinguishing environmental
health problems related with air quality in metropolitan regions. Unfortunately,
there remains a gap between the development and the effective utilization of
these cutting-edge technologies within communities of proactive decision-making
[3]. The importance of this topic will help to raise public awareness of energy
problems, to highlight the importance of citizens’ engagement and to inspire
citizens to adopt sustainable consumption habits and behavior patterns. These
habits will promote new sustainable services, e.g. lengthening product life cycles
through reuse, repair and refurbishment and encourage waste reduction, energy
savings and circular thinking: the so-called ‘citizen science’ is emerging.
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Abstract. The advent of deep learning has brought in disruptive tech-
niques with unprecedented accuracy rates in so many fields and sce-
narios. Tasks such as the detection of regions of interest and semantic
features out of images and video sequences are quite effectively tackled
because of the availability of publicly available and adequately annotated
datasets. This paper describes a use case scenario with a deep learn-
ing models’ stack being used for crowd behaviour analysis. It consists
of two main modules preceded by a pre-processing step. The first deep
learning module relies on the integration of YOLOv5 and DeepSORT to
detect and track down pedestrians from CCTV cameras’ video sequences.
The second module ingests each pedestrian’s spatial coordinates, veloc-
ity, and trajectories to cluster groups of people using the Coherent
Neighbor Invariance technique. The method envisages the acquisition
of video sequences from cameras overlooking pedestrian areas, such as
public parks or squares, in order to check out any possible unusualness
in crowd behaviour. Due to its design, the system first checks whether
some anomalies are underway at the microscale level. Secondly, It returns
clusters of people at the mesoscale level depending on velocity and tra-
jectories. This work is part of the physical behaviour detection module
developed for the S4AllCities H2020 project.

Keywords: Crowd behaviour · Computer Vision · Artificial
Intelligence · Deep Learning

1 Introduction

Over the last decade, the scientific community observed a lot of progress
in Artificial Intelligence and Computer Vision. Consequently, several applica-
tion domains spanning object modelling, detection, segmentation, healthcare,
crowd dynamics are addressed using computer vision approaches [5,6,20,22].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 59–70, 2022.
https://doi.org/10.1007/978-3-031-13324-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13324-4_6&domain=pdf
http://orcid.org/0000-0003-0707-6131
http://orcid.org/0000-0003-4325-4871
http://orcid.org/0000-0001-8884-7588
http://orcid.org/0000-0002-1047-0685
http://orcid.org/0000-0002-1755-3264
https://doi.org/10.1007/978-3-031-13324-4_6


60 A. Bruno et al.

The advent of Deep Learning [16] prompted both academics and industry to
push the bar on the proposed solutions for several scenarios and use-cases. Since
the introduction of AlexNet in 2012 [15], much attention has been focused on
Deep Neural Networks to achieve increasingly higher accuracy rates on the topics
above and tasks. Some architectures represent milestones in the deep learning
literature, namely GoogleNet [24], Inception-V4 and ResNet [23], GANs [10],
YOLO [18]. As the literature review shows, AI allowed achieving unprecedented
accuracy rates in so many research fields, albeit some paradigms exhibit draw-
backs [29]. For instance, supervised learning relies on the availability of a great
deal of manually annotated data. Big-sized datasets such as ImageNet [8] come
along with millions of images and the corresponding annotations, making super-
vised learning a suitable paradigm to perform different tasks. Generally speak-
ing, the hand-labelling of images and video sequences is labour intensive and
time-consuming. That especially applies to all those domains such as biomedical
imaging, behaviour understanding, visual perception, where in-depth knowledge
and expertise are required. Some object detection and segmentation tasks are
easily extended to video sequences by optimising the image-related version.

Research interest in crowd behaviour analysis has grown remarkably over
the last decades. As a result, crowd behaviour analysis has become a multidis-
ciplinary topic involving psychology, computer science, physics. A crowd can be
thought of as a collection of individuals showing movements that might be tem-
porarily coordinated upon a common goal or focus of attention [2]. That could
apply to both spectators and moving people. Consequently, there are three main
levels at which crowds can be described: microscale, mesoscale, macroscale. At
the microscale level, pedestrians are identified individually. The state of each
of such individuals is delivered by position and velocity. At the mesoscale level,
the description of pedestrians is still identified by position and velocity, but it is
represented statistically through a distribution function. At the macroscale level,
The crowd is considered as a continuum body. Furthermore, it is described with
average and observable quantities such as spatial density, momentum, kinetic
energy and collectiveness. This paper describes a use case scenario for crowd
behaviour analysis and provides an integrated solution. The proposed solution
relies on both supervised and unsupervised learning paradigms depending on
the task to work out. The proposed solution has been developed within the
research activities for the European Research Project S4AllCities [1]. The exper-
iments have been carried out on the publicly available UCSD Anomaly Detection
Dataset [27].

2 Related Work

One of the main goals of crowd behaviour analysis is to predict whether some
unusual phenomenon takes place to ensure peaceful event organizations and
minimize the number of casualties in public areas. This section summarises the
scientific literature on the topic by looking into approaches relying on different
principles and methodologies. The more traditional methods of crowd behaviour
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analysis build on the extraction of handcrafted features either to set up expert
systems or to feed neural networks and classification systems. For instance, tex-
ture analysis tackles the detection of regular and near regular patterns in images
[3]. Saqib et al. [21] carried out crowd density estimation using texture descrip-
tors while conversely, some methods address crowd analytics using physics con-
cepts and fluid dynamics as in [9]. However, images and videos in real scenarios
contain nonlinearities that have to be faced efficiently for gaining accuracies
in the results. [25] Some computer vision-based methods face the challenging
topic by checking groups of people exhibiting coherent movements [27]. Other
techniques focus on path analysis using mathematical approaches while psychol-
ogists highlighted some aspects regarding emergency and situational awareness
[19]. A shared line in the methods above is the increase in demand for security
measures and monitoring of crowded environments. Therefore, by zooming in on
the topic, one can unearth several applications that are closely related to crowd
analysis: person tracking [19], anomaly detection [28], behaviour pattern analysis
[7], and context-aware crowd counting [17]. As briefly mentioned in the previous
section, despite the introduction of deep learning solutions being with high accu-
racy rates, some open issues related to density variation, irregular distribution of
objects, occlusions, pose estimation remain open in the topic of crowd analysis
[14]. The following section introduces the integrated solution developed for the
S4AllCities project [1].

3 Proposed Method

In this section, the proposed method is thoroughly described by highlighting the
role played by each module. The overall architecture for the integrated solution
is depicted in Fig. 1 with three main blocks: homographic projection, supervised
deep learning models, unsupervised learning module. The following subsections
focus on each of the steps mentioned above.

3.1 Pre-processing

The first step of the proposed integrated solution consists of planar homogra-
phy to project head-plane points onto the ground-plane. As widely described
by Hartley and Zisserman [11], planar homography relates the transformation
between two planes (up to a scale factor). The homography matrix H has 8
degrees of freedom. That means that four matches are enough to calculate the
transformation. The main goal here is to remove or correct the perspective of the
given view of the pedestrian-area-overlooking camera. In the use-case scenario,
at least four coordinates of pedestrians are needed. They can be easily fetched by
enacting YOLOv5 until the four pedestrians are detected. Then, the approach
will generate an approximation on the plane-to-plane projection depending on
the average height of pedestrians in the given camera’s field of view.
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Fig. 1. Deep Learning Stack is depicted in the figure.

3.2 Supervised Deep Learning Module

Inspired by Hou et al.’s method [12] on vehicle tracking, the first of two deep
learning modules sees the integration of two popular models such as YOLOv5
[13] and DeepSORT [26]. The former is one of the most accurate models for
object detection. At the same time, the latter tracks down human crowd move-
ments over video sequences, which is the extension of the popular YOLOv4 by
Bochkovskiy et al. [4]. For a given frame having N pedestrians, P (x, y)i=1,,N

represents the ith pedestrian’ spatial coordinates. YOLOv5 is quite accurate in
detecting pedestrians (see Fig. 2; it does not perform re-identification though.
That is why it has been necessary to integrate DeepSORT, which is responsible
for tracking down the pedestrians in a video sequence by assigning them a spe-
cific reference number. DeepSORT keeps trace of P (x, y)i=1,,N across different
times (t0, t1, · · · , tn). In Figs. 3 and 4 an example referring to ID 1 pedestrian
is shown. YOLOv5 returns all spatial coordinates of the pedestrians detected
as a sequence of bounding boxes. They will be then ingested by DeepSORT,
which runs measurement-to-track associations using nearest neighbour queries
in visual appearance space (see Fig. 5). On top of both modules, the system is
capable of retrieving the spatial coordinates, and the reference number of the
pedestrians tracked across the area overlooked by a CCTV camera. The extrac-
tion of the details mentioned above is taken every second. Having timestamps,
spatial coordinates and reference number allows extracting velocity and storing
trajectories. A time frame Δt is taken as a reference to work out the detection
of anomalies in the crowd behaviour at the microscale level. Being t0 the initial-
isation time of the system, t0 + Δt is the earliest time where it is possible to
detect any anomalies in crowds. Gaussian distributions are considered to analyse
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pedestrian velocity within the Δt time range. An example of trajectories out of
video sequences is given in Fig. 6. The system evaluates anomalies as the samples
that deviate from the normal distribution. The more a sample is distant from
the distribution, the more likely an anomaly is within the crowd behaviour.

Fig. 2. An example of pedestrian detection from video frames is given above.

Fig. 3. Pedestrian detection at time t0 Fig. 4. Pedestrian detection at time t1
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Fig. 5. The first deep learning module consists of the integration of DeepSORT and
YOLOv5

Fig. 6. The first deep learning module consists of the integration of DeepSORT and
YOLOv5
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3.3 Unsupervised Learning for Trajectory Clustering

Due to the advances in detection and tracking techniques, the ability to extract
high-quality features of moving objects such as trajectories and velocities is now
possible. These features can be critical in understanding and detecting coherent
motions in various physical and biological systems. Furthermore, the extrac-
tion of these motions enables a deeper understanding of self-organized biologi-
cal systems. For instance, in surveillance videos, capturing coherent movements
exhibited by moving pedestrians permits acquiring a high-level representation of
crowd dynamics. These representations can be utilized for a plethora of applica-
tions such as object counting, crowd segmentation, action recognition and scene
understanding, etc. (Fig. 8).

Fig. 7. An exhibition of coherent neighbour invariance. The green dots are viewed as
invariant neighbors of the centered black dot (for K = 4). (Color figure online)

Fig. 8. Coherent motion detection in action

Whilst coherent motions are regarded as macroscopic observations of pedes-
trians’ congregational activities, these motions can be distinguished through the
interaction among individuals in local neighbourhoods. Inspired from Zhou [30],
the Coherent Neighbor Invariance technique is deployed to capture the coherent
motion of crowd clutters. The key characteristics that establish the difference
between cohesive and arbitrary movements are listed below:

– Neighborship Invariance: the spatial-temporal relationship among indi-
viduals is inclined to prevail overtime.
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– Velocity Correlations Invariance: neighboring individuals exhibiting
coherent movement showcase high velocity correlations.

Conversely, incoherent individuals that showcase relative independence tend
to lack the mentioned properties. To illustrate the Neighborship Invariance prop-
erty, Fig. 7 displays the use of K nearest neighbour to highlight the emergence
of global coherence in local neighborships. The equation below quantifies the
velocity correlations between neighbouring individuals, which allows discerning
coherent motions.

g =
1

d + 1

t+d∑

λ=t

vi
λ · vik

λ

‖vi
λ‖2 · ‖vik

λ ‖2 (1)

where:

– g : velocity correlation between i and ik
– vi

λ : velocity of individual i at time λ
– vik

λ : velocity of individual ik at time λ
– d : duration of the experiment

4 Experimental Results

An experimental campaign has been carried out over the publicly available
UCSD Anomaly Detection Dataset [27]. The dataset consists of video sequences
acquired with a stationary camera overlooking pedestrian areas. The dataset
offers videos with variable conditions of crowd density, and cameras’ field of
view. Most of videos contains only pedestrians, still anomalies are represented
by bikers, skaters, small carts, pedestrian entities crossing a walkway or walking
in the grass that surrounds it.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

The experiments were run on five video sequences from UCSD. Two of which
do not contain any anomalies, while the remaining three do. A quantitative
analysis of results is conducted over the first deep learning module, which is
responsible for the microscale analysis. In Tables 1 and 2 precision and recall
(see Eqs. 2 and 3) for YOLOv5 and DeepSORT are reported. The second deep
learning module is still currently being developed. Only qualitative results can
be shown 7 to give the big picture of the consistency of clusters of people. As it
can be noticed in Table 1, YOLOv5 reaches high precision rates on all tests up to
0.98 while recall is penalised by some false negatives. Occlusion and overlapping
cause a drop of performances on pedestrian detection. DeepSORT also achieves
good precision rates even though sometimes the tracking shows some mismatch.
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Recall values drop by 10% on average if compared to precision. Nevertheless, the
combination of the two supervised learning modules gains decent performances.
As described in Sect. 3.2, the supervised deep learning module allows the extrac-
tion of high-level features such as spatial coordinates, velocity and trajectories.
On top of that, some parameters are to be fine-tuned, respectively, Δt and the
distance from the normal distribution. The latter has a sample evaluated as
anomaly, trigger a sort of alert to the crowd behaviour analysis system. Some
fine-tuning has been necessary in order to find the right trade-off performances
and computational load. δt has been set to 5 s, while 5 pixel/second has been
selected as the distance threshold from the normal distribution of velocities.

The experiments on the automatic optimisation of the given advertisement
layouts and images have been carried out on a 13-in. Mac-book Pro with
16 GB of RAM, 2.4 GHz Quad-Core Intel Core i5, Intel Iris Plus Graphics
655 1536 MB.

Table 1. YOLOv5 Precision and Recall in 5 tests over UCSD

No. of test Precision Recall

Test 1 0.98 0.75

Test 2 0.93 0.72

Test 3 0.95 0.71

Test 4 0.94 0.78

Test 5 0.92 0.70

Table 2. DeepSORT Precision and Recall in 5 tests over UCSD

No. of test Precision Recall

Test 1 0.85 0.74

Test 2 0.89 0.72

Test 3 0.83 0.69

Test 4 0.86 0.68

Test 5 0.87 0.72

5 Conclusions

This paper showcases the effectiveness of an integrated solution consisting of
three main modules: pre-processing, supervised learning, unsupervised learning.
The main goal is to perform crowd behaviour analysis by considering several
variables such as velocity, spatial coordinates and trajectories. The first two
have been used to detect anomalies in the test set at the microscale level. Suc-
cessively, the unsupervised learning module ingests velocities and trajectories
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to initialise clusters of people according to cohesive movements. The microscale
analysis task has been entirely carried out with supervised deep learning models
such as YOLOv5 and DeepSORT. Cohesive movement-based clustering has been
tackled by the Coherent Neighbour Invariance technique. Further experiments
are underway to improve precision and recall rates, especially on the pedes-
trian tracking task. Furthermore, some other alternatives are in consideration to
detect anomalies by combining physical properties like velocity and trajectories
and semantic features such as objects whose only presence might represent a
danger within a given environment. Furthermore, some work is to be done to
adapt the method to different datasets and environments.
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Abstract. A 2D binary image is well-composed if it does not contain
2 × 2 blocks of two diagonal black and two diagonal white pixels, called
critical configurations. Some image processing algorithms are simpler on
well-composed images. The process of transforming an image into a well-
composed one is called repairing.

We propose a new topology-preserving approach, which produces two
well-composed images starting from an image I depending on the chosen
adjacency (vertex or edge adjacency), in the same original square grid
space as I. The size of the repaired images depends on the number and
distribution of the critical configurations. A well-composed image I is
not changed, while in the worst case the size increases at most two times
(or four times if we want to preserve the aspect ratio). The advantage
of our approach is in the small size of the repaired images, with a posi-
tive impact on the execution time of processing tasks. We demonstrate
this experimentally by considering two classical image processing tasks:
contour extraction and shrinking.

Keywords: Well-composed images · Repairing 2D digital images ·
Contour tracing · Shrinking

1 Introduction

We consider two dimensional black-and-white (binary) images, where black is
foreground and white is background. A critical configuration is a block of 2 × 2
pixels within an image, where two pixels are white and two are black, in a
chessboard configuration. An image with no critical configurations is called well-
composed.

The presence of critical configurations introduces ambiguity in the topology
of the image, as the topological (homological) properties of the foreground and
of the background of the image (the number of connected components and the
number of holes) depend on the used adjacency type (edge- or vertex-adjacency,
a.k.a. 4- or 8-adjacency). Opposite adjacency types must be used for foreground
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P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 73–83, 2022.
https://doi.org/10.1007/978-3-031-13324-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13324-4_7&domain=pdf
http://orcid.org/0000-0001-9664-2160
http://orcid.org/0000-0001-5088-034X
https://doi.org/10.1007/978-3-031-13324-4_7
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and background pixels in order to maintain some similarity between continuous
and digital topology.

Furthermore, many topological image analysis and processing algorithms
are simpler and easier to implement if their input image is known to be well-
composed. For such reasons, the research community has been working for years
on the topic of image repairing, i.e., the process of transforming an arbitrary
image into a well-composed one. All the proposed approaches which preserve
the image topology, increase the image size.

We propose a simple approach for topology-preserving image repairing, which
is based on inserting new rows or new columns inside the image, just where
critical configurations are present. In this way, the growing rate of image size
depends on the number and distribution of critical configurations present in the
image. We introduce two algorithms based on such an approach. Algorithm A
guarantees less than 200% of size growth on all images, but modifies the aspect
ratio. Algorithm B preserves the aspect ratio, but cannot guarantee the same
bound. The theoretical worst case growing rate is 400%, while it is much less in
practical cases.

2 Background Notions

A 2D (square) grid [1,2,4–6] is a tessellation of the plane into closed unit squares
(pixels) centered at points in Z

2, with edges parallel to the coordinate axes. Two
types of adjacency relation are defined in the grid. Two pixels that share an edge
or a vertex are called 4- or 8-adjacent, respectively.

A 2D digital object O is a finite set of pixels in the square grid. The pixels
in O are called black (foreground). The pixels in the complement of O are called
white (background). The carrier (or continuous analogue) of O is the union (as
point sets) of the pixels in O. We will denote it also as O.

A vertex v is critical for a 2D digital object O if v is incident to two white
and two black pixels, where black and white pixels alternate cyclically around v.
The 2×2 pixels incident with a critical vertex are called a critical configuration,
a.k.a. a gap.

3 Related Work

Several image repairing algorithms have been proposed. Here, we restrict our
attention to the ones which preserve the topology, and whose output is still in
the square grid.

The method by Rosenfeld et al. [9] scales the image by factor 3 in both x and
y directions. In the rescaled grid, all black (white) pixels involved in a critical
configuration are changed to white (black), for repairing the image according to
8-adjacency (4-adjacency). An example is shown in Fig. 1 (b).

The algorithm by Stelldinger et al. [10] increases the grid resolution twice
in both coordinate directions, by creating an additional square for each edge
and each vertex in the grid. Therefore, the image size increases four times. If
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4-adjacency (8-adjacency) is considered for the black pixels, the squares corre-
sponding to the edges and vertices are black only if all the incident squares are
black (at least one incident square is black). An example is shown in Fig. 1 (c).

The algorithm by Čomić and Magillo [3] produces the output in a new square
grid, rotated 45 ◦C with respect to the original one and therefore called the (2D)
diamond grid. The pixels of the diamond grid correspond to the pixels and
vertices of the original square grid. Thus, the image size is increased two times.
Depending on the choice of the color of the pixels associated with the vertices,
the repaired image is homotopy equivalent with the original one with either 8-
or 4-adjacency. An example is shown in Fig. 1 (d).

(a) (b) (c) (d)

Fig. 1. (A) A critical configuration and the way it is repaired by (b) Rosenfeld et al.
[9], (c) Stelldinger et al. [10], and (d) Čomić and Magillo [3]. The dashed pixels are
black (white) for preserving 8-adjacency (4-adjacency).

4 Our Approach to Image Repairing

The idea is in a sense similar to [10], but, instead of adding a new row and a new
column between each original row and column, we add a new row (or column)
only where some critical configuration exists. For each critical configuration, one
of the involved pixels changes color in the stretched image.

Our Algorithm A adds the minimum number of rows necessary to eliminate
the critical configurations. Algorithm B adds both rows and columns, with the
aim of preserving the aspect ratio of the image.

4.1 Algorithm A

Our basic idea is shown in Fig. 2. For each pair of consecutive rows i and i + 1
in the input image, such that some critical configuration exists across them, we
add a new row between i and i + 1. Such new row is a copy of the row i + 1
in all pixels, with the exception of the pairs of consecutive pixels involved in a
critical configuration. The color of such pairs is set to black (white) to obtain
an equivalent image according to 8-adjacency (4-adjacency).

Equivalently, we can add new columns instead of new rows. We first compute
the number of necessary new rows and the number of necessary new columns
to be added, and then choose the option which gives the smaller image size.
Algorithm A, obtained from this simple idea, has the following good properties:
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i

i+1

Fig. 2. When a critical configuration (marked with the red box) exists across the rows
i and i + 1, a new row is inserted in between. The color of each pixel in the new
row is copied from the row i + 1, but the two pixels adjacent to those involved in the
critical configuration (dashed) are both set to black or to white, for repairing the image
according to 8-adjacency or 4-adjacency, respectively. (Color figure online)

1. It preserves the image topology with 4- or 8-adjacency.
2. The size of the repaired images is less than twice the size of the original one. In

the worst case, for an image of size N ×M , a new row will be added between
any two rows, and the size of the image will increase to N × (2M − 1).

3. The size increment depends on the number of critical configurations present
in the input image. At most one row is added for each critical configuration.
Intuitively, this is the first image repairing algorithm sensitive to the amount
of repairing needed by the image.

The main drawback of Algorithm A is that the aspect ratio of the image is
dramatically changed. So, the output of Algorithm A is feasible for processing
the image to compute other information, but not for displaying it.

4.2 Algorithm B

In order to preserve the aspect ratio of the input image, Algorithms B adds both
rows and columns in a balanced way across the image. Some critical configura-
tions will be repaired by inserting a row, and other critical configurations by
inserting a column.

We scan the image diagonally, as shown in Fig. 3. Each time we find a critical
configuration involving the four pixels across the rows i, i+1 and columns j, j+1,
we compare the aspect ratio of the original image with that of the new image
obtained with the already planned additions of rows and columns. We decide to
add a new row or a new column, based on the choice that keeps the new aspect
ratio more similar to the original one.

Figure 4 shows the same image repaired by adding just rows or just columns,
or by adding both rows and columns.

Compared with Algorithm A, Algorithm B gives an aspect ratio which is
very similar to the original one, but it does not guarantee the same bound on
size growth. In the worst case, a chessboard pattern, Algorithm B would add a
new row between any two rows, and a new column between any two columns.
The image size would increase from N × M to (2N − 1) × (2M − 1), i.e., four
times, as in [10].
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1
2
3
4

Fig. 3. The image is examined diagonally. While scanning a diagonal of pixels, we
check if the upper-right vertex of each pixel is critical.

Input image Output of Alg. A
Output of Alg. B

Fig. 4. Test image flamingo at low resolution, and its repaired versions with Algorithms
A and B. Critical configurations in the input image, and added rows and columns in
the repaired ones, are rendered in red. In order to fit in the page, the images have been
scaled 20% of their actual size. (Color figure online)

5 Proof of Correctness

We show that the output of our repairing algorithms with respect to 8-adjacency
is well-composed and homotopy equivalent to O. The claim for 4-adjacency fol-
lows by duality [6]. We focus on the insertion of a new row. The insertion of a
column is symmetric. For the insertion of more rows (columns), it is sufficient
to repeat the reasoning. For simplicity, we assume the critical configuration is
as in Fig. 5.

5.1 Well-Composedness

We show that after processing the rows i and i + 1, all critical configurations
between them are removed and no new critical configurations are created. Let
X be the pixel in the duplicated row whose color is changed from white to black
(the cyan pixel in Fig. 5), and let us consider the 3 × 3 neighborhood of X. This
color change will remove a critical configuration at the upper-right vertex of X
(marked with the yellow dot), and will not create a new critical configuration at



78 L. Čomić and P. Magillo

any of the other three vertices of X, whatever is the color of A and of B (the
latter copied to C), as shown in Fig. 5. The lower-right vertex of X is incident
with exactly three black pixels (X and the two black pixels involved in the
critical configuration), its lower-left vertex is incident with two 4-adjacent pixels
of the same color (the pixels B and C) and its upper-left vertex is incident with
two 4-adjacent black pixels (X and the one above it).

i

i+1

A
A

B
B

C X

Fig. 5. The configuration at a critical vertex (yellow). The color of the pixels of the
new row is copied from the bottom row. Only the cyan pixel is changed to black in
order to repair the critical configuration. (Color figure online)

5.2 Homotopy Equivalence

Given a topological space X and its subspace A, a continuous function F :
X × [0, 1] → X is a (strong) deformation retraction of X onto A if F (x, 0) = x,
F (x, 1) ∈ A, F (a, t) = a for all x ∈ X, a ∈ A and t ∈ [0, 1]. If a deformation
retraction exists, then X and A are homotopy equivalent.

We show the homotopy equivalence by constructing a deformation retraction
from the three rows processed at each step of the algorithms to the two rows of
the original image.

Let f(P, t) = (1 − t)P + tP ′ for each point P in each added black pixel X,
where P ′ is its radial projection on the border of that pixel from the center of
the pixel below X if the pixel to the left of X is black, or from the center of the
lower left neighbor of X if that pixel is white (see Fig. 6 (a)). Let f(P, t) = P for
all other points in the black pixels. Let h(P, t) = (1 − t)P + tP ′ for each point
P in each black pixel in the third row, where P ′ is its vertical projection on the
upper edge of that pixel, and let h(P, t) = P for all other points in the black
pixels in the first two rows (see Fig. 6 (b)). The required deformation retraction
is the composition of the maps f and h.

6 Experimental Results and Discussion

We used ten images from the Pixabay repository [8], with two different resolu-
tions for each image. The images were gray-scale with gray values ranging from
0 to 255, and they have been converted to binary images by applying a threshold
equal to 128 or 64 (depending on the darkness of the image). The low resolution
versions of the images are shown in Fig. 7.
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PP’ P P’

P

P’

(a) (b)

Fig. 6. The cyan pixel has been set to black in order to repair a critical configuration.
The black dot is a point P inside a black pixel and the white dot is its image P ′ through
f in (a) and through h in (b). The red dot is the center of the white pixel. (Color figure
online)

In Sect. 6.1 we show and comment the results of Algorithms A and B. In
Sect. 6.2 we consider the impact of the size of the repaired images in further pro-
cessing algorithms, including a comparison with images repaired by other algo-
rithms at the state of the art. All presented results refer to image repairing with
8-adjacency. The numbers would be the same with 4-adjacency, the only difference
being the color of some pixels.

6.1 Results of Algorithms A and B

We developed a prototype implementation of Algorithms A and B, in Python.
The results of the two algorithms on the test images are shown in Table 1. The
suffix L or H refers to the same image at low and high resolution, respectively.

As expected, with Algorithm A, the size of all repaired images is less than
twice the original one, and it depends heavily on the number of critical configu-
rations in the input image. Also, the aspect ratio is relevantly changed. The size
increment seems to be connected more with the number of critical configurations
and less to resolution.

With Algorithm B, the aspect ratio is almost preserved, with changes occur-
ring from the second decimal digit. On half of the images, the increment of image
size is comparable to Algorithm A. On the other half, the size increases up to
three times or more, especially on images with fine-grained patterns and many
critical configurations (cfr. birch, bird and train in Fig. 7).

6.2 Processing The Repaired Images

Image repairing is often used as a preprocessing stage, as many image analysis algo-
rithms are simpler on well-composed images. In the following, we study the impact
of the size of the repaired images produced by our Algorithms A and B and by the
algorithms in [10] and [3] on the performance of image processing algorithms. We
have chosen these competitors because they use the smallest additional memory
among those which preserve image homotopy and produce an image in the square
grid.

The algorithm by Stelldinger et al. [10] produces a repaired image whose size
is four times the original one. The algorithm by Čomić and Magillo [3] doubles
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the size of the image, but the repaired image is in a grid rotated by 45◦C. The
size of the images repaired by Algorithms A and B is as in Table 1.

art birch bird

car

fog
flamingo

kite

staircase stargazer train

Fig. 7. Our binary versions of the original images. The shown images correspond to
the low resolution and are scaled 15% to fit the page width.

As meaningful examples of image processing tasks, we consider contour
extraction and shrinking, i.e., a very simple and a rather complex task. A con-
tour is a circular list of black pixels 8-adjacent to at least one white pixel, and
4-adjacent to the previous black pixel in the list (see [7], Chap. 7.5). Shrinking
iteratively changes the color of simple (removable) black pixels into white (see
[4], Chap. 16.2). For these programs, we used the C implementation from [3].
The results, obtained on a PC equipped with an Intel CPU i7-2600K CPU at
3.4 GHz with 32 GB RAM, are in Tables 2 and 3.

Both processing tasks are faster on the images repaired by Algorithms A and
B, than on the ones repaired by [10]. On the output images of Algorithm A, they
are faster than on the output images of [3] in all cases with the exception of some
images, where the times are comparable. On the images repaired by Algorithm
B, contour extraction and shrinking are faster than on the images repaired by
[3] in half of the cases.
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Table 1. Results with Algorithms A and B. Aspect ratios are rounded to the fourth
decimal digit. The percentage of size growth is rounded to integer.

Image Input Version A Version B

crit. Aspect Aspect % incr. Aspect %

Size conf. ratio Size ratio size Size ratio size

artL 640 × 426 378 1.5023 640 × 644 0.9938 151 785 × 523 1.5010 151

artH 1920 × 1280 5390 1.5 1920 × 2403 0.7990 188 2957 × 1972 1.4995 237

birchL 640 × 426 8253 1.5023 640 × 851 0.7521 200 1209 × 805 1.5019 257

birchH 1920 × 1279 74917 1.5012 1920 × 2557 0.7509 200 3702 × 2466 1.5012 372

birdL 640 × 426 1283 1.5023 640 × 801 0.7990 188 968 × 644 1.5031 229

birdH 1920 × 1279 8465 1.5012 1920 × 2531 0.7586 198 3217 × 2143 1.5012 280

carL 640 × 401 1003 1.5960 640 × 714 0.8964 178 928 × 581 1.5972 210

carH 1920 × 1205 5617 1.5934 1920 × 2314 0.8297 191 3037 × 1906 1.5934 250

flamingoL 425 × 640 175 0.6641 553 × 640 0.8641 130 480 × 722 0.6648 127

flamingoH 1276 × 1920 565 0.6646 1663 × 1920 0.8661 130 1441 × 2169 0.6644 128

fogL 640 × 235 320 2.7234 640 × 378 1.6931 161 786 × 289 2.7197 151

fogH 1920 × 706 2170 2.7195 1920 × 1298 1.4792 184 2655 × 977 2.7175 191

kiteL 640 × 524 717 1.2214 640 × 826 0.7748 158 824 × 674 1.2226 166

kiteH 1920 × 1571 3147 1.2222 2928 × 1571 1.8638 153 2549 × 2085 1.2225 176

staircaseL 640 × 417 1012 1.5348 640 × 646 0.9907 155 830 × 541 1.5342 168

staircaseH 1920 × 1253 6946 1.5323 1920 × 1970 0.9746 157 2598 × 1695 1.5327 183

stargazerL 640 × 426 108 1.5023 716 × 426 1.6808 112 690 × 459 1.5033 116

stargazerH 1920 × 1280 343 1.5 1920 × 1507 1.2741 118 2064 × 1377 1.4989 116

trainL 640 × 471 3438 1.3588 640 × 885 0.7232 188 1036 × 762 1.3596 262

trainH 1920 × 1421 15814 1.3512 1920 × 2752 0.6977 194 3235 × 2394 1.3513 284

Repaired images by Algorithm B give a better performance in cases where
the original image had a small number of critical configurations (e.g., flamingo,
fog, stargazer), but also in some other cases (e.g., kite). In these latter cases,
probably many critical configurations were aligned, and therefore repaired by
adding a single new row or column.

In presence of many critical configurations (e.g., birch, bird, car, train), the
time for processing the output images of Algorithm B can be up to twice w.r.t.
[3] (e.g., see shrinking on birch and bird). In the presence of few critical configu-
rations, the opposite may happen (e.g., flamingo and stargazer). We remember
that, unlike Algorithms A and B, the algorithm in [3] rotates the grid.
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Table 2. Execution times (in milliseconds) of contour extraction on the images repaired
by the four algorithms.

Table 3. Execution times (in milliseconds) of shrinking on the images repaired by the
four algorithms.

7 Conclusion

We proposed two repairing algorithms having the advantages that the obtained
well-composed images lie in the square grid (thus, all existing image processing
tools can be applied to the repaired images) and that the size of the output is
sensitive to the number of critical configurations in the input.

Algorithm A has the further advantage of a reduced size of the repaired
images, compared with all previous approaches. Its main drawback is a direc-
tional asymmetry: the repaired images are non-uniformly stretched in either ver-
tical or horizontal direction. This makes Algorithm A less suitable for tasks that
require the computation of numerical image properties such as area or perimeter,
or of the Boolean operations on two distinct images, while algorithms for the
computation of the topological properties can benefit from it.

Algorithm B solves this drawback at the expense of a larger size of the
repaired images, if many critical configurations were present. It can be a good
compromise for those cases where critical configurations are known to be few
(e.g., coming from rasterization of vector formats and conversion errors).
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In the future, we plan to introduce a mechanism to balance the number of
added black and white pixels, to preserve the darkness/shininess of the image as
well. This will improve the similarity of the repaired image with he original one.
We also plan to port our prototype implementation into an efficient programming
language, such as C.

Acknowledgements. This research has been partially supported by the Ministry
of Education, Science and Technological Development through project no. 451-03-
68/2022-14/200156

References

1. Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The number
of gaps in binary pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.)
ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005). https://doi.
org/10.1007/11595755 5

2. Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pic-
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Abstract. As an important topological property of a 3D binary image, the Euler
number can be calculated by counting certain 2 × 2 × 2 voxel patterns in
the image. This paper presents a novel method for improving the voxel-pattern-
based Euler number computing algorithm of 3D binary images. In the proposed
method, by changing the accessing order of voxels in 2× 2× 2 voxel patterns and
combining the voxel patterns which provide the same Euler number increments
for the given image, the average numbers of voxels to be accessed for processing
a 2 × 2 × 2 voxel pattern can be decreased from 8 to 4.25, which will lead to an
efficient processing. Experimental results demonstrated that the proposed method
is much more efficient than the conventional voxel-pattern-based Euler number
computing algorithm.

Keywords: Euler number · Topological property · 3D image · Computer vision ·
Pattern recognition

1 Introduction

A 3D binary image can be represented by a three-dimensional array of voxels. For
every pair of voxels X = (x1, x2, x3) and Y = (y1, y2, y3), X and Y are said to be 6-
adjacent if |x1 − y1|+|x2 − y2|+|x3 − y3| = 1, whileX and Y are said to be 26-adjacent
if max (|x1 − y1|, |x2 − y2|, |x3 − y3|) = 1, i.e., as shown in Fig. 1, p1, p3, p5, p7, p17
and p26 are 6-adjacent voxels of voxel p and p1, p2, p3, . . . , p26 are 26-adjacent voxels
of voxel p.

In recent years, there have arisen many requirements for 3D image processing with
advances in various image recognizing and analyzing communities. As an important
topological property of a binary image, the Euler number will not change when the
image is stretched, flexed or rotated. Therefore, it has been used in many applications in
images processing: processing cell images in medical diagnosis [1], shadow detection
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[2], reflectance-based object recognition [3] and crack detection [4]. For convenience,
hereafter, whenever an “image” is mentioned, it refers to the “binary image”.
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Fig. 1. Adjacent voxels in a 3D image.

The Euler number E of a 3D image is defined as follows.

E = O − H + C (1)

whereO is the total number of objects,H is the total number of holes (or tunnels), andC is
the total number of cavities (or bubbles) in the image, respectively [5, 6]. For example,
Akira and Aizawa [7] proposed a one-pass algorithm for calculating the numbers of
objects, holes and cavities by utilizing an n × n array of finite-state automata, and then
calculating the Euler number by formula (1).

Obviously, for calculating the Euler number according to the above definition, we
need to label the objects, the holes and the cavities in the 3D image. In recent years,
many novel and efficient labeling algorithms are proposed for solving the problem, such
as in [8–10]. However, the labeling work need to have a comprehensive understanding
of the images and it cannot be completed by the local information of the images. Experi-
mental results verified that only for obtaining the Euler number of an image, the labeling
algorithm is less efficient than other types of Euler number computing algorithms in
most cases [11]. To avoid the complicated labeling work, several algorithms have been
proposed for calculating the Euler number of a 3D image by alternative methods. In Ref.
[12], a perimeter-based Euler number computing algorithm was proposed which calcu-
lates the Euler number of a unit-voxel-width 3D image by using of the perimeters and
contact perimeters of the objects in the image. In Ref. [13], Lee and Poston proposed an
algorithm based on smoothing the 3D image being processed to a differentiable object
and applying theorems of differential geometry and algebraic topology. In practice, this
method is suitable for both of 2D images and 3D images. In Ref. [14, 15], Lin et al.
proposed amethod for calculating the Euler number of a 3D image by the number of runs
and neighboring runs found in the image and it is more efficient for images with high
densities of object voxels. In Ref. [16], Sánchez-Cruz et al. presented a new method to
calculate the Euler number of a 3D image by considering a voxelized object with tunnels
and/or cavities and the relationship between contact voxel faces with enclosing surfaces.
In this method, 2 × 2 × 2 voxel patterns, 2 × 2 × 1 voxel patterns, 1 × 2 × 2 voxel
patterns and 2 × 1 × 2 voxel patterns need to be counted in the image.

Recently, two novel methods for computing the Euler number of a 3D image were
presented. In Ref. [17], Sossa proposed a novel method in terms of a codification of the
vertices of the object voxels, which can be treated as the extension of Ref. [18]. Čomića
proposed a surface-based formula for computing the Euler characteristic of an arbitrary
object (well-composed or not) in the cubical grid, with either vertex- or face-adjacency
in Ref. [19]. The method is based on counting only the boundary vertices and faces in
the object, with the vertex count adjusted for the two adjacency relations.
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Especially, Park and Rosenfeld [5] presented a method for calculating the Euler
number of a 3D image by counting certain 2 × 2 × 2 voxel patterns for 6-adjacent.
Morgenthaler extended this method to 26-adjacent in Ref. [20]. These algorithms are
simple and easy for implementing in practice. For convenience, we denote the conven-
tional Voxel-Pattern-based algorithm presented by Morgenthaler in Ref. [20] as the VP
algorithm in this paper.

This paper presents an efficient method for improving the VP algorithm for calcu-
lating the Euler number of a 3D image. By changing the accessing order of voxels in 2
× 2 × 2 voxel patterns and combining the voxel patterns which provide the same Euler
number increments for the given image, the average number of voxels to be accessed for
processing a 2 × 2 × 2 voxel pattern can be decreased from 8 to 4.25, which will lead to
an efficient processing. Experimental results demonstrated that the proposed method is
much more efficient than the conventional voxel-pattern-based Euler number computing
algorithm.

The rest of this paper is organized as follows: in the next section, we review the VP
algorithm, and propose our method in Sect. 3. In Sect. 4, we use experimental results
on various resolutions of noise images to evaluate the performance of our method and
compare it with the VP algorithm. Lastly, we give the conclusion in Sect. 5.

2 Review of Conventional Voxel-Pattern-Based Euler Number
Computing Algorithm of a 3D Image

For an X × Y × Z-size 3D image, we assume that the foreground (object) voxels and
background (non-object) voxels are represented by 1 and 0, respectively. As in most
image processing algorithms, we assume that all voxels on the border of an image are
background voxels, i.e., f (i, j, k) = 0 if at least one of these (i, j or k) is equal to 1, X,
Y or Z. Moreover, we only consider 26-adjacent for foreground voxels in this paper.

For calculating the Euler number of a 3D image, the VP algorithm needs to count
certain 2 × 2 × 2 voxel patterns shown in Fig. 2 in the image. Let #[i] (1 ≤ i ≤ 22) be
the number of times that the voxel pattern i occurs in a 3D image, then the Euler number
of the image can be calculated by use of formula (2).

E = Ψ1 − Ψ2 + Ψ3 − Ψ4 + Ψ5 − Ψ6 + Ψ7 − Ψ8 (2)

where

Ψ 1 = #[1];
Ψ 2 = #[2] + #[3] + #[4];
Ψ 3 = #[5] + #[6] + #[7];
Ψ 4 = #[8] + #[9] + #[10] + #[11] + #[12] + #[13] + #[14];
Ψ 5 = #[15] + #[16] + #[17];
Ψ 6 = #[18] + #[19] + #[20];
Ψ 7 = #[21];
Ψ 8 = #[22].
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Fig. 2. Voxel patterns needed to be counted in the VP algorithm.

As is known, there are eight voxels in a 2 × 2 × 2 voxel pattern and each voxel
is either a background voxel or a foreground voxel. Therefore, there are 256 different
types of configurations for a 2 × 2 × 2 voxel pattern theoretically. For confirming
the configuration of a voxel pattern, we need to check it in all orientations. In the VP
algorithm, Morgenthaler summarized the Euler number increments of all types of voxel
patterns and presented the increment table, as shown in Table 1, where the Euler number
increment�E of a voxel pattern which is not equal to zero in a 3D image is tabulated by a
binary index. The index is derived from the values of voxels as a binary string abcdefgh.
For example, for a voxel pattern shown in Fig. 3, if the values of voxels a, b, c, d, e, f , g
and h are 0, 0, 0, 0, 1 0, 0 and 1, respectively, the binary string will be 00001001 and the
index of the voxel pattern will be a decimal number 9. According to Table 1, the Euler
number increment �E of this voxel pattern is −1. The indexes and the Euler number
increments �E of rest voxel patterns can be determined in the same manner.

FromTable 1, we can find that although there are 256 possible types of configurations
for a 2 × 2 × 2 voxel pattern, only 49 voxel patterns’ Euler number increments are not
equal to zero. Among those voxel patterns which will affect the Euler number of a 3D
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image, 30 voxel patterns’ Euler number increments are −1, 17 voxel patterns’ Euler
number increments are 1 and 2 voxel patterns’ Euler number increments are −2.

Table 1. Indexes of the Euler number increments of voxel patterns.

Index �E Index �E Index �E Index �E

00000010 1 00001001 −1 00001011 −1 00011000 −1

00011001 −1 00011010 −1 00011011 −1 00100001 −1

00100011 −1 00100100 −1 00100101 −1 00100110 −1

00100111 −1 00101000 −1 00101001 −2 00101010 −1

00101011 −2 00101100 −1 00101101 −1 00101110 −1

00101111 −1 00111000 −1 00111001 −1 00111010 −1

00111011 −1 10000001 −1 10000011 −1 10001001 −1

10001011 −1 10010100 1 10010101 1 10010110 1

10010111 1 10011100 1 10011101 1 10011110 1

10011111 1 10100001 −1 10100011 −1 10101001 −1

10101011 −1 10110100 1 10110101 1 10110110 1

10110111 1 10111100 1 10111101 1 10111110 1

10111111 1 Others 0

dc

g h

dc

g h

b

fe

ab

f

Fig. 3. Accessing order of voxel in a voxel pattern.

According to the VP algorithm, for calculating the Euler number of a 3D image,
we only need to scan the image, access voxels one by one in the image, confirm the
indexes of the corresponding voxel patterns and look for the corresponding �E in Table
1. When all voxels are processed and all the indexes of voxel patterns contained in the
3D image are confirmed, we can obtain the increments of all voxel patterns and the sum
of all increments will be the Euler number of the image. Obviously, for confirming the
voxel patterns which will affect the Euler number of the image, we have to process all
voxel patterns and access all the eight voxels in each voxel pattern. Thus, for an X × Y
× Z-size 3D image, the VP algorithm needs to access voxels 8 × X × Y × Z times for
calculating the Euler number.
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3 Our Proposed Method

In the VP algorithm mentioned above, although only 49 types of voxel patterns need to
be counted, it is necessary to confirm all voxel patterns’ indexes to determine whether
a voxel pattern should be counted or not. For confirming the index of a voxel pattern,
there are eight voxels need to be accessed.

As can be seen from Table 1, when the indexes of voxel patterns are presented
by a binary string abcdefgh, it can be found that some indexes of the voxel patterns
are consecutive, i.e., 00011000–00011011, 00100100–00100111, 00101100–00101111,
00111000–00111011, 10010100–10010111, 10011100–10011111, 10110100–
10110111 and 10111100–10111111. Noticed that these consecutive indexes of voxel
patterns have one thing in common, that is, each group of indexes has the same Euler
number increment. Obviously, the difference among these indexes only lays in the last
two bits, which vary from 00 to 11.

Based on the above observation, when calculating the Euler number of a 3D image,
we can access fewer voxels for confirming the indexes of the voxel patterns. For example,
if the values of voxels a, b, c, d, e and f in the current processing voxel pattern are 0,
0, 0, 1, 1 and 0, respectively, then, we can conclude immediately that the Euler number
should be decreased by 1 without accessing the remain two voxels. Thus, in such a case,
for processing a voxel pattern, we only need to access six voxels. The other groups of
voxel patterns with consecutive indexes can be processed in the same manner. As shown
in Table 2, following this consideration, 32 types of voxel patterns listed in the table can
be processed by accessing six voxels, which will lead to an efficient processing.

Table 2. The Euler number increment of groups of voxel patterns whose indexes are consecutive.

Index �E Index �E Index �E Index �E

00011000–00011011 −1 10010100–10010111 1 00100100–00100111 −1 10011100–10011111 1

00101100–00101111 −1 10110100–10110111 1 00111000–00111011 −1 10111100–10111111 1

In addition, when further analyzing the indexes of the voxel patternswhichwill affect
the Euler number of an image listed in Table 1, we found an important fact that for each
of such voxel patterns, the voxel at the second position of the binary index abcdefgh,
i.e., “b” is certainly a background voxel. According to this fact, when processing a voxel
pattern to confirm its index, we should access the voxel at the position “b” firstly. If the
voxel at the position “b” in a voxel pattern is a foreground voxel, we can conclude that
the processing voxel pattern should not be counted immediately, i.e., we do not need
to access any of other voxels in the voxel pattern. Otherwise, we go on to access other
voxels for confirming the index of the voxel pattern. In this way, for any voxel pattern
with a foreground voxel at the position “b” in its index, we only need to access one voxel
to confirm that the voxel pattern does not need to be counted.
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In implementation, we can take advantages of the above two strategies simultane-
ously for improving the VP algorithm. The procedure for processing a voxel pattern can
be given as follows.

For the voxel pattern being processed, we access the voxel at the position “b” in the
binary index abcdefgh of the voxel pattern firstly.

(1) If the voxel at the position “b” is a foreground voxel, we can conclude the processing
voxel pattern should not be concerned because its Euler number increment must be
0. Accordingly, we do not need to access other voxels in the current voxel pattern
any more. Then, we go on to process the next voxel pattern.

(2) If the voxel at the position “b” is a background voxel, we proceed to access the
other voxels a, c, d, e and f in sequence in the voxel pattern. If the value set {a, c,
d, e, f } is one of {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 1}, {0, 1, 1, 1, 0}, {1, 0,
1, 0, 1}, {1, 0, 1, 1, 1}, {1, 1, 1, 0, 1} or {1, 1, 1, 1, 1}, according to Table 2, we
only need to access six voxels for confirming the Euler number increments in these
cases. Then, we can go to process the next voxel pattern.

(3) Otherwise, we need to access the two remaining voxels to confirm the index of the
current voxel pattern. In these cases, we need to access eight voxels for confirming
the Euler number increment of the voxel pattern.

The pseudo codes of our method for processing each voxel pattern can be given as
follows:

For the processing voxel pattern {a, b, c, d, e, f, g, h}

if voxel b is a foreground voxel

⏐ go to process the next voxel pattern;

else

⏐ access the voxels a, c, d, e and f in sequence;

⏐ if the value set of voxels {a, c, d, e, f} is listed in Table 2

⏐ ⏐ E = E + ΔE;

⏐ else

⏐ ⏐ access the voxels g and h;
⏐ ⏐ confirm ΔE according to Table 1;

⏐ ⏐ E = E + ΔE;

⏐ end of if

end of if

When all voxel patterns are processed, we can obtain the increments of all voxel
patterns and the sumof the increments is the Euler number of the image. For convenience,
we denote this Changing-Order-based algorithm as the CO algorithm in this paper.

In our proposed method, if the voxel “b” in the index abcdefgh of a voxel pattern
is a foreground voxel, for confirming its index, we do not need to access any of other
voxels in the voxel pattern. In this case, we only need to access one voxel for processing
a voxel pattern and obtaining its Euler number increment. Furthermore, if the values of
voxels a, b, c, d, e and f in the current processing voxel pattern are listed in Table 2, in
these cases, we only need to access six voxels for processing a voxel pattern. Otherwise,
we need to access all eight voxels for processing the current voxel pattern. If there is
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the same probability of background voxels and foreground voxels occurring in a voxel
pattern, for half of the voxel patterns contained in the image, we only need to access one
voxel for confirming their indexes. Moreover, 32 types of voxel patterns listed in Table 2
can be processed by accessing six voxels and the rest 96 types of voxel patterns need to
access eight voxels for confirming their indexes. Therefore, for an X × Y × Z-size 3D
image, the total accesses of voxels for calculating the Euler number will be 1 × 128/256
× X × Y × Z + 6 × 32/256 × X × Y × Z + 8 × 96/256 × X × Y × Z = 4.25 × X
× Y × Z, which is much less than that in the VP algorithm. In the next section, we will
evaluate the performance of the proposed method by experiments.

4 Experimental Results

In this section, we compare the performance of our proposed CO algorithm with the
conventional voxel-pattern-based VP algorithm. All algorithms used for comparison
were implemented in the C language on a PC-based workstation (Intel Core i7-6770
CPU@ 3.20 GHz, 8 GB Memory, Ubuntu Linux OS), and compiled by the GNU C
compiler (version 4.6.1) with the option −O3.

Because noise images have complicated geometric shapes and complex connectivity,
severe evaluations of algorithms will be performed with these images. Five sizes (32 ×
32 × 32, 64 × 64 × 64, 128 × 128 × 128, 256 × 256 × 256, 512 × 512 × 512 voxels)
of noise images were used for the experiments. For each size, the 41 noise images were
generated by thresholding of the images containing uniform random noise with random
values from 0 to 1000 in steps of 25. All experimental results presented in this section
were obtained by averaging of the execution time for 1000 runs.

4.1 Execution Time Versus Image Sizes

All noise images were used for this experiment. The experimental results of execution
time versus image sizes are shown in Fig. 4. From Fig. 4, we can find that for both
the maximum execution time and the average execution time, two compared algorithms
have the ideal linear characteristics versus image sizes. Moreover, we can find that our
proposed algorithm is more efficient than the VP algorithm.

4.2 Execution Time Versus Image Densities

We used forty-one noise images with a size of 64 × 64 × 64 voxels for evaluating the
execution time versus the densities of the foreground voxels in an image. The experi-
mental results are shown in Fig. 5 and Table 3. From Fig. 5 and Table 3, we can find that
for almost all images, our proposed algorithm is more efficient than the VP algorithm,
especially for the images whose densities are from 0.4 to 0.8.
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Fig. 4. Execution time versus image sizes.

Fig. 5. Execution time versus image densities.
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Table 3. Execution time (ms) versus the density of 64 × 64 × 64-sized noise images.

Density VP CO Density VP CO Density VP CO

0.000 1.156 1.173 0.025 1.404 1.361 0.050 1.638 1.557

0.075 1.880 1.745 0.100 2.122 1.927 0.125 2.372 2.105

0.150 2.624 2.278 0.175 2.904 2.463 0.200 3.174 2.633

0.225 3.442 2.789 0.250 3.701 2.952 0.275 3.965 3.099

0.300 4.226 3.248 0.325 4.478 3.387 0.350 4.721 3.508

0.375 4.929 3.610 0.400 5.121 3.697 0.425 5.270 3.762

0.450 5.388 3.794 0.475 5.468 3.784 0.500 5.479 3.737

0.525 5.425 3.658 0.550 5.359 3.542 0.575 5.25 3.405

0.600 5.110 3.243 0.625 4.928 3.064 0.650 4.731 2.879

0.675 4.505 2.660 0.700 4.262 2.473 0.725 4.001 2.276

0.750 3.730 2.070 0.775 3.466 1.885 0.800 3.186 1.705

0.825 2.915 1.539 0.850 2.642 1.379 0.875 2.372 1.231

0.900 2.123 1.096 0.925 1.865 0.968 0.950 1.642 0.859

0.975 1.432 0.759 1.000 1.234 0.654

5 Conclusion

In this paper, we presented a novel method for improving the conventional voxel-pattern-
based algorithm in order to calculate theEuler number of a 3Dbinary image.By changing
the accessing order of voxels in 2 × 2 × 2 voxel patterns and combining the voxel
patterns which provide the same Euler number increments for the given image, the
average numbers of voxels to be accessed for processing a 2× 2× 2 voxel pattern can be
decreased from 8 to 4.25, which will lead to an efficient processing. Experimental results
demonstrated that the proposed method is much more efficient than the conventional
voxel-pattern-based Euler number computing algorithm.

In fact, there are many voxels accessed repeatedly by use of the raster scan of the
given image in the VP algorithm. While in our proposed method, we pay more attention
to the features existing in some voxel patterns. On the other hand, the essence of the
proposed method is checking voxel patterns in the image in sequence, and it is very
suitable for parallel implementation on GPUs as done in [21] to boost the performance.
In our future work, we will find an alternative method of reducing the number of voxels
accessed repeatedly and consider parallel implement on SIMD CPU, GPU or FPGA for
improving the voxel-pattern-based Euler number computing algorithm further.
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Abstract. Traffic monitoring is an important task in many scenarios,
in urban roads to identify dangerous behavior and on-highway to check
for vehicles moving in the wrong direction. This task is usually per-
formed using conventional cameras but these sensors suffer from fast
illumination changes, particularly at night, and extreme weather condi-
tions. This paper proposes a solution for object detection and track-
ing using event-based cameras. This new technology presents many
advantages to address traditional cameras limitations; the most evi-
dent are the high dynamic range and temporal resolution. However,
due to the different nature of the provided data, solutions need to be
implemented to process them in an efficient way. In this work, we pro-
pose two solutions for object detection, one based on standard geomet-
rical approaches and one using a deep learning framework. We also
release a novel dataset for this task, and present a complete appli-
cation for road monitoring using event cameras (Dataset available at:
https://airlab.deib.polimi.it/datasets-and-tools/).

Keywords: Event-cameras · Object detection and tracking · Road
monitoring

1 Introduction

Event cameras, also known as neuromorphic cameras, are a new type of sensor
inspired by the working process of the human retina. Unlike traditional cameras,
they do not acquire a complete frame at a constant speed. Instead, each sen-
sor pixel works independently and returns a value representing the brightness
change only when it occurs for that specific pixel. This new type of sensor possess
several advantages over traditional frame cameras; they have a high temporal
resolution in the µs range, high pixel bandwidth, low power consumption, and
high dynamic range [1]. These properties enable them to give an high throughput
in different applications such as pose estimation [2], Simultaneous Localisation
And Mapping (SLAM) [3], autonomous robots perception, and object track-
ing [4]. In particular, event-based object tracking algorithms can be divided into

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 95–106, 2022.
https://doi.org/10.1007/978-3-031-13324-4_9
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https://airlab.deib.polimi.it/datasets-and-tools/
https://doi.org/10.1007/978-3-031-13324-4_9


96 S. Mentasti et al.

two classes: the event-driven tracking method and the pseudo-frame-based track-
ing method. The first one involves processing each event without accumulating
it in a frame and requires ad-hoc solutions designed especially for these types
of sensors. The second accumulates events into a binary pseudo-frames that can
be used as input to more traditional computer vision algorithms.

Fig. 1. Example image of the working system in a two lane scenario, for each object the
system computes a 2D bounding box, assigns an ID, and performs tracking displaying
the moving direction

In this work, we propose a pseudo-frame-based detection and tracking app-
roach using a Prophesee third-generation event-based camera [5]. The goal of
our project is to develop a robust system for object detection and tracking in
outdoor scenarios, with a particular interest in road monitoring, as shown in
Fig. 1. Compared to a traditional camera, event-based sensors provide different
advantages in this specific task. In particular, the high dynamic range allowed
us to develop a solution that works equally well during night and day, without
the risks of having the sensor dazzled by traffic lights. Similarly, due to the high
frame rate, rainy conditions are not an issue since the drop of rain will be just
some tiny dots on the image, which can be easily filtered.

This work investigates two different approaches to the problem: a model-free
algorithm that uses only geometrical features to detect objects and a YOLOv4-
based [6] approach which uses a deep learning model to detect cars, bikes, and
pedestrians. The final component of the pipeline is the tracking module [6],
which uses a Kalman filter [7] and the Hungarian algorithm [8] for detection,
association, and ID assignment. The proposed solution is a robust pipeline that
can track moving objects in the camera’s field of view. In particular, the system
has been designed for road monitoring. It can track cars, bikes, and pedestrians
and monitors a set of useful parameters like the object’s direction and the number
of objects by category. Moreover, it can raise alarms in case of vehicles moving
in the wrong direction. When the system is mounted on the highway, it is a
handy feature to identify vehicles entering ramps in the opposite direction. This
work aims to demonstrate the effectiveness of event cameras in the detection and
tracking context, their suitability for deep learning, and provide the community
with an annotated dataset to train such architectures.
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Fig. 2. Frame-based object tracking pipeline.

This paper is structured as follows. In Sect. 2 we present the state of the art
on object detection and event-based sensors, although, due to the novelty of the
sensor, the literature is fairly limited. Then in Sect. 3 we propose our pipeline for
object detection and tracking from event data. For the detection component, two
different solutions are proposed. Finally, in Sect. 4 we present some numerical
results to highlight the advantages of the best performing solution, and Sect. 5
draws some conclusions and highlights future development.

2 State of the Art

Traditionally, frame-based object detection and tracking consist of four steps,
as shown in Fig. 2. First, the Frame acquisition process outputs a frame that
feeds the preprocessing stage, in charge of removing noise and keeping relevant
information for further steps.

The target detection phase consists of separating the object’s pixels from
the unwanted signal. The detection can be performed either without a machine
learning based object detector or with the help of one. In the first case, a com-
mon approach is to use nearest neighbor algorithm [9,10] to perform Connected
Component Labeling (CCL) [11], clustering groups of pixels to form objects.
Then performing Connected Component Analysis (CCA) [12,13] to determine
the area, the centroid, and the bounding box of every detection. Finally it is
possible to use these features to categorize different objects in the scene [14,15].
This can be done using geometrical solutions, but also classical machine learning
models like Support Vector Machine [16] and AdaBoost [17]. A second approach
is to use deep learning (DL) methods to perform object detection [18].

Most DL-based object detection models treat object detection as a regres-
sion/classification problem and use end-to-end architectures built on regres-
sion/classification to map pixels to bounding box locations together with class
probabilities. This operation has the advantage of reducing computational
time. One significant and representative framework is You Only Look Once
(YOLO) [19]. The YOLO framework predicts both bounding boxes and con-
fidences for multiple categories. The original architecture works with 416× 416
images at 45 fps in real-time using consumer GPUs. A simpler variant called Fast
YOLO [20] can process images at 155 fps with a slight loss in accuracy. YOLOv2
is an enhanced version that was later proposed in [21], which presents some
improvements to the original architecture, like batch normalization, multi-scale
training, and anchor boxes.

The final stage of the association and target tracking aim to connect single
frame detections to a common target and create a track that captures target’s
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Fig. 3. Schema of the object detection pipeline.

current position and prior movements. The goal is to find an optimal matching
between the tracked objects and these predictions. A widely used algorithm for
this task is the Hungarian algorithm [22].

While all the presented techniques were designed to work on traditional
images, proper adaptation is required to process event-based streams. The lit-
erature identifies two distinct ways to achieve target detection and tracking for
event-based cameras [23]. One approach uses pseudo-frames, whereas the other
performs direct detection on filtered events. The corresponding techniques for
frame-based sensors previously highlighted differ slightly for event-based detec-
tion when using pseudo-frames. The process starts naturally by capturing the
raw event data; undesirable events are filtered to extract meaningful object
motion, and frames are built. Then traditional techniques can be employed to
process the reconstructed image. The solutions based directly on events, process
instead each event asynchronously and independently. Two different methods
have been used in the literature for this second approach, one using adaptive
time surfaces [24] and another using events association in 3D Point [25,26]. The
main advantage of these approaches is that the event-based sensor’s high tem-
poral resolution is fully utilized, still, a custom solution needs to be developed,
and it is impossible to adapt from standard computer-vision approaches.

3 Object Detection and Tracking from Event Data

This paper proposes a pipeline for object detection and tracking from event
data acquired by a Porphesee event-based camera. In particular, we present two
alternative approaches; the first one, which we call “Model-free”, is based on
geometrical operations on the pseudo-frame to retrieve the objects. The second
instead leverages a convolutional neural network to extract a list of targets.
Nevertheless, the initial processing phase and the clusters tracking are common
between the two solutions, as shown in Fig. 3.

3.1 Preprocessing

Pseudo-frames are event-based versions of conventional video frames created
by dividing continuous event data into evenly spaced time bins, or frames, to
create an image. They are similar to standard binary frames except that they are
sparse, with areas with no events set as black. This similarity with binary images
enables traditional detection and tracking algorithms to use pseudo-frames as
their input with minimal changes.
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Fig. 4. Evolution of the pseudo-frame through the preprocessing pipeline.

Fig. 5. Schema of the “model-free” pipeline.

The accumulation of events into pseudo-frames starts by receiving the stream
of events from the event-based sensors. Each event from the received stream is
added into a queue used to generate frames depending on the user-defined event
accumulation time (for our test, we employed a window of 20 ms, dt = 20 ms,
which guarantees a frame rate of 50 Hz). The generation of a frame at a specific
time T takes all the events whose timestamp t lies between T − dt and T .

Due to the sensor’s high sensitivity, not all received events are valid data;
some are just noise. Therefore, the preprocessing step helps filtering the data
and discards noisy points that may negatively affect detection. Moreover, an
object represented by the events is not always continuous; some object regions
may appear without events affecting the object detection phase. For this rea-
son, the last step of the preprocessing pipeline is a sequence of morphological
operations, as shown in Fig. 4. In particular, the best results were achieved by
applying first an erosion filter to remove single noisy points from the sensor,
which are fairly frequent in this type of camera, (Fig. 4a). Then we apply a dila-
tion filter to combine clusters close together, and therefore belonging to the same
obstacle. This preprocessing phase is fundamental, particularly for the “Model-
free” obstacle detector, since this is based only on geometrical constraints and
separate components can negatively affect system performance.

3.2 Model-Free Detection

The “Model-free” detector relies on the frames provided by the pseudo-frame
filtering process. Figure 5 shows the pipeline used for this approach. Starting from
the filtered pseudo-frame, the first operation finds the objects in the scene by
detecting the contours using the algorithm presented in [27]. From the obtained
contours, we extract the associated rectangular bounding boxes by retrieving
the rectangle’s location, width, and height that best fit each contour area. A
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final step of bounding box processing is required to group bounding boxes near
each other which are more likely to represent the same object. Also, in this last
step, we discard bounding boxes that lie inside others. The latter is a fairly
common issue since event cameras generally return obstacles’ contours and color
discontinuity on an obstacle can generate a smaller target inside the obstacle
bounding box (e.g., car windows).

3.3 YOLO-Based Detector

A YOLOv4 model has been applied to provide a more reliable and accurate
detection than the “Model-free” pipeline, but it requires a training dataset
and more computational power. Unlike the “Model-free” pipeline, our YOLOv4
model has been designed to identify different object categories from the pseudo-
frame. However, accurate detection results require a well-trained model, which
depends on the availability of a good dataset. Therefore, we built our dataset
from multiple recordings of real-world scenarios to train YOLOv4 and YOLOv4-
tiny models. We used a dataset consisting of 3.1k images, which has been
obtained manually annotating 1255 images and then performing data augmen-
tation using the Roboflow tool [28]. Data augmentation techniques included flip-
ping, rotation, translation and cropping. We were interested only in detecting
cars, bikes, and pedestrians for this task, so these are the only label used in the
dataset. We used transfer learning to speed up the training phase, starting from
the YOLOv4 pre-trained weights provided online. We used Recall, Precision,
and F1-score to evaluate the performance of our YOLOv4 model. In addition,
the mean of Average Precision (mAP) metric is used to compute the average of
interpolated Precision to Recall for each detected object (see Sect. 4).

3.4 Object Tracking

The object detection phase computes the bounding boxes locations associated
with the targets of interest in the visual scene. Then the object tracking phase
associates these detections to the trackers in each video frame. A good track-
ing algorithm should assign one and only one ID to each object in the visual
scene. For each new object entering the scene, a new tracker should be assigned
independent from the other objects already in the scene.

For each new detection, we assign a predictor whose role is to model the
object’s movement in the scene. Then, each predictor is associated with a tracker.
In this work, we used Kalman filters as predictors. A Kalman filter tracks a
single object by modeling its movement. The filter holds the target state x
with information on its center coordinate (x, y), its width-height ratio, its area,
the variation of its area over time, and its velocity. The observation z holds
only observable information from a single frame, i.e., the center coordinates, the
aspect ration and the area. Furthermore, the filter keeps some additional data
related to the object, such as the time the object has been visible, and for how
long the position has been predicted due to absence of measurement.



Event-Based Object Detection and Tracking 101

The detection association step aims to determine the best possible fit between
predictors and detections. First, we generate a cost matrix whose element cij
denotes the similarity (or dissimilarity) between a predictor i and a detection j.
We used the Intersection over Union (IoU) between two bounding boxes to com-
pute similarity. We also combined other similarity measures to compute the cost,
such as shape and distance measures. The shape and distance features consider
the geometry and the position of the bounding box. We adopted the approach
proposed in [29] to compute the similarity measures between two bounding boxes,
and these similarity measures are multiplied to give advantages to the bounding
boxes that have similarities both in position and shape instead of considering
just one feature. These terms are the Euclidian distance of the shape and the
position as from Eqs. (1), (2) and (3), where A represents the detection and
B the tracked object. In particular Eq. (2) computes the similarity value on
the size, therefore H and W indicates the two bounding box dimensions. Equa-
tion (3) computes the position similarity, with x and y as the coordinates of the
bounding box centroid.

C(A,B) = cshape(A,B) × cdist(A,B) (1)

cshape(A,B) = e
−w2×(

|HA−HB |
HA+HB

+
|WA−WB |
WA+WB

) (2)

cdist(A,B) = e
−w1×((

xA−xB
WA

)2+(
yA−yB

HA
)2) (3)

In our case, we set w1 = 0.5 and w2 = 1.5. Obtained the cost matrix, we then
use the Hungarian algorithm to assign a detection to a predictor and update
it. We choose the Hungarian algorithm [22] because it gives a solution to the
assignment problem in polynomial time.

We use a different tracking engine for each object category to achieve precise
object tracking when objects categories are mixed in the same environment.
Thus, when an object is detected as a car, bike, or pedestrian, it is passed
directly to the corresponding tracking engine. The framework developed provides
the moving object’s direction and counts the different objects considering their
categories. To extract the object direction, we use its associated predictor as it
models the object’s movement on the image plane. Indeed, the state xk contains
the vertical component of the velocity vy and the horizontal component vx.

To retrieve the object’s direction, we compute the norm V of the velocity
from vx and vy and the angle between vx and v. First we perform a check
on the norm, if it is outside a reasonable threshold it is discarded, and we
assume a wrong data association was performed. Otherwise in the case the
angle between vx and V <= 60◦, we return LEFT − RIGHT if vx > 0 or
RIGHT − LEFT if vx < 0. If the angle > 60◦ we return UP − DOWN if
vy > 0 or DOWN − UP if vy < 0.

We also allowed the user to select areas to specify the correct moving direction
between two points. An alarm is raised when an object is detected moving in
the opposite direction. For example, Fig. 6 presents the interface for two opposite
direction lanes. The top one in green moves from left to right, the bottom one
in purple from right to left.
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Fig. 6. Example image of the working system in a two lane scenario (left) and on a
single lane scenario (right). (Color figure online)

4 Experimental Results

The two proposed approaches have been validated using a dataset acquired with
the event-based camera (third-generation Prophesee event-based camera [5]).
The experimental setup did not employ a GPU to have a lightweight system, but
both the “Model-free” and the Yolov4 have been run on an i7-9750H, 2.60 GHz
CPU.

The model-free approach presented above has as its main advantage a tai-
lorable frame rate that can reach 300 fps, on the testing hardware, including
also the processing time (i.e., pseudo-frame filtering, bounding box extraction,
bounding box filtering). This is a considerably high value for tasks like road
monitoring. However, this approach presents some significant limitations. Since
the only features used to detect and classify an object are the bounding box’s
width, height, and area, it is challenging to differentiate multiple object cate-
gories accurately. Also, this approach is not particularly robust in very noisy
scenarios, and it has many parameters to fine-tune to obtain promising results.
Nevertheless, it can run at high frequency on any low-power device, thanks to
its simple rule-based approach.

In the case of the YOLOv4 approach, the model training has been performed
using a TK80 GPU on Google Colab. For the training phase, we employed the
following hyper-parameters: a batch size of 64, with 12 subdivisions that denote
the number of pieces the batch is broken into for GPU memory, and a maxi-
mum number of batches of 6000. The network was trained to detect only three
classes of interest, pedestrians, bicycles, and cars. The best achieved results for
the model during the validation with mAP0.5 (mean Average Precision, with
Intersection over Union threshold for the bounding boxes of 0.5) was 0.88. For
this model, on the testing set, we had a value of 0.83. Table 1 provides the AP
(Average Precision) per class for the YOLOV4 model. As it can be noticed, we
achieved a good AP for each class.

Our YOLOv4 based detection model is also robust when facing a noisy envi-
ronment since only objects are detected, and all the noise is discarded. The only
disadvantage of this solution is that the YoloV4 model is relatively complex and
drastically limits the system framerate. In particular, it achieved only 4 fps on
the CPU i7-9750H, 2.60 GHz, while reaching 16 fps on the Google Colab GPU
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Table 1. YOLOv4 validation and testing AP value per class.

Class Validation (%) Testing (%)

Car 97.3 98.55

Bike 88.69 87.58

Pedestrian 66.98 62.51

Table 2. YOLOv4-tiny validation and testing AP value per class.

Class Validation (%) Testing (%)

Car 98.46 94.82

Bike 90.82 44.59

Pedestrian 75.70 48.7

Table 3. Detection metrics for confidence threshold of 0.25.

P R F1-score IOU (%)

Validation 0.85 0.85 0.85 66.63

Testing 0.68 0.72 0.7 47.94

TK80. To address this issue, we trained a new model on a smaller network, which
would lead to less accurate predictions but shows an increased maximum fram-
erate. In particular, we tested the YOLOv4-tiny model. The main difference
between YOLOv4-tiny and YOLOv4 is a significant reduction in the network
size, making this model considerably faster and suited even for CPU-only tasks.
The training process performed is similar to the one of YOLOv4. The global
performances are shown in the Table 2. The achieved results are worse than the
Yolov4 model, particularly for small objects, but are still acceptable. In partic-
ular, if we consider that a Kalman Filter-based tracking is performed after the
detection phase. Moreover, this solution is faster, even when working only on
the CPU.

Considering our application we decided a confidence threshold of 0.25 to be
enough to achieve good results in tracking. Table 3 provides the model Precision,
Recall, and F1-score and the average IoU considering the confidence threshold
of 0.25. The values are always above 0.5, which indicates the potential of this
solution. In particular, not as a standalone one, since the detector might miss
some object, but as an accurate source for the Kalman Filter to track the moving
target in the scene.

It was impossible to evaluate our model against other available models since
the literature related to object detection from event-based cameras is extremely
poor, and no available model could be found while performing this test. Instead,
a significant comparison can be performed between the two trained solutions,
YOLOv4-tiny and Yolov4. While the latter was slow and therefore discarded for
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Fig. 7. Example images of the YoloV4-tiny detections in some challenging scenarios.

this task, Yolov4-tiny could achieve an inference frame rate of 37 fps on CPU i7-
9750H, 2.60 GHz, and 76 fps on the TK80 Google Colab GPU, making it suitable
for our object detection task. Moreover, the drop in accuracy between the two
approaches was not significant.

To conclude, we compared this solution against the original “model-free”
approach. The deep-learning approach shows its robustness in noisy scenarios like
rain, night (with the light from the vehicle), and camera movement, as shown in
Fig. 7. Moreover, compared to the model-free scenario, the detection confidence
threshold is the only hyper-parameter to consider while using this model. The
limitation of this approach is the frame rate since the model inference time
constitutes the bottleneck, but moving the inference to a GPU-based system can
be considered a viable solution if needed. Finally, it is particularly interesting to
notice how the proposed solution, based on an event-based camera, can perform
extremely well in this scenario where traditional cameras would struggle due to
weather and lighting conditions.

5 Conclusions

To conclude, in this paper, we presented two solutions for object detection and
tracking from event-based data. Events acquired by the camera are accumulated
using a binary pseudo-frame that can be processed using two different algo-
rithms. The model-free approach fits well scenarios without a lot of noise and
can run at high speed. Therefore it offers the possibility to adjust the frame
rate depending on application constraints. The model-free approach is also suit-
able for low-power systems; nevertheless, it performs poorly with excessive noise
and challenging weather conditions. Contrary, the two YOLOv4 models offer
better performance and can be used in very noisy scenarios too. But, they are
resource-eager, and that leads to a power-consuming system. Moreover, they
work at best on systems that use GPUs since, on CPU, they offer a relatively
low frame rate. However, the modified version, the YOLOv4-tiny model, can
run at an acceptable framerate on a system equipped with a good CPU but
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no GPU, like the testing hardware. The tracking module has proven its ability
to perform the intra-frame data association correctly. In such a way, we could
compute each object moving direction and identify vehicles moving in the wrong
direction. Moreover, using a Kalman Filter to predict the obstacle’s position is
extremely useful for consistently providing an object position, even when the
detector misses the object for a single frame.
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Abstract. Connected Components Labeling (CCL) represents an essen-
tial part of many Image Processing and Computer Vision pipelines. Given
its relevance on the field, it has been part of most cutting-edge Computer
Vision libraries. In this paper, all the algorithms included in the OpenCV
during the years are reviewed, from sequential to parallel/GPU-based
implementations. Our goal is to provide a better understanding of what
has changed and why one algorithm should be preferred to another both
in terms of memory usage and execution speed.
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1 Introduction

OpenCV (Open Source Computer Vision Library) is a software library mainly
aimed at real-time computer vision [37]. Originally developed by Intel, it was
later supported by Willow Garage and then Itseez. The library is cross-platform
and free for use under the open-source Apache 2 License. Starting with 2011,
OpenCV features GPU acceleration for real-time operations.

A common basic task in image processing is to produce a description of the
objects inside a binary image; this is often done by extracting its connected
components. By considering the pixel lattice as a graph in which foreground
pixels are nodes connected by edges to their foreground neighbors, a connected
component on the graph corresponds to the common definition of an “object of
interest”. Based on the specific use case, two pixels can be considered connected
or not, according to the definition of pixel connectivity: in 2D-images, pixels can
be either 4-connected (sides only) or 8-connected (sides and corners). A possi-
ble solution to extract connected components (objects) is to use a Connected
Components Labeling (CCL) algorithm: a procedure which generates a symbolic
image in which each pixel of a single connected component is assigned a unique
identifier.

The CCL algorithm has an exact output meaning that different algorithmic
solutions should be mainly compared in term of speed and memory footprint.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 107–118, 2022.
https://doi.org/10.1007/978-3-031-13324-4_10
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After the introduction of the task in 1966 [38], several proposals to optimize its
computational load have been published for both sequential [7,9,14,15,20,22,24,
25,28,31,42] and parallel architectures [1–4,29,35,43], taking into account also
3D volumes [8,27,40].

Connected Components Analysis, or CCA in short, extends CCL by com-
puting some features of the connected components such as their bounding box,
their area, or the first moments to compute center of gravity. CCA is basi-
cally a voting algorithm like histogram computation or Hough transform [30]
and it is a mandatory step for many Computer Vision and Image Processing
pipelines [5,13,17,18,23,32,34,36,41].

Connected Components extraction has been available since the early days of
OpenCV and has evolved (in speed) with every release. Initially, the imple-
mentation available was based on the combination of two different func-
tions: FindContours and DrawContours, respectively in charge of retrieving
contours and the hierarchical information from binary images and drawing
them. Since version 3.0.0, cv::connectedComponents and cv::connected-
ComponentsWithStats APIs have been introduced, providing a major speed
breakthrough for CCL computation within the library.

The goal of this paper is to review all the algorithms implemented in OpenCV
during the years, thus providing the reader with a better understanding of what
has changed and why one should choose one algorithm rather than another both
in terms of memory usage and execution speed.

2 The First Approach

The extraction of Connected Components (CCs) from a binary image has been
available since the first release of the OpenCV with the combination of findCon-
tours and drawContours functions (Listing 1.1).

findContours operates on a binary image by retrieving objects’ contours.
The function retrieves contours from the binary image using the algorithm
described in [39]. The algorithm follows objects’ borders with a sort of topolog-
ical analysis capability. If one wants to convert a binary picture into the border
representation, then they can extract the topological structure of the image with
little additional effort by using this function. The information to be extracted

void cv::findContours (InputArray image, OutputArrayOfArrays contours,

OutputArray hierarchy, int mode, int method, Point offset = Point())

void cv::drawContours (InputOutputArray image, InputArrayOfArrays

contours, int contourIdx, const Scalar & color, int thickness = 1,

int lineType = LINE_8, InputArray hierarchy = noArray(), int maxLevel

= INT_MAX, Point offset = Point())

Listing 1.1. OpenCV C++ API for findContours and drawContours functions.
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1 [...]

2 vector<vector<Point>> contours;

3 vector<Vec4i> hierarchy;

4 findContours(src, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);

5 for (int idx = 0; idx >= 0; idx = hierarchy[idx][0]) {

6 Scalar color(rand() & 255, rand() & 255, rand() & 255);

7 drawContours(dst, contours, idx, color, FILLED, 8, hierarchy);

8 }

9 [...]

Listing 1.2. OpenCV example on how to retrieve connected components from a binary
image and fill them with random colors. Tested on version 4.5.5.

int cv::connectedComponents(InputArray image, OutputArray labels, int

connectivity, int ltype)

int cv::connectedComponentsWithStats(InputArray image, OutputArray labels

, OutputArray stats, OutputArray centroids, int connectivity, int

ltype)

Listing 1.3. OpenCV C++ API for connectedComponents and connectedComponents-
WithStats functions.

is the inclusion relation among the two types of borders: the outer borders and
the hole borders. Since there exists one-to-one correspondence between an outer
border and a 1-component, and between a hole border and a 0-component, the
topological structure of a given binary image can be determined.

A topological representation can be mapped into connected components by
filling the contours. An example is reported in Listing 1.2.

3 A Novel Interface

Unfortunately, finding the contours and flood filling them is not a smart way
of performing CCL. For this reason, researchers and practitioners started using
different implementations found online until the release of OpenCV 3.0.0, which
introduced two new interfaces (Listing 1.3).

The connectedComponents function takes a binary image as input and pro-
duces an integer symbolic image in which all the pixels from the same object are
assigned the same (unique) number. With the parameter connectivity the user
can specify whether to use 4- or 8-connectivity to define pixel connectivity (i.e.
considering pixel connected only if they share the same border, 4-connectivity, or
also if they share vertexes, 8-connectivity). ltype specifies whether the output
image should use 16- or 32-bit per pixel. The function returns the total number
of labels [0, N − 1], where 0 represents the background label. In this version only
the Scan Array-Based Union Find (SAUF) algorithm by Wu et al. was available.
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Fig. 1. (a) is the Rosenfeld mask used by SAUF to compute the label of pixel x during
the first scan and (b) is the Grana mask used by BBDT to compute the label of pixels
o, p, s and t. Finally, (c) is the optimal decision tree proposed in [42]. Internal nodes
(ellipsis) represent the conditions to be checked, and leaves (rectangles) contain the
actions to be performed, which are identified by integer numbers. The root of the tree,
also a condition, is represented by a octagon. Action 1 represents no action. Action 2
is new label. Action 3 means x ←− p, i.e. assign x the label of p. Action 4, 5, and 7 are
respectively x ←− q, x ←− r, and x ←− s. Finally, action 6 and 8 require merge between
different label classes, specifically, x ←− r + p, x ←− s + r.

A connectedComponentsWithStats implementation is also available. This
function allows to calculate at the same time the output symbolic image with
labeled connected components and their statistics:

– the minimum bounding box containing the connected component;
– the area (in pixels) of the object;
– the centroids (x, y)-coordinates of connected components, including back-

ground.

All of this information is stored inside stats and centroids matrices. Also in
this case, the SAUF algorithm is employed to identify connected objects.

The SAUF algorithm itself, introduced by Wu et al., is based on two key
elements:

– the use of the Union-Find algorithm to store and handle equivalences between
pixel classes1;

1 The union-find data structure, first applied to CCL by Dillencourt et al. [19], provides
two convenient procedures to deal with equivalence classes of labels: Find, which
retrieves the representative label of an equivalence class, and Union, which merges
two equivalence classes into one, ensuring that they share the same representative
label.
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– an optimal strategy, based on a manually identified decision tree, to reduce
the average number of load/store operations during the first scan of the input
image.

As most of the state-of-the-art algorithms for CCL, SAUF is based on a two
scan (or two pass) approach. During the first scan of the image, the algorithm
assigns temporary labels to pixels and records equivalences between classes. The
second scan, instead, is meant to replace each temporary label with the represen-
tative of its equivalence class (usually the smallest one). The scanning approach
is led by the Rosenfeld mask reported in Fig. 1a. Indeed, when labeling the cur-
rent pixel, x, pixels p, q, r, and s are enough to determine the class which x
belongs to. Moreover, if q is a foreground pixel, it is already connected with
all the other foreground pixels in the “current” mask and this connectivity has
already been recorded in the Union-Find data structure. This means that we can
simply assign x the same class of q, saving three checks. When q is a background
pixel, we can for example check pixel p. In this case, when p is foreground, r
must be inspected also, to verify whether p and r are connected through x. If
this is the case, a merge between the two classes have to be performed. Moving
on with this reasoning, the decision tree depicted in Fig. 1c can be obtained.
Other equivalently optimal2 versions can be generated.

As said, combining the use of the optimal decision tree with the Union-
Find algorithm optimized with path compression [42] translates into the SAUF
algorithm. A similar approach can be applied to 4-connectivity producing this
time a much simpler (and smaller) decision tree.

4 Going Faster with Blocks

In 2010, Grana et al. [22] introduced a major breakthrough, consisting in a
2 × 2 block-based approach denoted as Block-Based with Decision Tree algo-
rithm (BBDT). The proposed algorithms make use of an optimal decision tree,
generated upon the mask of Fig. 1, and the Union-Find algorithm implemented
with Three Table Array (TTA) strategy proposed in [25].

The problem is modeled as a command execution metaphor : values of pixels
in the scanning mask constitute a rule (binary string), which is associated to
a set of equivalent actions in an OR-decision table. Given this decision table,
an algorithm can simply read all the pixels inside the mask, identify the rule,
and find the action to be performed in the corresponding column. A dynamic
programming approach [24] is then used to convert the OR-decision table into
an optimal binary decision trees. This approach allows to minimize the average
number of conditions to be checked when choosing the correct action to be
performed.

The possible actions are the same mentioned for SAUF algorithms, this time
working with blocks: no action if the current block is background (i.e., all the

2 Optimality is related to the number of accesses to the pixels in the scanning mask,
i.e., number of memory accesses.
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int cv::connectedComponents(InputArray image, OutputArray labels, int

connectivity, int ltype, int ccltype)

int cv::connectedComponentsWithStats(InputArray image, OutputArray labels

, OutputArray stats, OutputArray centroids, int connectivity, int

ltype, int ccltype)

Listing 1.4. OpenCV C++ API for connectedComponents and connectedComponents-
WithStats functions.

pixels of the block are background), new label if it has no foreground neighbors,
assign or merge based on the label of neighboring foreground pixels/blocks.

Since version 3.2.0, the BBDT algorithm has been introduced in the OpenCV.
Two new overloading functions, detailed in Listing 1.4, have been added to intro-
duce the ccltype parameter while preserving the Application Binary Interface
(ABI compatibility). This parameter makes the user able to select the algorithm
to be used. Given that BBDT is only available for 8-connectivity, the SAUF
version is always executed when labeling with 4-connectivity.

It is important to notice that, while the SAUF algorithm forces a row major
ordering of labels, BBDT does not. This means that label ordering in the output
label image may be different when executing the two algorithms, but with exactly
the same semantic meaning.

5 Spaghetti for All

Many improvements have been proposed since the introduction of BBDT, and
some of them introduced significantly novel ideas, in particular:

– realizing that it is possible to use a finite state machine to summarize the
value of pixels already inspected by the horizontally moving scan mask [28];

– combining decision trees and configuration transitions in a decision forest, in
which each previous pattern allows to “predict” some of the current configu-
ration pixels values, thus allowing automatic code generation [20];

– switching from decision trees to Directed Rooted Acyclic Graphs (DRAGs),
to reduce the machine code footprint and lessen its impact on the instruction
cache [11].

Prediction, as introduced by He et al. [26], has proven to be one of the
most useful additions, as it allows to exploit already available information, save
expensive load/store operations, and reduce execution time consequently. When
the scan mask is shifted along a row of the image it always contains some of the
pixels it already contained in the previous step, though in different locations.
If those pixels were indeed checked in the previous mask step, a second read of
their value can be avoided by their removal from the decision process.

The procedure proposed in [20] was suitable to be automatized, but still a
small mask was employed. The reason, in this case, was that the larger the mask
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void cv::cuda::connectedComponents(InputArray image, OutputArray labels,

int connectivity, int ltype, cv::cuda::

ConnectedComponentsAlgorithmsTypes ccltype)

Listing 1.5. OpenCV C++ API for connectedComponents performed in CUDA.

is, the more decision trees will populate the resulting forest, and the higher every
tree will be. The machine code that implements the algorithm resulting from the
application of prediction to BBDT would be very large, and may have a negative
impact on instruction cache. Therefore, despite load/store operations being less,
the overall performance on real case datasets may be worse than that of the
single tree variation. For this reason, all works on prediction chose to avoid the
complexity of the BBDT mask, and simplified it in various ways.

In [7], the BBDT original mask and the state prediction paradigm are com-
bined in the Spaghetti Labeling algorithm, by taking advantage of the code com-
pression technique that converts a directed rooted tree into a DRAG [11]. The
resulting process is modeled by a directed acyclic graph (DAG) with multiple
entry points (roots), which correspond to the knowledge that can be inferred
from the previous step. This guarantees a significant reduction of the machine
code, even better than that achievable by a compiler, since it can leverage the
presence of equivalent actions in the trees leaves, and compress not only equal
subtrees, but also equivalent ones.

Spaghetti labeling has been included in OpenCV since version 4.5.2 and
3.4.14. The signatures are the same as the previous ones, changing only the
default value ccltype = CCL SPAGHETTI.

The later introduction of GRAPHGEN [8], a technique for the automatic
generation of decision DAGs inspired by Spaghetti, allowed, since version 4.5.5,
to also implement a 4-connected version of Spaghetti, making it the default
algorithm for both 8- and 4-connectivity.

OpenCV aims at maximizing speed, thus parallelization is heavily employed
throughout all library and a specifically developed framework is available. At
the moment, following the embarrassingly parallel approach of [12], labeling
algorithms are run on image stripes and a further joining stage is added. The
parallel version of the algorithms is automatically employed if at least one of the
allowed parallel frameworks is enabled and if the rows of the image are at least
twice the number returned by getNumberOfCPUs.

6 GPU Implementation

Starting from the 4th major release of OpenCV, all CUDA modules are located
in opencv contrib,3 an additional public repository containing extra modules that
can be optionally added to the installation of the library. The CUDA version of

3 https://github.com/opencv/opencv contrib.

https://github.com/opencv/opencv_contrib
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CCL has been recently added to opencv contrib, and will be included in release
4.5.6. Its signature, reported in Listing 1.5, was chosen to be as close as pos-
sible to the CPU version, with the only difference being the return type. This
function, in fact, does not return the amount of labels assigned: the additional
task of counting labels, which is trivial for most sequential algorithms, is instead
considerably time consuming when performed in a massively parallel fashion,
and for this reason it is excluded from the workload of CUDA CCL algorithms.

So far, the only available CUDA algorithm is Block-Based Komura Equiva-
lence (BKE) [4], which takes advantages of both the Union-Find algorithm and
the Block-Based approach and represents the current state of the art. In this
proposal, the Union-Find structure is directly coded in the output image, in the
sense that the provisional label assigned to each block doubles its meaning as
the memory address of the parent in the Union-Find tree. This particular choice
of provisional labels allows to avoid a specific data structure for the Union-Find.

Like all CUDA algorithms, BKE is composed of kernels, i.e. functions exe-
cuted at the same time by a high number of threads. The kernels composing the
algorithm are Initialization, Compression, Reduction and FinalLabeling, and are
described in the following. Each uses a number of threads equal to the blocks in
the image, so that each thread is responsible for labeling its own block, which
will be referred to as X.

Initialization. Each thread looks at the neighborhood in order to find out which
blocks are connected to X, then takes the smallest of their raster addresses and
sets it as the initial label of X. From the Union-Find point of view, this means
that X is assigned a parent in the forest. Finally, an information bitset detailing
with pixels of the block are foreground and which blocks are connected to X
is stored in the output image, along with the provisional label; it will be used
again in subsequent kernels. In this case, the output image is used as a temporary
buffer: this information bitset is only useful for the algorithm, and will not be
present in the final output.

Compression. This kernel flattens the Union-Find trees coded in the image,
by means of the Find operation: each thread reads the parent label of X, then
the parent of the parent, and repeats the process until it reaches the root; then,
it assigns the root label to X. After this compression, all trees have height 1.

Reduction. Each thread reads the information bitset stored in Initialization
in order to find out which blocks are connected to X, and then proceeds to
make sure that all of them are indeed in the same Union-Find tree. This is
accomplished by means of the Union procedure, which takes two nodes as input,
traces back their trees until the roots and finally links one root to the other. Of
course, the neighbor blocks with the smallest address is excluded, since X has
already been connected to it in Initialization. From the Union-Find point of
view, the Reduction kernel completes the CCL task: each block is put in the
same tree as all of its neighbor, and therefore each tree in the forest completely
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corresponds to a CC in the image. After Reduction, a second Compression is
performed, again to flatten trees to height 1. This time, however, it also means
that each block in the same tree has the same parent, and thus the same label.

FinalLabeling. The only remaining operation to perform at this point is to
assign block labels to single pixels. Each thread reads the information bitset
again, this time to check which pixels of the blocks are foreground; then, it
assigns the label of X to all of them, and label 0 to the remaining pixels. This
is the final rewriting of the output image, and overwrites the information bitset
previously stored. After FinalLabeling, each pixel in the same CC has the same
unique label, and thus the labeling task is completed.

7 Discussion

The inclusion of algorithms in OpenCV has been done after a careful and really
open comparison of the execution times, evaluated using YACCLAB [11,21], a
widely used [16,33] open source C++ benchmarking framework for CCL algo-
rithms. YACCLAB allows researchers to test state-of-the-art algorithms on real
and synthetic generated datasets. The fairness of the comparison is guaranteed
by compiling the algorithms with the same optimizations and by running them
on the same data and over the same machine.

The algorithms provided by YACCLAB cover most of the paradigms for CCL
explored in the past, along with a lower bound limit for all CCL algorithms over
a specific dataset/image, obtained by reading once the input image and writing
it on the output again.

The benchmark provides a template implementation of the algorithms over
the labels solving strategy. Using different label solvers can significantly change
the performance of a specific combination of dataset, algorithm and operating
system.

The YACCLAB dataset covers most applications in which CCL may be
useful, and features a significant variability in terms of resolution, image den-
sity, variance of density, and number of components. It includes six real-world
datasets, and specifically: 3DPeS [6], Fingerprints, Medical, MIRflickr, Tobacco-
800, XDOCS [10].

A clear result is that, on average, Spaghetti Labeling is the optimal choice. In
very specific corner cases, such as when the order of labels needs to be sorted by
rows, or when the instruction cache is extremely small, other techniques could
be employed. The combination of FindContours and DrawContours is a viable
solution if your aim is to obtain the contours, because the connected components
are an additional bonus. If you just need the connected components, these should
be definitely avoided. The GPU version is now available and it makes sense if
your images are already in GPU, allowing you to stay in GPU without moving
back and forth from main memory to device memory. Even if the GPU version is
faster than Spaghetti Labeling, the total amount of time required to move data
between host and device plus the CCL procedure is higher than running in CPU
directly.
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8 Conclusion

With this paper we provided a review of the sequential and parallel implementa-
tion of CCL algorithms included in the OpenCV library. The open source nature
of OpenCV allowed to spot numerous and subtle bugs, and it is always incredible
how many small details may be overlooked in real world usage of code.

All the additions to OpenCV, not only for CCL, have been strongly motivated
by independent performance evaluations, in terms of effectiveness, or (as for this
specific case) speed. Every alternative proposal should be openly evaluated and
the source code needs to be released publicly, in order to avoid contrasting claims
of “I’m better than you”. We want the user to git-pull our code and check if it
really is the best for his use case, or not.
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Abstract. This article introduces a new connected component labeling
and analysis algorithm framework that is able to compute in one pass the
foreground and the background labels as well as the adjacency tree. The
computation of features (bounding boxes, first statistical moments, Euler
number) is done on-the-fly. The transitive closure enables an efficient
hole processing that can be filled while their features are merged with the
surrounding connected component without the need to rescan the image.
A comparison with State-of-the-Art shows that this new algorithm can
do all these computations faster than all existing algorithms processing
foreground and background connected components or holes.

Keywords: Black & white processing · Connected component labeling
and analysis · Euler number · Adjacency tree · Hole processing · Hole
filling

1 Introduction and State-of-the-Art

Connected Component Labeling (CCL) is a fundamental algorithm in computer
vision. It consists in assigning a unique number to each connected component of
a binary image. Since Rosenfeld [26], many algorithms have been developed to
accelerate its execution time on CPU [3,5,12], SIMD CPU [14,19], GPU [22] or
FPGA [16].

In the same time, Connected Component Analysis (CCA) that consists in
computing Connected Component (CC) features – like bounding-box to extract
characters for OCR, or the first raw moments (S, Sx, Sy) for motion detec-
tion and tracking – has also risen [1,13,17,18,28]. Parallelized algorithms have
also been designed [2,6,15]. The initial Union-Find algorithm [29] has been also
analysed [30] and improved [7] with Decision Tree [31] and various path com-
pression/modification algorithms [20,21].

Some other features – useful for pattern classification/recognition – are com-
puted by another set of algorithms: the Euler number with Bit-Quads [8], the
adjacency (also known as homotopy or inclusion) tree [25] and more recently,
foreground (FG) and background (BG) labeling (also known as BW labeling)
[10] and hole filling with also improvements in the last decade [23,32]. Hole filling
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Fig. 1. Example of Black and White labeling with hole filling (FG in black)

is an important part of medical image processing [27,33]. An example of black
and white labeling with adjacency tree and hole filling is shown in Fig. 1.

Our contribution is a fast algorithm framework to process holes in black and
white images. It can compute features of the CCs, the adjacency tree or the euler
number of the image, and can fill holes.

This paper is split into the three following parts: Sect. 2 provides an overview
of our new CCL algorithm. The specificities of black & white and hole processing
are detailed in Sect. 3. Section 4 presents a benchmark of existing algorithms and
their analysis.

2 General Overview of Our New Algorithm

We chose to base our new black and white algorithm on the existing LSL algo-
rithm [18] and especially its latest SIMD implementation, the FLSL algorithm
[19]. The reason is two-fold: as the LSL is run-based (segment processing), it
is able to compute features very quickly compared to pixel-based algorithms.
The second reason is that FLSL is the fastest CCL algorithm currently avail-
able [19]. To be noted that FLSL does not explicitly support CCA, thus feature
computation had to be back-ported from LSL to this new algorithm.

The LSL algorithm is a CCL/CCA algorithm based on Union-Find structure
[29] to build the equivalence relationship between parts of the same connected
component. The specificity of LSL is to be run-based: it first computes segments
of same class pixels (either foreground of background), and then unifies intersect-
ing segments from consecutive lines. This reduces both the number of temporary
labels and the number of “Union” needed to process the image.
BW FLSL needs the following global tables:

– T : Equivalence table (Union-Find structure),
– F : Feature table, encodes the features of each label,
– I: Initial adjacency table, encodes the adjacency tree (explained later).

Figure 2 illustrates the LSL-related table usage on a simple example.
LSL is composed of four steps (Algorithm 1). During the first one, input pix-

els are read and grouped into segments of same class (foreground or background).
This step computes the position of the segments (RLC i) using semi-open inter-
vals: RLC i[er ] is the position of the first pixel of the er-th segment, whereas
RLC i[er + 1] is the position of the first pixel after the er-th segment. This step
is taken verbatim from [19].
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Fig. 2. Tables for the LSL (ER is actually not needed anymore).

Algorithm 1: New BW FLSL overview.
This paper contribution is highlighted with gray boxes.

1 ne ← 1 � Reset number of labels
2 I[0] ← −1 � Exterior component has no surrounding
3 F [0] ← ∅

4 for i = 0 to h − 1 do
5 RLE(i) � Step 1a: Detect segments
6 Unify (i) � Step 1b: Merge labels from adjacent line segments

7 Close () � Step 2: Transitively close the equivalence graph
8 if relabel then
9 for i = 0 to h − 1 do

10 Relabel (i) � Step 3: Write the label image

During the second step, temporary labels are assigned to segments, and seg-
ments from current line are “unified” with segments of the previous line. This
is done by computing the intersection of current segments with the ones above,
and mark them equivalent. The equivalences between labels are recorded in the
equivalence table T . In addition, when a label is assigned to a segment, the
features of this segment is computed and merged with the features of this label.

As for the FLSL, this step actually uses a Finite State Machine that works sim-
ilarly to a merged sort where the segments of both consecutive lines are iterated
together. The detailed implementation of this FSM can be found in Algorithm2.

The third step is the transitive closure of the equivalence graph: it makes each
temporary label point directly to the root. The equivalence trees are flattened.
During this step, features from temporary labels are also merged into their root.
As will be explained later in this paper (Sect. 3.2), the hole filling and the Euler
number computation are also done during the transitive closure.

The final step is a relabeling step: it produces a labeled image where each
pixel is assigned the final root label of its connected component. It is actually a
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Algorithm 2: New BW unification (BW FLSL step 1b).
Black and White related processing is highlighted with gray boxes.

1 init:
2 er ← 0 � Index of current line segment (relative label)
3 er ′ ← 0 � Index of previous line segment
4 a ← 0 � Label of current segment, the first is necessarily the exterior
5 j0 ← RLC i[er] � Starting position of current segment
6 j1 ← RLC i[er + 1] � End position of current segment
7 c8 ← 0 � c8 = 1 if current segment is 8-adjacent, here, BG is 4-adjacent
8 � virtual segments allowing to avoid testing for the end of previous line
9 S0 ← RLC i−1[ner i−1] S1 ← RLC i−1[ner i−1 + 1] � Save past-the-end

10 if ner i−1 is odd then RLC i−1[ner i−1] ← w + 1
11 RLC i−1[ner i−1 + 1] ← w + 2
12 goto increment previous

13 new label:
14 T [ne] ← ne � On-the-fly initialization of the equivalence table
15 F [ne] ← ∅ � On-the-fly initialization of the feature table
16 I[ne] ← a � Initial adjacency: a is the label of previous segment
17 a ← ne
18 ne ← ne + 1

19 write label:
20 F [a] ← F [a] ∪ computeFeatures(i, j0, j1)
21 ERAi[er] ← a

22 increment current:
23 er ← er + 1 � Next segment of current line
24 er ′ ← er ′ − 1 � Previous segment of previous line intersects current segment
25 c8 ← c8 ⊕ 1 � Adjust adjacency for current component
26 j0 ← j1
27 j1 ← RLC i[er + 1]
28 if er = ner i then goto end

29 if RLC i−1[er
′] � j1 + c8 then goto new label

30 prolog:
31 a ← Find(T,ERAi−1[er

′])
32 increment previous:
33 er ′ ← er ′ + 2
34 if RLC i−1[er

′] � j1 + c8 then goto write label

35 unify:
36 e ← Find(T,ERAi−1[er

′])
37 � Union of the two root labels e and a
38 if e �= a then
39 if e < a then swap e, a
40 T [e] ← a

41 goto increment previous

42 end:
43 if ner i is odd and a �= 0 then T [a] ← 0
44 RLC i−1[ner i−1] ← S0 RLC i−1[ner i−1 + 1] ← S1 � Restore past-the-end
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Algorithm 3: New BW Transitive closure (BW FLSL step 2).
Black and White related processing is highlighted with gray boxes.

1 for e = 0 to ne − 1 do
2 a ← T [e] � ancestor
3 if Hole filling and e = a then � If label is root
4 i ← I[e] � label of the surrounding component
5 if T [i] > 0 then a ← i � e has a surrounding (is not the exterior)

6 if a < e then
7 r ← T [a]
8 T [e] ← r � Transitive Closure: r = T [T [e]]
9 F [r] ← F [r] ∪ F [e] � Feature merge

10 else � e is a root
11 I[e] ← T [I[e]] � point adjacency to root
12 if Euler number computation then E[e] ← 0

13 if Euler number computation then
14 for e = ne − 1 to 0 step −1 do
15 if T [e] = e then
16 i ← I[e]
17 E[i] ← E[i] + 1 − E[e]

Algorithm 4: New BW Relabeling (BW FLSL step 3).
1 j0 ← RLC i[0] � j0 is 0
2 for er = 0 to ner i − 1 step 1 do
3 e ← ERAi[er] � provisional label
4 r ← T [e] � final label
5 j1 ← RLC i[er + 1]
6 Yi[j0, j1[ ← r � Memset
7 j0 ← j1 � Register rotation

line by line RLE decoder. Like for FLSL, this algorithm is accelerated using an
SIMD memset [19]. This step can be skipped if not required, for instance if one is
interested only in the connected component features (CCA) without displaying
the image of labels.

The two first steps (RLE encoder and segment unification) are done together
and thus require only a single scan of the image. The transitive closure step does
not scan the image, but requires to scan the equivalence table holding the relation
between temporary labels. The relabeling step, when done, needs a second pass
over the image to produce the image of labels.
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3 Specificities of Black and White Labeling and Hole
Processing

In the following, both BG and FG connected components are considered. For
the sake of simplicity, a “component” designates a connected component.

3.1 Black and White Labeling

Classical LSL does not process background components, but thanks to its seg-
ment design and its semi-open interval encoding, it is easily adaptable. Indeed,
the end of a foreground segment is the beginning of the following background
one, and vice-versa. Thus, no modification to the RLC tables is required. The
RLE encoder remains identical.

The unification step needs a few adjustments. First, it iterates over both odd
(FG) and even (BG) segments instead of just the odd ones. This requires to adapt
the FSM itself. Indeed, the classical FSM needs to handle cases where multiple
segments should be skipped because of the lack of intersection. When processing
both FG and BG segments, this cannot happen anymore as all segments (FG
and BG) are iterated over sequentially. Consequently, we just need to check if
the start of the segment on the previous line (RLC i−1[er′]) is after the end of
the segment on current line (RLC i[er + 1]). This makes the new FSM actually
simpler than the one used by the FLSL algorithm.

To process both FG and BG components, we need to consider complemen-
tary connectivity: either 8-adjacency for FG and 4-adjacency for BG, or the
4-adjacency for FG and 8-adjacency for the BG. This is done with the c8 vari-
able (Algorithm 2, line 7) that defines the current connectivity. It is equals to
1 when processing 8-adjacent component and 0 otherwise. Therefore, changing
the background connectivity from 4 to 8 can be easily done by setting c8 to 1
instead of 0 (Algorithm 2, line 7).

Labels are also assigned to background labels, thus, ERAi does not necessar-
ily have 0 at even indices. The first encoded segment of a line i is always a BG
segment, but has zero length if the first pixel of the line is FG.

Like the unification, the relabeling also needs to iterate over both FG and
BG segments.

3.2 Holes and Adjacency Tree Computation

Let us introduce some notations about holes. A component C1 is surrounded
by another component C2 – written C1 � C2 – iif all paths from C1 to the
exterior of the image contain at least one pixel from C2. A hole in a foreground
component W is a background component B that is surrounded by W .

The adjacency tree is encoded in a new table I. For a label e1 associated
to a component C1, e2 = I[e1] is one of the temporary labels of the unique
component C2 that is both adjacent to C1 and surrounding C1 (C1 � C2). The
label e2 is not necessarily a root label during the execution of the algorithm.
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I[e1] equals −1 if e1 = 0, or if e1 is not a root label (T [e1] �= e1). In other words,
the table I represents the adjacency tree whose edges are directed according to
the surrounding relation. In the following, we consider for the sake of simplicity
8-adjacency for the FG and 4-adjacency for the BG.

We considered two methods to build the adjacency tree and the surrounding
relation: detecting closing pixels [9], or looking at the adjacency at exterior pixels
[23], and more precisely looking at the initial adjacency.

We chose to use the initial adjacency method as it saves one extra branch
and one extra Find within the Unification compared to the closing pixel method.
Moreover, the update of I when an adjacency is discarded is actually not nec-
essary as I is accessed only for root labels whose initial adjacencies are kept by
construction. While the adjacency is a local property, the surrounding is not and
thus is defined and correct only when the component has been fully scanned.
Consequently, initial adjacency builds a speculative I that is correct only at the
end of the image scan and that cannot be worked on beforehand.

The initial adjacency method works as follow. Every time a new label is
created, the label directly above the current pixel is recorded in I as its initial
adjacency and speculative surrounding. It is actually simpler to look for the label
on the left that is necessarily from the same component as above. When two root
labels a and b (with a < b) are unified, the initial adjacency I[b] is discarded in
favor of I[a] (and T [b] ← a). The order relation on labels implies that top pixels
of a are higher than top pixels of b – or at least at the same height. It means
that the higher initial adjacency and speculative surrounding is kept while the
other is discarded. Once a component has been fully scanned, only the initial
adjacency of the root label remains. The root label being by construction the
label of top most pixels, its initial adjacency is necessarily on the exterior of the
component. The remaining initial adjacency and speculative surrounding is thus
necessarily a true surrounding.

Hole Filling is done during the transitive closure (Algorithm3, lines 3–5). This
is done by merging any component that is neither 0 nor directly surrounded by
0 with their surrounding component. The initial surrounding relation of such

a component is transformed into an equivalence relation (T [e] ← I[e]). In fact,
arbitrary connected operators can be implemented using the same principle. One
would only need to change the criteria to merge a component into its surrounding
in order to implement any connected operator.

Euler Number is the difference between the number of connected components
and the number of holes [8]. Because we have labeled both BG and FG compo-
nent, it is trivial to compute. In fact, thanks to the adjacency tree, we can even
compute the euler number of a component without much effort (Algorithm3,
line 13–17).
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3.3 Example

Figure 3 shows how our algorithm builds the equivalence table T and the adja-
cency tree I on a simple, yet complete, example. It shows the input image with
initial labels and their speculative surrounding (FG in gray and BG in white),
as well as a graph representing both the equivalence table T and the adjacency
tree I.

Fig. 3. Step by step example of our new BW labeling focusing on equivalence and
adjacency computation.

On the first three lines (i = 0, i = 1 and i = 2), five new labels are created
1 , 2 , 3 , 4 and 5 . Their initial adjacency is set as their speculative sur-

rounding: 1 � 0 , 2 � 1 , 3 � 1 , 4 � 2 and 5 � 3 .
At i = 3, two new labels are created with the following speculative sur-

roundings: 6 � 4 and 7 � 5 . In addition, 3 ≡ 2 is detected. Con-
sequently, the speculative surrounding of 3 is discarded in favor of 2 � 1 .

At i = 4, as 5 ≡ 4 , the speculative surrounding 5 � 3 is discarded.
At i = 5, two new equivalences are detected: 2 ≡ 0 and 7 ≡ 6 . There-

fore, the speculative surroundings of 2 and 7 are dropped. The component
0 2 3 has no more surrounding as 0 is the exterior of the image. While

the algorithm is not capable to detect it, we can see that the surrounding 6 � 4

is no more speculative and is actually definitive.
At i = 6, the last equivalence 4 ≡ 1 is detected and the speculative

surrounding 4 � 2 is discarded, and the surrounding 1 � 0 is kept.
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This leads to the final state before transitive closure where all remaining
surroundings ( 6 � 4 and 1 � 0 ) are no more speculative and are actu-
ally true surroundings. When holes are filled, the adjacency edge 6 � 4 is
replaced by an equivalence edge 6 ≡ 4 . Note that our algorithm actually
fills hole during transitive closure and not beforehand.

4 Benchmark and Performance Analysis

We measured the performance of our algorithms using a protocol similar to
[4]. All the algorithms are sequential and no multithreading is used. We tested
randomly generated 2048 × 2048 images with varying density and granularity on
a Skylake Gold 6126 Xeon @2.60 GHz. We focus our analysis on g = 1 as it is
the worst case for run-based algorithms like FLSL. Grana’s [3], Diaz’ [24] and
Lemaitre’s [19] CCL algorithms have been ran and measured on this machine.
The feature computation with FLSL has been back-ported from classical LSL
and was not part of its paper. The other ones have been estimated from their
paper. To have comparable results across machines, we give all the results in
cycles per pixel (cpp) that is the execution time multiplied by the clock frequency
and divided by the number of pixels. In addition, we tested multiple variants
of our algorithm that computes a subset of Euler number, hole filling, feature
computation and relabel in order to compare to existing algorithms that do
not compute all of them. Especially, the Euler number computation has been
implemented for the sole purpose of comparing our new algorithm with the State-
of-the-Art. For CCA algorithms, the seven standard features are computed: the
surface, the bounding box (xmin , xmax , ymin , ymax ) and the first statistical raw
moments (Sx, Sy).

Table 1. Processing time in cpp of the core part of our new BW FLSL as well as the
extra processing time for extra computation. Minimal and maximal times are given for
2048 × 2048 random images. Min time reached for d = 0% and max time reached for
g = 1 and d � 40%.

Min Max

BW + Adjacency (BWA) 0.36 12.7

+Euler number (E) + 0 + 0.29

+Hole Filling (H) + 0 + 0.50

+Feature Computation (F) + 0 + 8.59

+Relabeling (R) + 0.59 + 3.66

Table 1 shows the minimal and maximal processing time of our new labeling
algorithm. The first line corresponds to a base processing: foreground and back-
ground CC labeling and computing their adjacency tree (BWA). The next lines
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provide the extra times for extra computations like Euler number (E) or hole
filling (H), feature computation (F) and relabeling (R). The extra times are the
best (min) and worst (max) case we measured for doing these extra computa-
tions. One can then estimate the total processing time for a given combination
of {E, H, F, R} just by adding the associated extra times.

On this table, we can observe that the minimal extra time for all compu-
tations but relabeling is 0. This is a property of run-based algorithms: those
computation times depend on the number of segments – which is 1 per line for
empty images.

In the worst case, Feature computation adds a large extra time because
the seven features need to be written for each and every labels which highly
increases the number of memory accesses. The minimal extra processing time
for relabeling is non-zero as a second scan of the image is required to produce
the output image of labels. Therefore, its computation should be avoided if not
required. But thanks to the SIMD RLE decoder, this processing remains fast in
the worst case. One can also notice that Euler number computation and hole
filling are inexpensive using our approach.

Table 2. Performance comparison between State-of-the-Art algorithms and this work
(BW FLSL). The “compute” column shows what is computed. Processing time in
cycle/pixel for 2048 × 2048 random images at g = 1.

Algorithm Compute Min Avg Max

He bit-quad E 2.87 14.0 23.7

He BW (with R) BWER 16.5 51.0 79.6

Diaz (with R) BWAR 18.4 36.8 59.0

Spaghetti(FG) + Spaghetti(BG) (with R) BWR 5.76 32.7 51.2

FLSL(FG+R) + FLSL(BG+R) (with R) BWR 2.34 17.0 24.4

FLSL(FG+F) + FLSL(BG+F) (with F) BWF 1.68 20.5 30.3

FLSL(BG) + FLSL(FG+F) (with F) WFH 1.89 19.8 33.7

BW FLSL+ER BWAER 0.98 10.0 14.6

BW FLSL+F BWAF 0.38 13.0 20.0

BW FLSL+FH BWAFH 0.38 14.0 20.7
B : Black labeling (BG) A : Adjacency tree F : Feature Computation R : Relabel

W : White labeling (FG) E : Euler number H : Hole filling

In Table 2, each State-of-the-Art algorithm are compared to one configuration
of our new algorithm that computes at least as much. Our base algorithm BW
FLSL+ER that computes the adjacency tree, the Euler number relabels the
output image is faster than any black and white CCL algorithm. In average it
is 5.1× faster than He BW [11] and 3.6× faster than Diaz [24]. It is even faster
than He bit-quad [32] whose sole purpose is to compute the Euler number of
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the image. This speed difference comes mainly from the efficient use of runs, the
use of SIMD, and the low overhead computation of the adjacency tree. Even
though a single execution of FLSL is faster than BW FLSL, FLSL process only
a FG components. Thus, two executions of FLSL (and Spaghetti) are needed to
compute any hole related property.

Therefore, BW FLSL is from 3.3× up to 5.9× faster than Spaghetti and from
1.4× up to 1.7× faster than FLSL to have both black and white labels or holes
filled. In addition, BW FLSL computes the adjacency tree with no extra cost.

5 Conclusion

In this article, we have introduced a new connected component labeling and
analysis algorithm that is able to do in one single pass of the image, both the
Euler number computation but also a double foreground and background label-
ing with the adjacency tree computation. The modified transitive closure algo-
rithm enables an efficient hole processing: holes can be filled and the surrounding
connected components are updated on-the-fly whereas features are computed to
take this change into account.

As far as we know our new algorithm outperforms all published algorithms
for BW labeling and hole processing. In addition, it is easily tunable: its structure
can be adapted to other connected operators like filtering out components based
on their statistical features.
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Abstract. Connect Component Labeling (CCL) has been a fundamen-
tal operation in Computer Vision for decades. Most of the literature deals
with 2D algorithms for applications like video surveillance or autonomous
driving. Nonetheless, the need for 3D algorithms is rising, notably for
medical imaging.

While 2D CCL algorithms already generate large amounts of mem-
ory accesses and comparisons, 3D ones are even worse. This is the curse
of dimensionality. Designing an efficient algorithm should address this
problem. This paper introduces a segment-based algorithm for 3D label-
ing that uses a new strategy to accelerate label equivalence processing to
mitigate the impact of higher dimensions. We claim that this new algo-
rithm outperforms State-of-the-Art algorithms by a factor from ×1.5
up to ×3.1 for usual medical datasets and random images.

1 Introduction

Connected Component Labeling (CCL) has been a fundamental algorithm in
Computer Vision for decades [14,35,38]. It consists of finding connected compo-
nents (sets of adjacent pixels) in a binary image and assigning them a unique
identifier referred to as the label.

CCL is used in a wide array of applications, such as autonomous driving
[10,39], video surveillance [20,36], medical applications [1,9,21,28,33] and other
fields like [32] where a real-time implementation matters.

This article introduces a new 3D labeling algorithm named LSL3D and our
contributions are twofold: 1) a new Finite State Machine (FSM) to efficiently
process segments using Run-Length Encoding (RLE) and 2) a cache mechanism
to re-use partial results and reduce computational complexity.

We claim that our new segment-based algorithm is 1.8× to 2.3× faster than
State-of-The-Art algorithms for existing medical datasets. Moreover, for random
3D images, which are more stressing at low granularities, we claim that LSL3D
is 1.5× to 3.1× faster.

The article is written as follows: Sect. 2 gives a background on CCL and
details our benchmark protocol. Section 3 reviews existing literature. Then,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Table 1. Average characteristics of 3D datasets.

Dataset # subsets Size Density Granularity # runs # CCs

mitochondria 3 1024 × 768 × 165 5.9 26.4 197,878 40

OASIS 373 256 × 256 × 128 19.8 4.2 236,718 3,200

Random 16 256 × 256 × 256 0–100 1–16

Sect. 4 introduces three strategies for label equivalence management that atten-
uate the curse of dimensionality. Finally, Sect. 5 studies the impact of SIMD on
our new CCL algorithms.

2 Classical Approaches to Connected Components
Labeling and Their Evaluation

Fundamentally, CCL algorithms establish equivalences between foreground pix-
els if they are connected.

Only a single solution for the labeling of a given image exists. Qualitative
compromises are therefore impossible, and research on CCL algorithms has been
focused on the reduction of their execution time.

In this section, we will first detail the basis of modern algorithms, and the
evaluation protocols: metrics, datasets and benchmark platform.

2.1 Main Principles of Modern CCL Algorithms

Modern algorithms are all derived from historical ones like those from Rosenfeld
[35] or Haralick and Shapiro [14]. They are composed 3 steps:

1. a provisional labeling, that assigns a temporary label to each pixel and builds
label equivalences,

2. label equivalence solving, that computes the Transitive Closure (TC) of the
graph associated to the label equivalence table,

3. final labeling, to replace temporary labels with final labels (usually the small-
est of each component).

Modern algorithms implement some algorithmic optimizations to accelerate
these three steps. Since the bottleneck of these algorithms is usually their control-
flow rather than memory accesses or calculations, datasets have a major impact
on their performance.

2.2 Benchmarking Procedure and Datasets

To evaluate the algorithms’ performance, two medical datasets have been used
for the benchmarks: mitochondria [29] which includes 3 subsets and OASIS [30]
which includes 373 subsets. Images from mitochondria contain large blobs and
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several small CCs. On the other hand, images from OASIS contain a hollow
volume with complex shapes. This translates into a high and low granularity [7]
for mitochondria and OASIS , respectively (Table 1).

On top of these medical datasets, we use random images, which have been
generated using MT19937 [31] for reproducible results. The random images have
a density d ∈ [0%; 100%] and a granularity g ∈ [1; 16] where the granularity
describes the detail level of an image (size of individual blocks during genera-
tion). The algorithms have been evaluated on an Intel Xeon Gold 6126 using the
YACCLAB [6] framework.

3 State-of-the-Art of 3D Algorithms

Literature on CCL algorithms is extensive and has been centered on 2D images.
CCL on CPUs has been heavily studied and optimized [6,13,16,25]. On GPUs,
after an early era of iterative algorithms [3,19,41], a new generation introduced
by Komura [22] are now direct; a new way to manage equivalences and reduce
memory accesses was introduced by Playne [34] and has become the basis of the
fastest CCL algorithms [2,18].

CCL algorithms can be classified according to their neighborhood mask and
how they process data: they can be pixel-based, block-based or segment-based.

3.1 Pixel-Based Algorithms

The extension of the Rosenfeld 2D algorithm to 3D is straightforward: the 9
adjacent pixels from the previous slice are added to the mask, for a total of 13
pixels.

The mask-based approach was improved by Wu [40] (SAUF ). Wu realized
that a decision could be taken without accessing all 4 pixels in the neighbor-
hood for 2D images. A decision tree was proposed to access as few neighbors as
possible. SAUF was later ported to 3D by Bolelli as SAUF 3D [4]. The decision
tree was further optimized by He et al. with the Label Equivalency Based (LEB)
algorithm for 2D [15] and 3D [27] images.

In [17], He noticed that the value of the previous pixel could simplify the
following decision with fewer comparisons and introduced a graph of decision
trees. This method was generalized by Grana with the PRED algorithm [11],
which was later extended to 3D volumes by Bolelli with PRED 3D [4]. The
introduction of Direct Rooted Acyclic Graphs (DRAG) by Bolelli [5] reduced
the code footprint. DRAG were used to revisit existing algorithms, like with
SAUF++ and PRED++ by Bolelli [4]. The same paper extended these new
SAUF++ and PRED++ algorithms for 3D (SAUF++ 3D and PRED++ 3D).

3.2 Block-Based Algorithms

Grana [12] proposed a block-based approach (foreground pixels in the same 2×2
block are necessarily in the same component). The decision tree for block-based
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algorithms was then improved upon by Chabardes [8] with a forest of decision
trees, and was later adapted to use a DRAG by Bolelli [5].

The block-based approach was extended to 3D volumes by Sochting [37] with
the Entropy Partition Decision Tree. EPDT algorithms handle pixels by blocks
of either 2 × 1 × 1 (EDPT 19c and EDPT 22c) or 2 × 2 (EDPT 26c).

3.3 Segment-Based Algorithms

While block-based approaches have been shown to be efficient, pixels can also
be regrouped as segments. For a given line, it iterates over each column and
aggregates consecutive pixels into segments using a Run Length Encoding (inter-
val encoding indices). Then, it checks for segment adjacency (overlaps between
current segment and segment of the previous line) and performs unions when
needed.

A Run Based Two Scans strategy (RBTS ) for 2D images was used by He [26]
and later extended to 3D volumes [27]. The segment-based approach has also
been proposed by Lacassagne with the Light Speed Labeling (LSL) [23,24] for
2D labeling. LSL also uses a RLE but adds a line-relative labeling (ER tables)
combined with a table of segments (RLC) to accelerate adjacency detection and
equivalence building.

4 LSL3D and Efficient Unification Strategies for 3D
Volumes

This section presents, step-by-step, the improvement and the transformation
of the classical 2D LSL algorithm into an optimized 3D version. Step zero is
the extension of the 2D version to 3D, keeping the line-relative labeling (ver-
sion named LSL ER). It can be viewed as a legacy version for comparison [24].
The first step is the replacement of the ER tables by a Finite State Machine
(FSM) (LSL FSM). The second improvement is a cache-reuse mechanism to per-
form unions/unifications with double-lines (LSL FSM DOUBLE).

Our successive LSL implementations have been tested according to the
benchmark in Sect. 2.2. They are compared to 7 algorithms from the State-
of-the-Art: LEB , RBTS , PRED++ 3D , SAUF++ 3D , EDPT 19c, EDPT 22c
and EDPT 26c. Among the EPDT algorithms, we only present the best one
(EDPT 22c). The results are shown on Figs. 2 and 3 and will be evaluated
throughout the following sections.

4.1 Extension of the Segment-Based Unification for 3D Volumes

In order to find overlapping segments without iterating several times on the
current line, the first LSL algorithm [24] finds overlaps by accessing the ER
table. In 2D, two ER tables (current and previous line) are necessary at any
given time. On the other hand, due to the raster scan, two planes are required in
3D (current and previous plane). This can degrade performance on large images:
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Fig. 1. Segment-based unification for 3D volumes. (Color figure online)

for instance, on mitochondria, the ER tables use a total of 3.1 MB of memory
and thus do not fit within the 1.0 MB L2 cache of the Xeon.

The performance of our LSL ER implementation in 3D can be seen on Fig. 2.
LSL ER becomes faster at g > 4 on random images and widens the gap at higher
granularities (up to ×1.3 for g = 16).

For medical images, LSL ER is overall faster than the state of the art (Fig. 3):
while RBTS is ×1.1 faster on mitochondria, it is also slower by a factor of ×1.3
on OASIS . Similarly, PRED++ 3D is as fast on OASIS but slower by a factor
of ×1.3 on mitochondria.

The limits of LSL can be explained by the duration of the RLE step, especially
on large images (between 60% and 70% of the execution time on mitochondria).
Not only does it create an array of segments (RLC table) but the initialization
of the ER table is costly as it contains one element per pixel.

4.2 A Finite-State Machine-Based Unification

Overlapping segments between lines can also be found without ER using a Finite-
State Machine (FSM). In the 2D unification [25], each state of the 2D FSM
encodes segment configurations between the current and previous lines. Merging
two lines involves iterating over both at the same time: a new label is created
for each isolated segment, whereas the components of two overlapping segments
are merged together.

While the FSM-based implementation of LSL3D is efficient on simple images,
this is not the case for more complex images. Indeed, Fig. 2 shows that LSL FSM
is ×1.3 faster than ER for high-granularity images (g = 16), but slower by a
factor of ×0.61 for g = 1.

The execution time of LSL FSM follows a similar trend on medical images,
as can be seen on Fig. 3: mitochondria the FSM-based algorithm improves the
execution time compared to the ER-based unification by a factor ×1.1. On the
other hand, for OASIS , it is slower by a factor of ×0.95.

The overhead of the unification phase explains the results. Despite a lack of
ER tables and a faster RLE step, the complexity of the 3D FSM (27 states and 55
transitions in 3D, vs. 8 states and 14 transitions for its 2D counterpart) degrades
the accuracy of the branch predictor. This is particularly penalizing on complex
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images with many segments and a wider diversity of segments configurations
(and thus, with more state transitions being performed).

4.3 Computational Reuse of Merged Lines

The complexity of the FSM has led to performance limitations on complex
images. To overcome these limitations, we have redesigned the FSM to store
and reuse partial results. On top of factorizing calculations, this also simplifies
the FSM (from 27 states and 55 transitions to just 9 states and 18 transitions).

More precisely, as shown on Fig. 1, two consecutive iterations on the same
slice process three lines several times: the current line (in red) and two neighbor-
ing lines (in blue) will be re-processed in the following fusion. This redundancy
can be removed by caching partial results (in green) into a double-line array.

In order to simplify the computational reuse, a 2×2 mask is used for lines, as
displayed on Fig. 1b. Two phases are required: a first step (1) unifies the current
line (red line) and its neighbor (blue line) from the previous slice. It produces
a temporary line (green) that contains overlaps from both lines. Then a second
step (2) unifies the double-line with the one produced in the previous step. The
newly-created double-line is re-used in the next unification to avoid redundant
processing. The former double-line is discarded, and its memory is recycled for
the next iteration.

The performance of LSL DOUBLE on random images (Fig. 2) shows that
LSL DOUBLE is on average better than LSL ER and LSL FSM for all granulari-
ties: It is indeed ×1.3 − 1.5 faster than the best algorithm for g = 4 and g = 16
and only ×0.94 the speed of the best.

Besides these good results, Fig. 2 also shows that LSL DOUBLE is more resis-
tant to increasing densities (gap between green a purple lines, beyond 25% den-
sity). Indeed, the number of segments at these densities is statistically high,
which slows down segments-based algorithms. In LSL DOUBLE, the phenomenon
is reduced by the fusion of segments within double-lines: more segments implies
more overlaps, which leads to more fusions and fewer segments in the double-line.
This makes the double-line strategy particularly relevant for complex images.
On mitochondria (Fig. 3a), LSL DOUBLE is as fast as LSL FSM. However, unlike
LSL FSM, it is as fast as LSL ER on OASIS . These results make the double-line
algorithm at least as fast as the best algorithm on both OASIS and mitochondria
(Fig. 3).

5 Architecture-Specific Optimizations of Run-Length
Encoding on 3D Images

As seen in the previous section, the double-line unification reduces the execution
time of LSL3D : the unification (which does not need extra ER tables) becomes
highly optimized. The RLE and relabeling steps thus become the main bottle-
necks. (≈ 90% and ≈ 70% of the execution time for mitochondria and OASIS ).
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Fig. 2. Execution time of algorithms on random images for different granularities and
densities on Xeon (Color figure online)

Fortunately, these steps lend themselves well to instruction level parallelism
with SIMD [25]. Several SIMD implementations of the RLE and relabeling have
been tested: SSE4, AVX2 and AVX512.

As can be seen on Fig. 2, the use of SIMD accelerates the execution of all
LSL versions on random images. In fact, SSE4 alone is enough to make LSL ER
faster than State-of-the-Art algorithms on random images by a factor of ×1.1
to ×2.6 (Fig. 2). This is also true for medical images, with a speedup of ×1.4 to
×2.0 compared to the State-of-the-Art algorithm on mitochondria and OASIS
(Fig. 3).

The use of more complex instruction sets such as AVX2 or AVX512 do not
provide additional speedups over SSE4 on simple images such as mitochon-
dria ((Fig. 3a), but nonetheless improves execution times by 10% on complex
images (OASIS ). For the AVX2 version, the lack of dedicated compress instruc-
tions makes the speedup constrained by look-up table accesses in the RLE step.
On the other hand, the AVX512 compress instructions on the Xeon are only
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Fig. 3. Execution time on mitochondria and OASIS on Intel Xeon

available for 32-bits elements. A conversion of elements to 16-bits for process-
ing the segments (RLC table encodes segments using 16-bits numbers) is thus
required and adds an overhead.

The combination of SIMD with the double-line mechanism gives an even
greater acceleration: on random images, LSL DOUBLE+AVX512 is on average ×1.5
to ×3.0 faster than the best algorithm from the State-of-the-Art, whereas it is
faster by a factor ×1.7 and ×2.2 on natural images.

The speedup of the best LSL3D version compared to the best State-of-the-
Art can be found on Table 2.
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Table 2. Best speedups of LSL3D versus best State-of-the-Art algorithms

Dataset Mitochondria Oasis Random g= 1 Random g= 4 Random g= 16

Speedup ×2.3 ×1.8 ×1.5 ×2.2 ×3.1

6 Conclusion and Future Work

This article introduces a new algorithm, LSL3D , that combines a unification
approach based on a finite state machine to improve its efficiency on simple
images and a double-line mechanism and computational reuse for complex ones.
On top of a scalar extension, we use SIMD (SSE4, AVX2, AVX512) instructions to
accelerate the RLE compression and decompression steps.

Evaluation of performances on medical datasets and random images shows
that LSL3D outperforms State-of-the-Art algorithms by a factor ×1.5 up to a
factor ×3.1, on an Intel Xeon.

Future works will address the parallelization of this algorithm for multi-core
CPUs and GPUs.
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Abstract. Twin-to-Twin Transfusion Syndrome (TTTS) is a rare preg-
nancy pathology affecting identical twins, which share both the placenta
and a network of blood vessels. Sharing blood vessels implies an unbal-
anced oxygen and nutrients supply between one twin (the donor) and
the other (the recipient). Endoscopic laser ablation, a fetoscopic min-
imally invasive procedure, is performed to treat TTTS by restoring a
physiological blood supply to both twins lowering mortality and mor-
bidity rates. TTTS is a challenging procedure, where the surgeons have
to recognize and ablate pathological vessels having a very limited view
of the surgical size. To provide TTTS surgeons with context awareness,
in this work, we investigate the problem of automatic vessel segmenta-
tion in fetoscopic images. We evaluated different deep-learning models
currently available in the literature, including U-Net, U-Net++ and Fea-
ture Pyramid Networks (FPN). We tested several backbones (i.e. ResNet,
DenseNet and DPN), for a total of 9 experiments. With a comprehen-
sive evaluation on a novel dataset of 18 videos (1800 frames) from 18
different TTTS surgeries, we obtained a mean intersection-over-union of
0.63±0.19 using U-Net++ model with DPN backbone. Such results sug-
gest that deep-learning may be a valuable tool for supporting surgeons
in vessel identification during TTTS.

Keywords: TTTS · Vessels segmentation · Computer-assisted
intervention · Deep learning

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 145–153, 2022.
https://doi.org/10.1007/978-3-031-13324-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13324-4_13&domain=pdf
http://orcid.org/0000-0002-5214-9443
http://orcid.org/0000-0002-4494-8907
http://orcid.org/0000-0002-5102-6062
http://orcid.org/0000-0002-8819-2734
http://orcid.org/0000-0002-8511-9144
https://doi.org/10.1007/978-3-031-13324-4_13


146 A. Casella et al.

1 Introduction

Twin-to-Twin Transfusion Syndrome (TTTS) occurs in the 10–15% of mono-
chorionic pregnancies (i.e. twin pregnancies with shared placenta). TTTS imply
unequal blood flow along placental blood vessels, due to the presence of abnor-
mal anastomoses [3]. If not treated, TTTS can have serious consequences for
both twins, with the risk of perinatal mortality of one or both foetuses that can
exceed the 90% of cases [5].

TTTS is commonly treated with fetoscopic minimally invasive surgery, where
surgeons treat the pathological anastomoses via laser photocoagulation. The
identification of pathological anastomoses is a challenging task due to different
factors, such as limited Field-of-View (FoV) on the surgical site, turbidity of
amniontic fluid, large variability in the illumination level, noise in endoscopic
images and occlusions caused by surgical instruments and fetuses. In anterior
placental procedures, where the 30◦ fetoscope is used, the FoV is further reduced
due to the view angle between camera and placenta surface. These factors impair
surgeon’s ability to remain oriented during the procedure, which often results in
increased procedural duration and incomplete ablation of anastomoses [4].

Intra-operative automatic vessel segmentation may be a valuable tool to pro-
vide surgeons with context awareness for identifying abnormal anastomoses.
Moreover, vessel segmentation was proven to be a strong prior for other
computer-assisted surgery algorithms, including mosaiking for FoV expansion
[2]. However, few attempts have been devoted to address the problem of vessel
segmentation. These attempts include [15], which is the first to investigate the
use of deep learning for fetoscopy vessel segmentation using U-Net, and [2], which
compares U-Net architectures using different encoders (i.e., VGG-16, ResNet-50
and ResNet-101). The work in [15] achieves DSC of 0.55 ± 0.22 on a dataset
of 345 frames from 10 TTTS procedures. The work in [2] presents a dataset of
483 intraoperative frames from 6 different in vivo TTTS surgeries. U-Net with
ResNet-101 backbone is used, achieving mean Dice Similarity Coefficient (DSC)
of 0.78 ± 0.13.

It emerged from the literature survey that no common benchmark exists
on vessel segmentation and more studies need to be performed to translate the
research methodologies into the clinical practice. Obtaining an accurate segmen-
tation is, indeed, a challenging task. This can be explained considering (i) the
intrinsic challenges of fetoscopy videos, which also hampers surgeons’ context
awareness, and (ii) the lack of large publicly available datasets for algorithm
training and testing [7,8]. In this work, we investigate convolutional neural net-
work (CNN) architectures for placental vessel segmentation in fetoscopic images
acquired in the actual surgical practice.

The contribution of this work can be summarized as follows:

– Comprehensive study of CNN segmentation architectures, highlighting the
impact of specific combinations of architectures and backbones in vessel seg-
mentation performance
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– Validation on a new in-vivo dataset acquired during the actual surgical prac-
tice. With 1800 frames from 18 different TTTS procedures, the dataset is the
larger in the field.

2 Materials and Methods

CNNs for segmentation usually consist of a backbone for feature extraction, also
known as encoder (Sect. 2.1), and a decoder (Sect. 2.2) to process the extracted
features and compute the segmentation mask. We here evaluated three of the
most used backbones, i.e. Residual (ResNet), Densely Connected (DenseNet),
and Dual Path (DPN), along with decoder topology from the three most popu-
lar architectures for medical image segmentation (i.e., U-Net, Feature Pyramid
Network (FPN) and U-Net++).

2.1 Backbones

Since the introduction of U-Net, researchers have implemented skip connections
in multiple ways to foster features extraction and travelling through CNN models
to tackle several challenges in segmentation tasks.

Increasing the depth of the segmentation network showed to improve seg-
mentation performance but could lead to the vanishing gradient problem and
high memory footprint. In ResNet, short skip connections enable features to be
reused, travelling from initial to deeper layers, avoiding gradient vanishing with
a limited overhead since no additional parameters are required [10]. Although
different versions of ResNet have been presented so far, in this work, we use
ResNet-50 (23 million parameters) as reference with previous works from state
of the art for vessel segmentation [2,13].

The same idea underlying ResNet is further extended in the dense blocks of
DenseNet. In each dense block, the features from each layer are iteratively con-
catenated with those of previous layers. In addition, short skip connections that
realise the dense connectivity between layers enable the reuse of feature maps
from previous layers. The introduction of dense connectivity further increases
efficiency and enables new feature exploration, pushing even further the depth
of the backbone [11]. Dense connectivity was found to be also effective in inter-
fetal membrane segmentation from fetoscopic images [8]. We used the DenseNet
backbone with 169 layers in our tests (12 million parameters).

DPN take the best of both worlds combining residual and dense connectiv-
ity. This design allows features in common to be shared among different layers
keeping the flexibility to explore new features through the dual path. [9]. We
used the DPN backbone with 68 layers in our tests (11 million parameters).

2.2 Decoder Architectures

In U-Net, the encoder is connected to the decoder through long skip connections.
Skip connections enable U-Net to compute the segmentation mask using fine-
grained features learned at the encoder level [14].
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Fig. 1. Samples images from the proposed dataset.

In FPN, the long skip connections between encoder and decoder are main-
tained with the addition of 1 × 1 convolutions to improve features semantics.
The final output is obtained by combining predictions at different scales. The
decoder, or top-down pathway in FPN, upsample spatially coarser but seman-
tically stronger feature maps from higher pyramid levels. With lower-levelRz
semantics but higher spatial accuracy, encoder feature maps are merged to those
from the decoder through the skip connections [12].

The findings in dense connectivity are shifted to encoder-decoder connectivity
in U-Net++. This architecture redesigns skip pathways (i.e. how the feature
maps travel through the network) with dense connections to fuse in the decoder
features from different encoder stages [17]. In our tests we used U-Net++ without
deep supervisions.

3 Experimental Protocol

Our evaluation dataset was collected at Department of Fetal and Perinatal
Medicine, Istituto Giannina Gaslini, Genoa (Italy) and University College Hos-
pital, London (United Kingdom). The dataset characteristics are summarized in
Table 1. Sample images are shown in Fig. 1. The dataset consists of 1800 frames
extracted from 18 videos of 18 different surgeries. A total of 100 frames was
extracted from each video to have a balanced number of frames among the dif-
ferent surgeries. Frames with only visible vessels were annotated using the Pixel
Annotation Tool [6] under the supervision of expert surgeons. This dataset is a
subset of the dataset presented in [1] where only vessels are annotated.
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Table 1. Summary of the challenge dataset. For each video, image resolution, number
of annotated frames and ratio between vessel and background (BG) pixels.

# Video Frame resolution (pixels) # frames BG/Vessel

(Avg. ratio)

1 470 × 470 100 11.13%

2 540 × 540 100 6.32%

3 550 × 550 100 10.93%

4 480 × 480 100 7.22%

5 500 × 500 100 17.03%

6 450 × 450 100 17.24%

7 640 × 640 100 11.11%

8 720 × 720 100 5.84%

9 660 × 660 100 20.00%

10 380 × 380 100 6.86%

11 680 × 680 100 8.90%

12 720 × 720 100 9.29%

13 380 × 380 100 8.83%

14 400 × 400 100 5.16%

15 400 × 400 100 12.08%

16 720 × 720 100 8.47%

17 400 × 400 100 15.83%

18 320 × 320 100 6.63%

All videos 1800 10.49%

We perform data augmentation on the dataset to increase the generalization
capability of each tested network. The data augmentation introduced photomet-
ric distortions (i.e. translations, rotation, shear) to simulate additional views,
change in contrast, brightness and blur to add several challenging characteris-
tics of fetoscopic images.

All the architectures are implemented in PyTorch and trained on a NVIDIA
RTX 2080Ti with 12 GB of memory, using SGD optimiser with a sinusoidal learn-
ing rate ranging from 10−2 to10−4 to optimise the combined-loss function (CL):

CL = LDSC + CE + λ
∑

w2
i (1)

where LDSC is defined as:

DSC =
2TP

2TP + FP + FN
(2)

being TP the number of vessel pixels correctly identified, and FP and FN the
background and vessel pixels misclassified, and CE is the cross-entropy loss and
the last term implements the L2 weights regularisation.
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Fig. 2. Boxplot of performance comparison between all the tested architectures in
terms of mean Intersection-over-Union (IoU ). Statistical significance was tested using
Friedman test with post-hoc analysis. (p-value: ∗ < 0.05, ∗∗ < 0.01, ∗ ∗ ∗ < 0.001)

The combined loss function aims to jointly maximize the overlap and likeli-
hood of the predicted segmentation with the groundtruth to improve generalisa-
tion while the regularisation prevents model overfitting [16]. All the architectures
were trained with a batch size of 64.

In order to assess the robustness of the segmentation, 6-fold cross-validation
was performed using 3 patients per fold.

The Friedman test on mean IoU imposing a significance level (p) equal to
0.05, were used to assess whether or not remarkable differences existed between
the tested architectures.

4 Results

The best mean IoU among all folds was achieved by U-Net++ with DenseNet
and DPN backbone (mean IoU = 0.63 ± 0.20 and mean IoU = 0.63 ± 0.19
respectively).
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Fig. 3. Sample images along with the manual annotation (groundtruth) and predicted
output for the tested architectures. Vessels are superimposed in red. (Color figure
online)

The boxplot in Fig. 2, shows the performance in terms of IoU of the tested
networks. Mean value and standard deviation are reported on top of each
method.

The U-Net ResNet presented in [2] and FPN ResNet achieved the worst
results among all folds with a mean IoU of 0.59±0.21. FPN DPN and U-Net++
ResNet showed comparable result with a mean IoU of 0.60 ± 0.20 and 0.60 ±
0.21 respectively. The U-Net DenseNet and FPN DenseNet achieved a slight
improvement in terms of average IoU (0.61± 0.21 and 0.62± 0.21 respectively),
while U-Net DPN had a slight reduction of the standard deviation (0.61±0.20).

Visual samples of the predicted segmentations by the tested CNNs are shown
in Fig. 3. Each row shows the original image, the groundtruth and segmentation
results of a sample frame extracted from the testing videos for each fold.

5 Discussion and Conclusions

In this work, we compared different CNN architectures and backbones for pla-
centa vessels segmentation in in-vivo fetoscopy video. The evaluation was per-
formed on a new dataset of 1800 manually annotated fetoscopic frames from 18
different surgeries.

All the tested architectures achieved comparable performance on our dataset.
Despite the low difference in mean IoU between all the tested methods, the
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use of dense connectivity quantitatively shown to improve the performance of
vessel segmentation in fetoscopic images. These results confirm the findings also
reported in [8].

The presence of dense connectivity in both backbone and decoder that can
be seen in U-Net++, DenseNet and DPN contributes to increasing the segmen-
tation performance and robustness by increasing the mean IoU and reducing
its variability. The post-hoc analysis on the Friedman test confirms that these
architectures perform better than the others.

A limitation of the experimental protocol may be seen in the dataset size and
annotated classes, which could be enriched to conduct a more in-depth analysis
on multi-class segmentation.

To conclude, the achieved results suggest that CNNs, and in particular those
which implement dense connectivity, may be an effective tool in supporting sur-
geons in the identification of placenta vessels from fetoscopic videos. This may
have a positive impact on TTTS surgery, by lowering the surgery duration and,
as a consequence, by reducing surgeons’ mental workload and patients’ risks.
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Abstract. Non-invasive solutions (no sensors nor markers) appear the
most appealing for assessment of body movements and facial dynamics in
order to predict Neurodevelopmental disorders (NDD) even in the first
days of life. To this aim, recent advances in machine learning applied
could be effectively exploited on visual data framing the children, but
they suffer from the scarcity of annotated data for training the algo-
rithms. In order to fill this gap, in this paper, a semi-automatic tool
specifically designed for labelling videos of children in cribs is introduced.
It consists of a Graphical User Interface allowing to select: 1) videos, or
static images, to be processed and 2) the desired annotation goal achieved
by state-of-the-art deep learning based neural architectures.

1 Introduction

Neurodevelopmental disorders (NDDs) are defined as a group of conditions
with onset in the developmental period, inducing deficits that produce impair-
ments of functioning. NDDs are characterized by an inability to reach cognitive,
emotional, and motor developmental milestones. NDDs comprise intellectual
disability (ID); Communication Disorders; Autism Spectrum Disorder (ASD);
Attention-Deficit/Hyperactivity Disorder (ADHD); Neurodevelopmental Motor
Disorders, including Tic Disorders (sudden twitches, movements, or sounds that
people do repeatedly); and Specific Learning Disorders [20]. In addition to neona-
tal magnetic resonance imaging, NDDs can be predicted by using movements
assessment [10]. Facial recognition is another possible way to diagnose a patient,
for example, because of distinct attributes in ASD children. Indeed, scientists
found that children diagnosed with autism share common facial feature distinc-
tions from children who are not diagnosed with the disease Children with autism
have an unusually broad upper face, including wide-set eyes. They also have a
shorter middle region of the face, including the cheeks and nose [12]. Eye move-
ment data can be also distinctive traits of autism [8]. On the other hand, within
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the ADHD field, responses to stimuli, in terms of motor and effective, have been
commonly used as predictive signs which lie early in life [25]. It urges to increase
efforts in producing systematic reviews on early behavioral markers for each
NDD [18].

The causes of NDDs are multiple, both genetic and environmental but, the
exact causes driving atypical neurodevelopment remain poorly understood. Even
if NDDs are considered highly heritable it is quite difficult to plan efficient screen-
ing programs. Besides, ethical, economic, legal and social aspects should be care-
fully considered. Traditional screening programs are based on human observation
and then they have low-throughput and high costs. Hence, screenings are often
limited to very high-risk children and the majority of cases emerge later in life
when clinical interventions become less effective and the quality of life of individ-
uals is irremediably compromised. Besides, differences in assessments of raters
with various levels of experience introduce a bias in the diagnosis and assessment
steps [22]. In order to overcome the aforementioned drawbacks, and kin the light
of the aforementioned clinical findings and prompted by recent advances in hard-
ware and software technologies, several researchers tried to introduce automatic
systems to analyse baby’s behavioral features, even in cribs. The use of physical
sensors is discouraged by the sparsity of spatial data, difficulties to get consis-
tent positioning and possible modifications of the behaviours to be observed.
Alternatively, active/passive visual markers can be positioned on the children
and acquired by optical devices. Their use is discouraged by the difficulties to
get consistent positioning and then by long set-up times [9] making them not
suitable for at-home usages.

Hence, non-invasive solutions (no sensors nor markers) appear the most
appealing. Under this premise, recent advances in machine learning applied could
be effectively exploited on visual data framing the children [19], but they suffer
from the scarcity of annotated data for training the algorithms. Data privacy
adherence and compliance is the main issue but it can be properly following
ethical features in Governments’ guidances. Another relevant issue concerns the
labelling procedure which is not just time-consuming but labour-intensive as
well. Manually labelling thousands of frames is a very hard task and for this
reason, there are a few (and scarcely populated) annotated datasets of children
that could feed AI algorithm for early NDDs diagnosis and assessment [14].

In order to fill this gap, in this paper, a semi-automatic tool for labelling
videos of children is provided. It consists of a Graphical User Interface allowing
to select videos, or static images, to be processed and the desired annotation goal.
The provided annotation types allow the user to automatically point out hands
and feet, the whole skeleton and the facial dynamics. Each annotation type relies
on state-of-the-art deep learning methods. To the best of our knowledge, this is
the first tool providing such a large range of annotation choices (existing ones
concentrated only on a specific feature, e.g. pose) with very recent and effective
algorithms, even working on mobile platforms (thanks to lightweight architec-
tures). The rest of the paper is organized as follows: Sect. 2 reports related work
and Sect. 3 describes the main technical features proposed annotation tool. Its
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main deep learning components are then detailed in Sect. 3.2 and then, in Sect. 4
the dataset of children in cribs used to train and test the algorithms is briefly
described. Section 5 reports some outcomes of the annotations performed on
videos in the children dataset and finally Sect. 6 concludes the paper.

2 Related Work

2.1 Marker-Less AI Tools for Children’s Motion Analysis

It is quite difficult to find tools properly designed and set up for video-based
analysis of children’s motor performance [23]. In particular, two systems are
described in the following. In chronological order, the first one is the AVIM sys-
tem [21], a monitoring system developed in C# language using the OpenCV
image processing library and specifically designed for an objective analysis of
infants from 10 days to the 24th week of age. It acquires and records images
and signals from a webcam and a microphone but also allows users to perform
both audio and video editing. Very useful functionalities are the possibility of
adding notes during the recording and to play/cut/copy and assess on-the-fly
the sequences of interest. Besides, it extracts from the image the 2D position of
the body segments to help the study of the movements according to amplitude,
average speed and acceleration. The body analysis can concentrate either on
the lower body, based on three points only, or on the full body by taking into
account 8 points (right shoulder, left shoulder, left hand/wrist, base of the ster-
num, pubis/genitals, tight foot/ankle, left foot/ankle). It is worth noting that in
both modalities (lower body or full body), all the points are manually placed and
then tracked over time in order to extract some motion parameters according
to the clinical literature are automatically extracted [13]. Some acoustic param-
eters (and related statistics) are automatically estimated as well (fundamental
frequency, first two resonance frequencies of the vocal tract, kurtosis, skewness
and time duration of each cry unit).

The second device deserving a mention is MOVIDEA [2] which has been
designed for semi-automatic video-based analysis of infants’ motor performance.
It includes a camera placed 50 cm above the child, at chest height, and software
designed to extract kinematic features of limbs of a newborn (up to 24 weeks
old) at home while lying on a bed, upon a green blanket. A Graphical User
Interface completes the system and it allows the software operator to interact
with the system. At first, the operator has to identify the limb by selecting the
central point of the region of interest (i.e., hand, foot). The system then tracks
the selected point frame by frame using the Kanade-Lucas-Tomasi algorithm [26]
and movement features of extracted trajectories are compared with the reference
ones for the identification of pathological motion patterns [5].

2.2 Existing Tools for Face Childrens’ Analysis

A semi-automatic annotation methodology for annotating massive face datasets
has been firstly proposed in [24]. It relied on generative models such as Active
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Orientation Models (AOMs) that are a variant of Active Appearance Models [6].
The accompanying facial landmark annotations consist of a set of 68 points for
images in the range −45◦:+45◦ and 39 points for profile images. The tool was
used only for annotating adult faces. To the best of our knowledge, there exists
no tool specifically designed for annotating children’s faces. Furthermore, even
works introducing algorithms for analyzing children’s faces are few. Examples
are the tools in [1,16] aiming at facial analysis for diagnoses and assessment of
children with neurocognitive disorders.

3 The Proposed Annotation Tool

The proposed tool has been developed by using Proteo framework [4]. Proteo is
a framework designed to give therapists and researchers without specific skills
in software development the capability of defining telerehabilitation service cus-
tomization and developing rehabilitation-oriented serious games, starting from
game templates. Moreover, due to its features Proteo is also suitable for the
development of other types of applications. Proteo natively works in client-server
mode. The client can be installed on a computer, on a tablet or even run on the
browser. All scripts are stored on the server instead and they are divided into 3
macro categories: scripts, plugins and libraries. During the login phase the client
downloads a script. This script is executed by the client and contains the whole
user interface. The client will interface with the plugins on the server through a
REST interface. All permission management is handled by the framework.

To the aim of developing the proposed annotation tool, the “movelab.lua”
script has been developed. The administration scripts (admin.lua, editor.lua)
with their plugins, image analysis plugins (deepcrimson.lua) and data manage-
ment plugins (deepindigo.lua, nfs.lua and proteo.lua ) exploited in this paper
were already part of the Proteo framework. Besides, several support libraries
have been developed to allow advanced features exploiting deep learning both
on the server and client sides.

Proteo allows to call these libraries both locally and remotely. In the following
we will analyze the structure of the main scripts according to the features of the
software.

3.1 The Graphical User Interface

For the development of the GUI, the native Proteo API was used but a pure
Lua library was developed for the creation of the graphs. The interface is divided
into three parts. On the left side there is a list of available files for processing.
You can list all the files in a folder (through a filter based on the file name) or
you can load the list of files on the remote server. That way you can work on a
set of videos without the need to download it. Once you click “Open” the entire
video is loaded into memory using a structure that allows users to store different
information for each frame.
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The central part of the interface shows the current frame, the title and a
set of controls to move around within the video. It also displays over imposed
information, such as skeleton, landmarks and so on, which can integrated with
bounding box and motions tracks trough the two check boxes at the bottom of
the GUI. User can also draw a line on the video to calculate the distance between
two points.

The rightmost of the interface provides the possibility of selecting a type of
analysis to be performed among the available options in the list provided by
clicking on ‘select model’ function. Options are:

1. DLNet18
2. DLNet50
3. BlazePose
4. BlazeFace
5. Holistic
6. Selfie Segmentation
7. DeepLabv3
8. Facial Dynamics

After selecting the model, the user can select whether to apply the analysis to
a single frame or to the whole video. In the second case each frame is analyzed
separately starting from the current one. Below the buttons there are 4 bot-
toms allowing to graph and save information (quantity of motion, ground truth,
extracted features) about the selected video. In Fig. 1 the GUI while running the
BlazePose algorithm is shown.

3.2 Deep Learning Components

If the required analysis is DLNet18 or DLNet50 type, two modified residual
neural network (ResNet) [11] are used. A residual network is formed by stacking
several residual blocks together. A residual block is a stack of layers set in such
a way that the output of a layer is taken and added to another layer deeper in
the block. The non-linearity is then applied after adding it together with the
output of the corresponding layer in the main path. This by-pass connection
is known as the shortcut or the skip-connection. This has been demonstrated
very effective to overcome the vanishing/exploding gradients and performance
degradation problem, i.e. as the network depth increases, the accuracy saturates
and then degrades rapidly. In the proposed tool DLNet18 and DLNet50 types
refer to a processing by a Residual Network having 18 and 50 layers respectively.
Both networks were fine tuned, trained on ImageNet [7], using video from the
dataset described in Sect. 4. Both nets were trained to point out hands and foot
central point in each image containing a human body.

If Blaze pose type is selected for analysis the selected videos are processed
by the neural architecture named BlazePose introduced in [3]. BlazePose is a
lightweight convolutional neural network architecture for human pose estimation
that is tailored for real-time inference on mobile devices. During inference, the
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Fig. 1. The GUI while exploiting BlazePose

network produces 33 body keypoints for a single person and runs at over 30
frames per second on off-the shelf mobile phones. It uses both heatmaps and
regression to keypoint coordinates.

Holistic type refers to the MediaPipe Holistic pipeline1 instead. MediaPipe is
a framework aimed to build prototypes by combining existing perception com-
ponents, to advance them to polished cross-platform applications and measure
system performance and resource consumption on target platforms [17]. In the
deployed configuration, holistic type simultaneously performs human pose, face
landmarks, and hand tracking. MediaPipe Holistic utilizes the pose, face and
hand landmark models in MediaPipe Pose, MediaPipe Face Mesh and MediaPipe
Hands respectively to generate a total of 543 landmarks (33 pose landmarks, 468
face landmarks, and 21 hand landmarks per hand). It can run in real-time on
mobile devices and provides higher accuracy by integrating separate models each
of which are optimized for their particular domain (i.e. pose, face and hands).

MediaPipe is also used for Segmentation type. It processes selected videos
and images using MediaPipe Selfie Segmentation,2 that segments the prominent
humans in the scene. It can run in real-time on both smartphones and laptops.
Underlying models are based on MobileNetV3, with modifications to make them
more efficient.

1 https://google.github.io/mediapipe/solutions/holistic.
2 https://google.github.io/mediapipe/solutions/selfie segmentation.html.

https://google.github.io/mediapipe/solutions/holistic
https://google.github.io/mediapipe/solutions/selfie_segmentation.html
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Finally, Facial Dynamics choice on the GUI refers to the in depth facial
analysis introduced in [15,16]. The framework mainly consists of four algorith-
mic modules performing: face detection and landmark positioning, muscle move-
ments (action unit) intensity estimation and high-level semantic analysis. The
final outcomes are the computational quantification of how dynamics of upper
and lower parts of the facial are similar to the configurations related to facial
expressions (both volunteers or non-volunteers, as often appear in the first weeks
of life).

4 The Dataset

The dataset consists of 600 videos of children lying on a bed. The camera was
placed 50 cm above the child, at chest height. The recording took place for at
least 5 min with the aim of acquiring images of spontaneous movement of the full
body of the child. A total of 150 infants were video recorded. The original videos,
encoded with different codecs and at various widths (640, 854, 1280 pixels), were
encoded in H264 at a common width of 640px while maintaining the same aspect
ratio. The videos come with annotation about two hands, two feet positions (in
each frame), body length and face size (only in the first frame). For an additional
level of privacy it is possible to set the software to always show the blurred videos
(preserving the analysis on the original frames), the screen shots of this paper
were made using this setting.

5 Experimental Results

In this paragraph we will present some types of analysis that can be performed
with Movelab, without addressing the clinical aspects that will be analyzed in a
future work. One of the main aspects of children’s motion analysis is the auto-
matic determination of hand and foot positions. As stated in Sect. 3 the annota-
tion tool makes available two different models (DL50 and BlazePose) for human
motion analysis based on ResNet50 and the version of BlazePose provided with
the MediaPipe tool respectively. The first experiments aimed at qualitatively and
quantitatively compare the two available algorithmic choices on childrens videos.
Using a small portion of the test videos (not used during ResNet50 training), a
Percentage-of-Correct-Keypoints(PCK) for individual limbs was computed. The
face size present in the dataset was used as a reference to calculate PCK. Results
are reported in Fig. 2. On the x-axis there are the 4 different regions used for
computing PCK: LF (left foot), RF (right foot), LH (left hand) and RH (right
hand). The small number of tests does not allow to draw general conclusions
but, it is quite evident that ResNet50 works more accurately than BlazePose.
However, it is worth noting that BlazePose turns out to be a very good motion
analysis system also in this context, considering that the analysis time is a tenth
of that of ResNet50 and that BlazePose returns many more points and not only
the 4 analyzed.
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Fig. 2. PCKF comparison between DL50 and BlazePose options in the tool. See the
text for explanation.

The temporal trend of the outcomes of both algorithms can be displayed by
the GUI (see Fig. 3). This allows clinicians to quickly observe how each limb of
the child moved in the video.

Fig. 3. Motion of the limbs in a video of the dataset (Left Foot green, Right Foot
yellow, Left Hand blu, Right Hand magenta). Upper graph refers to x coordinates of
hands and feet (4 graphs). Lower graphs refers to y-coordinates instead. (Color figure
online)

It is also possible to quickly show the time evolution of the limbs with a graph
that also calculates the main kinematic features such as speed and acceleration,
cross-correlations and periodicity of movements. In addition the global quantity
of motion can be plotted by considering the pixels changes between consecutive
frames in the area segmented as belonging to the child by ‘Selfie Segmentation’
option in the GUI (see Fig. 3) (Fig. 4).
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Fig. 4. Selfie-segmentation of the child’s body in a frame (left) and plot of the quantity
of motion along a video (right).

Concerning provided option for facial dynamics, some outcomes of the tool
on a video of the dataset are reported in Fig. 5.

Fig. 5. Face analysis trough the tools and action units plots.

6 Conclusions

Early diagnosis and assessment of neurodevelopmental disorders from videos is
a growing research field. Observing several functional features, such as motor
and facial dynamics of baby in crib along several hours of videos, might be cru-
cial for quickly taking important clinical decisions. Unfortunately this is a time
demanding task leveraging on the availability of trained personnel. Recent deep
learning techniques are proving their worth to overcome these drawback, but in
many cases being able to use them requires specific technical skills which are
often not present in a clinically oriented research team. Therefore, being able to
apply, trough a user-friendly GUI, different techniques to the same video, being
able to quickly compare results, and also being able to modify the software’s
functionality quickly can be key to making research in this field faster. To fur-
ther enhance the research in this field, in this paper the Movelab script, built
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through the Proteo framework, has been introduced. Proteo has proven to be a
powerful tool for building cross-platform applications capable of harnessing the
power of libraries such as OpenCV, TensorFlowLite and SDL in a simple and
intuitive way. The software allows to compute features chosen according to their
reported relevance in the literature and the occurrence of neurodevelopmental
disorders. Specifically, three different classes of features were studied for the
description of movements in infants: features extracted from the analysis of limb
trajectories, features extracted from the analysis of movement of full body and
features inherent to the facial dynamics. For the first class, an ad-hoc network
was trained, and a pre-trained network (BlazePose) capable of obtaining com-
parable results was used. As future work the results extracted from the network
will be analyzed for a more accurate comparison, taking into account the features
of BlazePose: higher number of keypoints and possibility to work in real time
also on mobile devices. For the second class it was introduced the possibility to
obtain the metrics through the analysis of the data obtained from a segmentation
analysis (SelfieSegmentation). For the third class algorithms capable of detect-
ing and positioning facial landmarks, estimating muscle movement intensities
(action unit) and extracting semantic information were used. As future work,
algorithms capable of partitioning the body into different zones will be explored
and further measurements on individual zones will be performed. Besides, the
possibility to analyze gaze tracks of the child will be investigated.
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14. Leo, M., Bernava, G.M., Carcagǹı, P., Distante, C.: Video-based automatic baby
motion analysis for early neurological disorder diagnosis: state of the art and future
directions. Sensors 22(3), 866 (2022)

15. Leo, M., et al.: Computational analysis of deep visual data for quantifying facial
expression production. Appl. Sci. 9(21), 4542 (2019)

16. Leo, M., et al.: Computational assessment of facial expression production in ASD
children. Sensors 18(11), 3993 (2018)

17. Lugaresi, C., et al.: MediaPipe: a framework for building perception pipelines.
arXiv preprint arXiv:1906.08172 (2019)

18. Micai, M., Fulceri, F., Caruso, A., Guzzetta, A., Gila, L., Scattoni, M.L.: Early
behavioral markers for neurodevelopmental disorders in the first 3 years of life: an
overview of systematic reviews. Neurosci. Biobehav. Rev. 116, 183–201 (2020)

19. Moccia, S., Migliorelli, L., Carnielli, V., Frontoni, E.: Preterm infant’s pose estima-
tion with spatio-temporal features. IEEE Trans. Biomed. Eng. 67(8), 2370–2380
(2019)

20. Morris-Rosendahl, D.J., Crocq, M.A.: Neurodevelopmental disorders-the history
and future of a diagnostic concept. Dialogues Clin. Neurosci. 22(1), 65 (2020)

21. Orlandi, S., et al.: AVIM-a contactless system for infant data acquisition and anal-
ysis: software architecture and first results. Biomed. Signal Process. Control 20,
85–99 (2015)

22. Peyton, C., et al.: Inter-observer reliability using the general movement assessment
is influenced by rater experience. Early Human Dev. 161, 105436 (2021)

23. Raghuram, K., et al.: Automated movement recognition to predict motor impair-
ment in high-risk infants: a systematic review of diagnostic test accuracy and meta-
analysis. Dev. Med. Child Neurol. 63(6), 637–648 (2021). https://doi.org/10.1111/
dmcn.14800

24. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: A semi-automatic
methodology for facial landmark annotation. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshops, June
2013

25. Shephard, E., et al.: Early developmental pathways to childhood symptoms of
attention-deficit hyperactivity disorder, anxiety and autism spectrum disorder. J.
Child Psychol. Psychiatry 60(9), 963–974 (2019)

26. Tomasi, C., Detection, T.K.: Tracking of point features. Int. J. Comput. Vis. 9,
137–154 (1991)

http://arxiv.org/abs/1906.08172
https://doi.org/10.1111/dmcn.14800
https://doi.org/10.1111/dmcn.14800


Some Ethical Remarks on Deep
Learning-Based Movements Monitoring

for Preterm Infants: Green AI or Red AI?

Alessandro Cacciatore1(B), Lucia Migliorelli2, Daniele Berardini2,
Simona Tiribelli3, Stefano Pigliapoco1, and Sara Moccia4

1 Department of Humanities - Languages, Language Liaison, History, Arts,
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Abstract. Preterm infants’ spontaneous movements monitoring is a
valuable ally to early recognise neuro-motor impairments, especially com-
mon in infants born before term. Currently, highly-specialized clinicians
assess the movements quality on the basis of subjective, discontinuous,
and time-consuming observations. To support clinicians, automatic mon-
itoring systems have been developed, among which Deep Learning algo-
rithms (mainly Convolutional Neural Networks (CNNs)) are up-to-date
the most suitable and less invasive ones. Indeed, research in this field
has devised highly reliable models, but has shown a tendency to neglect
their computational costs. In fact, these models usually require massive
computations, which, in turn, require expensive hardware and are envi-
ronmentally unsustainable. As a consequence, the costs of these models
risk to make their application to the actual clinical practice a privi-
lege. However, the ultimate goal of research, especially in healthcare,
should be designing technologies that are fairly accessible to as many
people as possible. In light of this, this work analyzes three CNNs for
preterm infants’ movements monitoring on the basis of their compu-
tational requirements. The two best-performing networks achieve very
similar accuracy (Dice Similarity Coefficient around 0.88) although one
of them, which was designed by us following the principles of Green AI,
requires half as many Floating Point Operations (47× 109 vs 101× 109).
Our research show that it is possible to design highly-performing and
cost-efficient Convolutional Neural Networks for clinical applications.
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1 Introduction

The World Health Organization1 estimates that 11% infants are born prema-
turely, i.e., before the 37th week of gestation, every year. This average datum
does not consider the huge variations of premature birth rates occurring across
time and space. In Italy, this rate is “normally” around 7%, but it has increased
up to 11% in the post-COVID-19 era (years 2020–2021), as reported by the
Italian Society of Neonatology.2 Other reports [2,4] show how sensitive this phe-
nomenon is to social, economic, and genetic factors. This suggests that the rate
of premature births in a population can increase unpredictably. Although, in the
last decades and in developed countries, survival rates among preterm infants
have increased [27], this does not mean that a premature birth comes without
sequelae. In fact, preterm infants happen to be more likely to develop neuro-
motor diseases and deficits [27].

Early detection of potential neuro-motor impairments caused by a preterm
birth can allow for a targeted intervention that exploits brain cells’ neural plas-
ticity while it is at its highest levels, i.e., during early childhood [12,15]. In the
past decades, new methods and techniques have gained ground in this field, and
the General Movements Assessment (GMA) [19,25] stands out for its precision
in early identifying possible future impairments. GMA requires a visual analysis
of the infant’s movements by clinicians to rate movements quality.

Although on the one hand GMA is a powerful technique, on the other hand
it relies uniquely on the clinician’s experience, discretion, and expertise, which
makes it a highly subjective technique, prone to intra- and inter-operator vari-
ability. Moreover, GMA is a discontinuous analysis because the clinician clearly
cannot constantly observe the infant. Because of these downsides, research has
pushed to develop automatic methods to support clinicians with more objective
and stable evaluations. This was done, at first, by tracking infant’s movements
via sensors such as accelerometers [20,26]. Since these sensors must be directly
taped to the limbs, they are accurate in tracking displacements, but quite unsuit-
able for this clinical application, because of preterm infants’ small and fragile
bodies. In fact, accelerometers might jeopardize infants’ spontaneous movements
or irritate their skin [20]. For this reason, the focus was shifted to contact-less
methods, like RGB-D cameras, which let infants, operators, and parents move
freely. In order to be able to analyze movements in the three dimensions, and
to preserve subjects’ privacy, depth cameras are to be preferred to RGB ones.
Another advantage of using depth cameras is that the resulting videos are robust
to light and illumination shifts. However, light shifts are not the only source of
variability in the context of Neonatal Intensive Care Units (NICUs), which host
infants of different ages and who might have to wear oxygen masks, plasters,
or other medical devices. Therefore, given the high variability of the environ-
ment at issue, the use of images (or videos) requires the design of Deep Learning

1 https://www.who.int/news-room/fact-sheets/detail/preterm-birth.
2 https://www.sin-neonatologia.it/covid-neonati-dati-registro-sin-confermano-

aumento-nascite-premature/.

https://www.who.int/news-room/fact-sheets/detail/preterm-birth
https://www.sin-neonatologia.it/covid-neonati-dati-registro-sin-confermano-aumento-nascite-premature/
https://www.sin-neonatologia.it/covid-neonati-dati-registro-sin-confermano-aumento-nascite-premature/
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(DL) algorithms, typically Convolutional Neural Networks (CNNs), to detect
(or track) the infant’s limbs movements. These kinds of approaches, which our
research focuses on, were used by the authors in [14,17,21,22], and [23]. They
all designed CNNs to process images (either depth frames or RGB) with the aim
of estimating the pose of infants, as it is a prior for GMA [20] and for infants’
limb movements monitoring.

Over the past few decades, DL research has devised increasingly more pow-
erful and reliable architectures. The introduction of these algorithms in the
healthcare sector could really pave the way to a more personalized medicine.
However, the diffusion of automatic DL-based monitoring applications would be
hindered by a main drawback of these technologies. In fact, excellent results can
be achieved, only by using computational-intensive DL models, which require
specific (i.e., expensive) hardware to run. Especially when dealing with such a
sensitive and often needy field like healthcare, one must always keep in mind
that different clinical contexts across the world may (and most probably do)
have access to different funds. Researchers who intend to develop new biomedi-
cal DL frameworks must pursue, from the very design of their projects, the ideal
of a wise and clever use of potentially scarce financial resources. It is inherently
pointless to devise a biomedical tool, like a CNN-based framework, that borders
on perfection but requires specific and expensive hardware, because most of the
human population would not have the chance to enjoy its benefits. As biomedi-
cal researchers, to pay attention to this means to consider the ethical dimension
of fairness3 in the design of the technologies that we develop, in order to make
their benefits fairly enjoyable by more people across countries. Besides, there is
a deeper issue that DL research has been neglecting: the carbon footprint that
comes from the large-scale deployment of cumbersome CNNs, i.e., their sus-
tainability. In fact, a DL-based technology is expensive when it requires much
computation, and much computation requires much electrical energy, most of
which is still produced with fossil fuels like oil and coal [1]. Therefore, these two
ethical problems, the fairness and the sustainability of DL-based technologies,
go hand in hand.

This study is intended to show that paying special attention to the com-
putational efficiency, and, therefore, to the fairness of DL algorithms, does not
prevent the design of highly-performant technologies. This is done by compar-
ing three different CNN architectures used in the field of preterm infants’ limbs
detection from depth images acquired in the clinical practice.

2 State of the Art: Green AI and Red AI

The impressive performances reached by CNNs have already been mentioned in
Sect. 1 and are well known among DL researchers. However, Schwartz et al. [24]
point out that these performances are essentially “bought” at the cost of massive
computations. This behavior has led DL to be, first, environmentally unfriendly
and, second, a niche field for new researchers and end-users because they can
3 Throughout the paper, the word “fairness” will always refer to distributive fairness

in the discussed algorithms. To expand different dimensions of fairness that can be
promoted via AI technology, see G. Tiribelli (2022) [6].
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access it only if they can afford expensive computers and expensive computa-
tions. Schwartz defines this as Red AI: striving for higher performance accuracy
without considering the economic and environmental costs of the model. On the
contrary, Green AI endorses a new DL model, only if it achieves similar or higher
performances than the state-of-the-art competitors and its energy consumption
is lower. In sum, Green AI supports models that are performing and sustainable.

As a matter of fact, edge computing (EC) has been focusing on develop-
ing lightweight models that can be deployed on small devices like smartphones.
MobileNets [9] are probably the clearest example of this. Although this research
opens up the possibility of making DL-based technologies accessible to a large
portion of the population, we consider it improper to include EC in the broader
field of Green AI. In fact, EC-research is compelled to devise small and efficient
CNNs, because the end-user devices for which they are intended (mainly smart-
phones) are not meant for massive and long computations, and the deployment of
computational-demanding models would be impossible. On the contrary, Green
AI chooses to use only a portion of the available resources, either economic and
computational, because other geographical contexts might not be able to access
them. This choice is driven by the ethical reasons described in Sect. 1: fairness
and affordability of technologies, as well as their environmental sustainability.

3 Methods

3.1 Considered Deep Learning Architectures

Three networks (visible in Fig. 1) are going to be discussed in this study: Baby-
PoseNet, the detection network introduced in [17], EDANet, introduced in [11],
and TwinEDA, a CNN that we have specifically designed to be accurate and
cost-efficient.

BabyPoseNet. This CNN designed by Moccia et al. [17] was devised to detect
the positions of limbs and limbs’ connections in depth-video frames of preterm
infants. The architecture, perfectly symmetrical, is that of an encoder-decoder
framework. Along the encoding path, the data are down-sampled through a series
of convolutional blocks outputting an increasing number of feature maps. The
dimensional reduction lessens the computational costs, whereas more and more
information is extracted as more kernels are used. After that, the decoding path
consists of a mirrored series of transposed convolutions that restore the data
original dimensions, while reducing the number of kernels up to 20, the total
number of output maps (See Sect. 3.2).

By looking at Fig. 1 (right), the most apparent feature of this architecture is
its total parallelism: at each encoding or decoding stage, the data are processed
by two identical, parallel paths which concatenate right after. This approach
is justified by the fact that the network was especially designed to detect two
different sets of entities, joints and joint-connections, that, however, belong to
the same human body (hence the concatenation after each stage).
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Fig. 1. The architectures of EDANet, TwinEDA, and BabyPoseNet, from left to right.
EDANet was put in the middle in order to clearly show the similarities it shares with
the two other CNNs. The left branch of each network represents the encoding path,
whereas the decoder is shown on the right. On the bottom part of the figure is the legend
of all the colors and boxes used to represent the architectures. ActConv means that
the Convolutional layer is followed by a Batch Normalization and an ReLU Activation
layers, whereas Stride specifies that the convolutional kernel is strided.

EDANet. The architecture introduced in [11] was meant to perform real-time
image segmentation. Real-time image analysis requires very low computational
times, achievable only by highly-efficient CNNs. Indeed, the authors state from
the very beginning that their aim is to create an efficient and accurate network.
Figure 1 (left) displays the architecture of EDANet, which follows an encoder-
decoder scheme, too. However, unlike BabyPoseNet, EDANet’s scheme is not
symmetrical. The encoding path contains efficient structural blocks, like dilated
[29] and asymmetric [28] convolutions. These layers approximate a standard
convolution, achieving comparable performances and requiring much less com-
putation than the standard operation. Along the decoding path, the original
dimensions of the data are restored through a simple interpolation, which does
not introduce trainable parameters. This choice is consistent with the aim of
devising an efficient CNN, but reduces the learning capacity of the architecture.
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Fig. 2. A crib in the NICU in the Salesi Hospital in Ancona. The depth camera is fixed
to the crib to avoid relative movements between them. On the foreground, a sample of
depth frame is shown.

TwinEDA. Inspired by BabyPoseNet’s high accuracy and by TwinEDA’s fast
predictions, we designed TwinEDA, a CNN that could perform similarly to Baby-
PoseNet while being more efficient. In this sense, this research was guided by the
main principles of Green AI. As shown in Fig. 1 (middle), TwinEDA’s architec-
ture was built by combining the blocks that characterize the two baseline CNNs:
the lightweight asymmetric and dilated convolutions, and the computationally
expensive bi-branch structure.

3.2 The BabyPose Dataset

Since the GMA relies on the observation of limb movements, the infant’s body
was modeled as a set of 12 joints (shoulders, elbows, and wrists; hips, knees, and
ankles) and the eight joint-connections between them. All the CNNs discussed
in this work were trained on the expanded version of the babyPose Dataset [16],
which now contains 1000 depth-video frames from 27 preterm infants (for a total
of 27000 annotated frames). The videos were acquired inside the Salesi Hospital
in Ancona, Italy, and Fig. 2 shows the camera-crib setting. The expected output
from the CNNs is a set of 20 binary maps, each of which shows the position of
one of the human-body entities (joints or joint-connections) described above.
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3.3 Evaluation Metrics

In compliance with the definition of Green AI [24], the CNNs that are going to
be analyzed will be evaluated in terms of detection quality and computational
efficiency.

Efficacy Metrics. CNNs detection quality are going to be evaluated in terms
of Dice Similarity Coefficient (DSC) and Recall (Rec), defined as follows:

DSC =
2 × TP

2 × TP + FP + FN
(1)

Rec =
TP

TP + FN
(2)

where TP and FP are the true joint (or joint-connection) and background pixels
detected as joints. FN are the pixels belonging to a joint (or joint-connection),
but ascribed as background.

Efficiency Metrics. Less “direct” metrics will be used to assess how efficient
a CNN is. As stated in [24] and [13], some of the most intuitive metrics (elapsed
real time or number of parameters) are not suitable for a general assessment of
a CNN’s efficiency, especially when comparing different networks. For instance,
two different CNNs can use the same number of parameters but manage them
in different ways, which results in different time and energy consumption. Or
again, the elapsed real time depends on the used hardware (CPUs, GPUs, or
TPUs) or on the depth of the model (i.e., the number of layers defining it).

Eventually, Schwartz et al. [24] only endorse the use of the total number of
floating point operations4 (FPO, also referred to as FLOPs), as universal measure
of how much computation a specific model requires. Ma et al. [13] suggest to use
the model’s memory requirements (Size), too, as it influences the choice of the
required hardware. In light of this, FPO and the Size are going to be reported
for each model. Additionally, the elapsed real time, or Inference time (tinf ), was
chosen as efficiency metric too, in order to compare different CNNs on the basis
of their speed (i.e., the efficiency) on the same hardware.

4 The FLOPs were computed with a dedicated Python package, available at https://
github.com/tokusumi/keras-flops.

https://github.com/tokusumi/keras-flops
https://github.com/tokusumi/keras-flops


172 A. Cacciatore et al.

Table 1. The measures of efficacy and efficiency are presented for each convolutional
neural network (CNN). The efficacy metrics are median values over the 8 joints and
12 connections to be detected by the CNNs. Floating Point Operations (FPO) are
expressed in Giga (109 FLOPs) and are computed on a batch composed by 16 elements.
Model Size is in megabytes, whereas Inference speed (tinf ) is in milliseconds needed
to process a single frame.

Network Efficacy Efficiency

DSC Rec FPO Size tinf

BabyPoseNet 0.89 0.87 101 182 10

TwinEDA 0.88 0.84 47 45 20

EDANet 0.8 0.69 6.7 9 1

4 Results and Discussion

As can be seen from Table 1, the efficacy metrics decrease from top (i.e., Baby-
PoseNet) to bottom (i.e., EDANet), whereas the trend for the efficiency ones is
exactly the opposite. The trend for efficacy metrics is an expected behaviour as
more complex network architectures (e.g., BabyPoseNet) can generally capture
more complex relationships between data. However the loss in efficiency does not
always match the gain in terms of detection quality, and typically the benefit is
not worth the cost. This is a documented tendency, too [3].

If compared to EDANet, TwinEDA features a bi-branch structure and a more
complex decoder, which undoubtedly requires more computational power. The
thus-obtained structure is more similar to that of BabyPoseNet, but, unlike it,
the most computational-requiring operations in TwinEDA (such as convolutions)
are replaced with less demanding approximations (e.g., asymmetric and dilated
convolutions). Because of this, TwinEDA performs similarly to BabyPoseNet
(see values of DSC and Rec) while being way less energy, time, and memory-
demanding. Therefore, TwinEDA has the same requirements as BabyPoseNet to
be used in the actual clinical practice to monitor preterm infants’ movements,
and it could be deployed on a larger scale thanks to its lower costs.

TwinEDA matches the requirements of GreenAI [24] and it is an example of
how computationally lightweight architectural blocks can make the whole CNN
more efficient. In order to promote the principle of fairness, researchers may
follow two possible paths to an efficient CNN. The first one (the one we have
followed) requires an initial cost-agnostic design, followed by a minimization and
optimization process that makes use of lighter architectural blocks. However, this
method cannot always ensure good results, since to change the architecture of a
CNN is to change its generalization capability, and the quality loss consequent
to these substitutions cannot be a priori quantified. The second way to devise
an efficient architecture is to pay particular attention to its efficiency from the
very design of the model. Efficiency metrics can be evaluated even before the
networks is trained, so it is very easy to keep track of their changes. The problem
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that this method entails is that the researcher has limited choices in the design
phase.

A good practice in this respect and the future direction of this work is to use
model compression [3] to reduce the size of a CNN.5 Model compression can be
achieved via network pruning [7,10], parameter quantization [18], or knowledge
distillation [8]. All these techniques require to train a cumbersome model and
to convert it into a lighter and more efficient one with a relatively small loss in
terms of efficacy. This means to obtain an effective model that can be deployed
even on cost-effective devices.

There are many ways to devise accessible and fair DL technologies and many
more will hopefully be found out. We, as researchers, have the duty and the
responsibility to try them all.

5 Conclusion

In this work, we have tried to provide measures to enhance fairness and, hence,
sustainability of three CNNs used to monitor preterm infants’ spontaneous move-
ments. The focus on these themes is justified by the fact that the power of DL
algorithms to support clinicians risks to be hindered by their computational and
energetic costs, affordable only in limited contexts.

Currently, advancements in the DL domain heavily rely and depend on a
huge consumption of resources, and so does the deployment of the designed
DL models. This practice, aside from being environmentally and economically
unfriendly (as explained in Sect. 1), makes research itself unapproachable to new
researchers and, ultimately, usable only in economically-wealthy contexts. For
this reason we consider that, even when the economic resources are plentiful, the
costs of a newly designed DL algorithm should always be taken into account and
minimized when possible. Without this, DL would only serve some privileged
sectors and countries, and, ultimately, increase social inequality. In this way,
research risks (if this has not happened yet) to stumble in one of the main
downsides of what Galimberti [5] defines as “the age of technology”, i.e. an era in
which technological development is no longer carried out for the sake of humans
but for its own. We believe that it is possible to obtain high performances from
lightweight DL models, and that researchers are now standing at a crossroads.
The first path would lead to rethinking research in the DL domain, by embracing
the ethical paradigm of fairness in DL algorithms. The second one would mean
to rethink our whole society, because it relies every day more heavily on an
increasingly expensive and less sustainable DL.

Efficiency can guarantee sustainability, and sustainability can enable fair-
ness. Adopting a resource-friendly and responsible behavior when designing DL
frameworks is the only way to make them available worldwide and to let all
mankind fully enjoy their benefits.

5 Model compression can be applied on any Artificial Neural Network, but for the sake
of consistency we only refer CNNs.
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Abstract. Human Body Dimensions Estimation (HBDE) is a task that
an intelligent agent can perform to attempt to determine human body
information from images (2D) or point clouds or meshes (3D). More
specifically, if we define the HBDE problem as inferring human body
measurements from images, then HBDE is a difficult, inverse, multi-
task regression problem that can be tackled with machine learning tech-
niques, particularly convolutional neural networks (CNN). Despite the
community’s tremendous effort to advance human shape analysis, there
is a lack of systematic experiments to assess CNNs estimation of human
body dimensions from images. Our contribution lies in assessing a CNN
estimation performance in a series of controlled experiments. To that
end, we augment our recently published neural anthropometer dataset
by rendering images with different camera distance. We evaluate the net-
work inference absolute and relative mean error between the estimated
and actual HBDs. We train and evaluate the CNN in four scenarios:
(1) training with subjects of a specific gender, (2) in a specific pose,
(3) sparse camera distance and (4) dense camera distance. Not only our
experiments demonstrate that the network can perform the task success-
fully, but also reveal a number of relevant facts that contribute to better
understand the task of HBDE.

Keywords: Human body dimensions estimation · Human body
measurements · Deep learning

1 Introduction

Human Body Dimensions Estimation (HBDE) is a task that an intelligent can
perform to attempt to determine human body information from images (2D) or
point clouds or meshes (3D). For instance, estimating the height and the shoulder
width of a person from a picture or a 3D mesh. Being humans in the center of
society, one would expect that intelligent agents should be able to perceive the
shape of a person and reason about it from an anthropometric perspective, i.e.,
be capable of accurately estimating her human body measurements.
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This problem can be characterized by specifying the intelligent agent’s per-
ceptual input. If the HBDE problem is circumscribed to inferring human body
measurements from images, then HBDE is, theoretically, a difficult, inverse,
multi-task regression problem.

Practically, HBDE from images is a compelling problem, as well. HBDE
plays an important role in several areas ranging from digital sizing [28], thought
ergonomics [6] and computational forensics [29], to virtual try-on [20] and even
fashion design and intelligent automatic door systems [17]. Moreover, since accu-
rately estimating a person’s body measurements would decrease the probability
that the person returns clothes acquired online, HBDE has gained attention as
an important step toward a more individual-oriented clothes manufacture.

Inverse problems such as HBDE can be tackled with convolutional neural
networks (CNN). However, most studies in the field of HBDE have only focused
on investigating to what extent CNNs can predict body measurements. A number
of factors can affect this prediction, but researchers have not treated them in
depth. What is not yet clear is the impact of the person’s gender, pose, and
camera distance with respect to the subject, on the estimation performance.

In this paper, we investigate these dependencies with a series of experiments.
Despite the tremendous effort from researchers to attempt to better understand
HBDE, there is lack of this kind of experiment in the literature. We believe that
our contribution will shed light on how a CNN estimate HBDs. Upon publication,
we will make our code publicly available for research purposes.1

2 The Problem of Human Body Dimensions Estimation

As stated above, CNNs can be employed to approach the HBDE problem. How-
ever, supervised learning methods demand large amounts of data. Unfortunately,
this kind of data is extremely difficult to collect. For the network input, several
persons must be photographed with the same camera under equal lighting con-
ditions. Further, in order to study the effect of pose, the subjects must adopt
several poses; and to study the effect of camera distance, they would have to
be again photographed. The supervision signal is even more challenging and
costly: these same subjects must be accurately measured with identical meth-
ods to acquire their body dimensions. This is the data scarcity problem in
HBDE.

A possible solution is to generate realistic 3D human meshes and calculate
HBDs from these meshes. But the HBD calculation is by no means a trivial task.
Properly defining HBDs suffers from two issues: inconsistency and uncertainty.

HBDs definitions differ depending on their intended purpose. To just men-
tion one example, health studies measure waist circumference at the midpoint
between the inferior margin of the last rib and the iliac crest [7]. However, while
investigating the height of the waist for clothing pattern design, [12] found seven
different waist definitions and [11] directly enunciated that not all body measure-
ments defined by 3D scanning technologies are valid for clothing pattern. This
1 Code under https://github.com/neoglez/gpcamdis_hbde.

https://github.com/neoglez/gpcamdis_hbde
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multiplicity of definitions complicates consistent conceptualization for machine
learning.

Furthermore, HBDs are defined based on skeletal joins and/or body land-
marks. These reference criteria are highly uncertain and depend on the person
performing the measurement. A single HBD may exhibit important variability
due to observer or instrument error. Also, researchers and practitioners base
their analysis on HBD by presenting a figure of a thin subject with the measure-
ments depicted by segments without further elucidation. This approach hinders
the HBDs calculation reproducibility.

Formally, the HBDE problem has been defined by [13] as a deep regression
problem. Given an image I from a 3D human body with HBD D, the goal is to
return a set D̂ of estimated human body dimensions, that is

D̂ = M(I(D)). (1)

The dataset is assumed to be drawn from a generating distribution and the
deep neural network M minimizes the prediction error.

3 Related Work

Obviously, human body dimensions are determined by human shape. In the
field of Human Shape estimation (HSE), shape has been ambiguously presented
either as a parametric model acting as proxy to a 3D mesh or directly as a
triangular mesh. In a community effort to be more precise, the task of shape
estimation has been currently sharper defined as human mesh recovery, esti-
mation or reconstruction. Additionally, pose estimation has been established as
inferring the location of skeleton joints, albeit these not being anatomically cor-
rect. In the last five years, the body of work in these two fields has exploded.
Since human mesh and pose estimation are barely indirectly related to our work,
we will not discuss them here. In contrast, we focus on end-to-end adults HBDE
from images, i.e., the model input are images of adult subjects and the output
are human body measurements.

Undoubtedly, anthropometry has contributed most to human shape analysis.
Important surveys such as CAESAR (1999) [24], ANSUR I and II (2017) [1]
and NHANES (1999–2021) [2], have collected HBDs. However, they did not
take images of the subjects. This makes unclear how the CNN input could be
obtained. Recently, other datasets have been released for specific tasks, e.g., [23]
propose a dataset with images and seven HBDs for estimation in the automotive
context.

Of all these compendiums, CAESAR is probably the most convenient data
in terms of realism. It contains rigorously recorded human body dimensions
and 3D scans, from which realistic images could be synthesized. The project
costed six million USD (see [24] executive summary). Consequently, this data
is highly expensive. Alternatively, we employ a generative model derived from
real humans, capable of producing thousands of 3D meshes from which we can
calculate and visualize the HBDs.
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Certainly, height is the HBD that has been investigated the most [5,8,14–16,
19,21,27,29]. Very early work [16] investigated the effect of gender and inverted
pictures when humans estimate height from images. They quantified estimation
performance using Pearson’s Correlation Coefficient and established that the
estimated and ground truth height where highly correlated. This fact has been
confirmed recently by [19], which also concluded that humans estimate height
inaccurately. Other HBDs have been explored, e.g., waist [12] but, in general,
they have received significantly less attention.

Strongly related to our work are studies using or generating synthetic data
and calculating or manually collecting HBDs [3,9,10,26,30–32]. None of these
works investigated the effect of gender, pose or camera distance in the estimation
performance. Here, we explore these interactions.

Recently, [4] proposed a baseline for HBDE given height and weight. They
claimed that linear regression estimates accurately HBDs when the inputs are
height and weight. Like we, this method use ground truth derived from the
SMPL model [18]. Despite their input being different to ours, we will use this
work for comparison.

A neural anthropometer (NeuralAnthro) was introduced by [13]. The CNN
was trained on grayscale synthetic images of moderate complexity, i.e., no back-
ground, limited human poses, and fix camera perspective and distance. In this
work, we go further and increase the image complexity, making the input more
challenging to the intelligent agent conducting HBDE.

4 Material and Methods

We now detail the dataset and CNN (model) of the supervised learning approach
that governs our experiments.

4.1 Dataset

We start with the NeuralAnthro synthetic dataset. The reason to use a synthetic
dataset is the cost and effort that collecting “real” data would imply. Since coher-
ent pose variability is more difficult to find in real datasets, another important
aspect is the possibility to vary the subject posture to experiment with different
poses. While we did not collect our data from physical humans, we use the SMPL
model, which is derived from real humans. SMPL is the most employed model
in academia and industry for its realism and simplicity [25].

Input. Figure 1 depicts our dataset. We obtained the 3D meshes, 6000 female
and male subjects in pose zero and pose one (total 12000 meshes), from the
neural anthropometer dataset [13].

Using the current standard method to employ a render engine to produce
the mesh corresponding images, we simulate the cinematographic technique of
tracking back (sparsely and densely varying the camera distance to the mesh),
as follows.
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Fig. 1. Our curated dataset. We augment the NeuralAnthro dataset, containing images
of female (left) and male (right) subjects in pose zero (arms stretched to the sides) and
pose one (arms lowered) taken with a camera at a fix distance, by rendering photos
with sparse and dense camera distances (center). Note that the subjects appear nearer
or farther in the images. All instances are 200× 200 pixels grayscale images displaying
a single subject.

Sparse camera distance: back tracking by placing the camera at distances
4m, 5m and 6m.
Dense camera distance: back tracking by randomly placing the camera
between distances 4,2m and 7,2m.

In total, we synthesize 72000 pictures from the 12000 meshes. The images
correspond to meshes of a specific gender and a definite pose, taken at specific
camera distance with respect to the subject.

Supervision Signal. While the data scarcity problem is the major challenge
in HBDE, another problem is measurement inconsistency. There is no consensus
regarding the correct manner to define a specific measurement, let alone several
of them. The problem arises even when HBDs are automatically computed by 3D
scanning technologies [20], making manually corrections unavoidable. The united
method introduced by [13] with Sharmeam (Shoulder width, right and left arms
length and inseam) and Calvis (Chest, waist and pelvis circumference plus
height) allows us to resolve the inconsistency issue because it provides a proper
method to calculate eight HBDs. Additionally, it agrees, to a large extent, with
anthropometry and tailoring.

4.2 Neural Anthropometer

The NeuralAnthro is a small, easily deployable CNN that we use to conduct our
experiments. We use the same experimental setting as in the original paper [13],
i.e., we train for 20 epochs and use mini-batches of size 100. We report results
based on 5-fold cross-validation. We minimize the mean squared error between
the actual and the estimated HBDs using stochastic gradient descent with a
momentum 0.9; the learning rate is set to 0.01.
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5 Results and Discussion

For the presentation of the results we use the following abbreviations: shoul-
der width (SW), right arm length (RAL), left arm length (LAL), inseam (a.k.a.
crotch height ) (I), chest circumference (CC), waist circumference (WC), pelvis
circumference (PC) and height (H). Average MAD (AMAD) and Average RPE
(ARPE) are both represented by a capital A. The figures we present are inter-
esting in several ways. Due to space restrictions we can not discuss exhaustively
all their aspects. Therefore, we examine the most salient results.

Fig. 2. Effect of gender on HBDE. Left: we display Mean Absolute Error (MAE) in
mm; right: Relative Percentage Error (RPE).

5.1 Effect of Gender

We start our discussion by evaluating the network performance when the input
are images from humans of a specific gender in pose zero or one. We define
training with two gender as unisex training and gender training when the input
are subjects of a specific gender. Figure 2 shows the results.

Like [8], we observe that height estimation is more accurate in unisex train-
ing, compared to gender training (RPE 1.58 unisex training reported in [13] vs.
gender training 2.85 female and 2.95 male).

For the network, it is considerably more difficult to estimate female gender
training SW than male gender training SW. Although female gender training SW
MAE is lower than male gender training (12.63mm vs. 16.07mm), the inverse
relation can be observed, when considering RPE (7.37 vs. 3.93).

Curiously, regarding the effect of gender, the CNN and humans appear to
estimate height differently. Unlike [16]’s results, Fig. 2 shows that the female
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height estimation error (RPE 2.85) is lower than male (RPE 2.95). Perhaps it is
not surprisingly, that this relation holds for inseam as well (RPE 3.86 vs. 4.35).
With the exceptions of these two HBDs, the RPE of estimating other HBDs is
larger for female as for male subjects.

5.2 Effect of Pose

Figure 3 presents the breakdown of the estimation error when we train the net-
work individually with images of humans in pose zero and pose one (multi-pose
training). Surprisingly, the network estimated shoulder width more poorly when
the subject was in pose one as in pose zero (RPE 6.4 vs. 6.0). One would expect
that estimating SW would be easier when the subject is in pose one, because the
arms are lowered, and, therefore, the shoulder joints could be easier recognized.

Fig. 3. Effect of pose on HBDE. Left: we display Mean Absolute Error (MAE) in mm;
right: Relative Percentage Error (RPE).

5.3 Effect of Camera Distance

The most interesting finding was that the network is able to accurately estimate
all HBDs independently of the camera distance to the person (ARPE 3.04, 3.03,
2.96, 3.57 and 3.11), when training with sparse camera distance 4m, 5m and 6m
and randomly chosen camera distance respectively. This fact challenges intuition,
e.g., contradicts current research claiming that the network can only correctly
estimate height if the evaluation is performed for a particular camera distance [4].
But this finding is in accordance to when humans estimating height as reported
in preliminary work [16] (Fig. 4).
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Fig. 4. Effect of camera distance on HBDE. We placed the camera at distances −4 m,
−5 m and −6 m, and randomly distances sampled from −4,2 m to −7,2 m with respect
to the subject. Top: Relative Percentage Error (RPE); bottom: Mean Absolute Error
(MAE) in mm.

5.4 Quantitative Comparison to Related Work

Although we did not aim to present a method that outperform SOTA estimation
methods, we discuss comparative quantitative results for completeness. Basically,
we compare to NeuralAnthro’s [13] original results, the best baseline results
(Baseline I = 2) on ANSUR data in [4], a recently published study on height
estimation from real images by humans [19], and the ANSUR II allowable error.

We have been eminently cautious in comparing our results in the task of
human body dimension estimation. Several reasons hinder a fair comparison
and constitute a major obstacle to advance the field.

First, in the literature, Mean Absolute Error (MAE) and Mean Absolute
Difference (MAD) refer to the same error quantity. Also, Relative Percentage
Error (RPE) has not been consistently reported. RPE is important because
human body dimensions are not in the same scale. For instance, probably 40mm
MAE, say, account for a lower height estimation error (better performance)
as for head circumference error (worst performance). Besides MAD and RPE,
estimation performance has been reported by Mean ± Std. Dev and success rate
[31], seemingly Expert ratio. This inconsistency in reporting results complicates
significantly the comparison with other research. Second, most method’s input
are 3D, therefore, inadequate for comparison to 2D methods.

Third, we require that methods’ result has been reported persistently in the
literature. Neither we compare to results reported online that are not longer
available, nor to results that has been used for comparison but we were not able
to locate in the original cited paper. Last, in the literature, different datasets
have been used for comparing. This might render previous and this compari-



Effect of Gender, Pose and Camera Distance on HBDE 187

Table 1. Comparison to four related methods. We compare estimation performance
in terms of MAD error in mm. We do not present HBDs that are not comparable
(na: not applicable). Minimal errors are bold and we emphasized ANSUR II allowable
error. Additionally, we enclosed in parenthesis our experiment setting that achieved
best estimation results.

Method SW RAL LAL I CC WC PC H

Baseline (I = 2)
[4]

na na na na 29.1 37.9 21.6 na

NeuralAnthro
[13]

12.54 12.98 13.48 12.17 25.22 27.53 25.85 27.34

Our
experiments

11.93
(6 m)

13.30
(6 m)

12.9
(6 m)

22.05
(6 m)

25.93
(6 m)

27.39
(−4.2;−7.2) m

23.28
(6 m)

24.75
(6 m)

Humans
observing real
images [19]

na na na na na na na 64.0

Humans,
ANSUR
(Allowable error
ANSUR II) [22]

na na na 10.0 14.0 12.0 12.0 6.0

son counterproductive. For example, see ANSUR [22] App. G for an extensive
account on comparability limitations.

Table 1 shows the comparison. The input to Baseline is not images (like
ours) but height and weight. However, that research does establish a conceptual
baseline: HBDE methods should estimate body measurements with higher accu-
racy compared to regression. This statement should not be categorically inter-
preted. Methods requiring images as input without any other information are
more challenging and, therefore, might exhibit less accuracy. As it can be seen,
NeuralAntro estimates more precisely RAL, I and CC as the regression baseline,
when applicable, and all of our experiment settings. This might happen because
NeuralAnthro was trained and evaluated with fixed camera distance. The net-
work probably found more difficult learning when trained with three different
camera distances. Nevertheless, being SW the most difficult HBD to estimate,
our experiment with one camera distance at 6m manifests the best estimation
performance. Moreover, our experiment setting with randomly selected camera
distances shows the best WC estimation performance.

As the authors indicate in [19], height estimation by humans exhibits poor
performance. The cause is, probably, that the persons estimated the HBD from
real images, which is the input with highest complexity, compare to synthetic
controlled data.

Estimation error of all HBD lies over the ANSUR II allowable error, but the
fact that the NeuralAnthro is a small CNN could indicate, that by incrementing
the size of the network, the estimation performance could be improved as well.
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6 Conclusions and Future Work

In this paper, we assessed the performance of a neural network employed to
estimate human body measurements from images. To that end, we augmented
our recently published dataset containing images of female and male subjects
in two poses, with images of these subjects synthesized using different camera
distances with respect to the subjects. We trained a CNN with two genders,
two different poses and sparse and dense camera distances. After training we
evaluated the network performance in terms of MAE and RPE.

The CNN estimated HBDs of male subjects more accurately than those of
females. The shoulder width predictions exhibit a surprising pose dependency.
The width is estimated more correctly for subjects with arms spread out to the
side (compared to subjects with lowered arms, where the contours of the shoul-
ders are more pronounced). In contrast to our expectations, network performance
decreases only slightly when perceiving humans from a range of (camera) dis-
tances instead of a fixed distance; given that the person is completely visible in
the image. In general, shoulder width is the most difficult HBD to estimate.

6.1 Future Work

An important question that needs to be answered is why the estimation is, in
general, highly accurate (errors are reported in mm). Exploring to what extent
synthetic data is representative of the real HBDs would contribute to understand
this phenomenon. Increasing the level of realism of the images would probably
have the strongest effect in HBDE. Also, investigating the minimum amount of
data for conducting HBDs with reasonable accuracy, would help determining
bounds to collect a plausible real dataset, therefore, alleviating the data scarcity
problem.
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Abstract. Dealing with fashion multimedia big data with Artificial
Intelligence (AI) algorithms has become an appealing challenge for com-
puter scientists, since it can serve as inspiration for fashion designers and
can also allow to predict the next trendy items in the fashion industry.
Moreover, with the global spread of COVID-19 pandemic, social media
contents have achieved an increasingly crucial factor in driving retail
purchase decisions, thus it has become mandatory for fashion brand
analysing social media pictures. In this light, this paper aims at pre-
senting StyleTrendGAN, a novel custom deep learning framework that
has the ability to generate fashion items. StyleTrendGAN combines a
Dense Extreme Inception Network (DexiNed) for sketches extraction and
Pix2Pix for the transformation of the input sketches into the new hand-
bag models. StyleTrendGAN increases the efficiency and accuracy of the
creation of new fashion models compared to previous ones and to the
classic human approach; it aims to stimulate the creativity of design-
ers and the visualization of the results of a production process without
actually putting it into practice. The approach was applied and tested on
a newly collected dataset, “MADAME” (iMage fAshion Dataset sociAl
MEdia) of images collected from Instagram. The experiments yield high
accuracy, demonstrating the effectiveness and suitability of the proposed
approach.

1 Introduction

Fashion industry has grown into one of the biggest segments of the economy in
the world, evaluated at 3 trillion dollars as of 2018, characterizing two percent
of global GDP.1 Fashion brands face a regularly changing consumer inclination
1 https://fashionunited.com/global-fashion-industry-statistics/.
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in fashion as more fashionistas and teenagers explore new outfits to refill their
wardrobe and improve their style. This prompts for the need for fashion design-
ers to create up-to-date, trendy designs and patterns to satisfy the arbitrary
preferences of the consumers. Social media use has been constantly growing over
the recent years and has become a decisive element of the online shopping and
clothing trend tracking experience. In fact, nowadays, approximately 74% of cus-
tomer use social media to make purchase decisions [4]. This aspect is also due
to the fact that influencers achieved higher network engagement than celebri-
ties, thanks to their ‘subject’ expertise for related fashion product categories.
Designers sometimes take inspirations from different sources to conceive their
unique works, such as from their own personal life experiences, variation of mix-
and-match styles, and creative works by other designers. Notwithstanding, to
maintain with the continuous change consumer preference in fashion and style,
the creation of more fashionable outfits and designs would be essential.

With the current advancement of Artificial Intelligence (AI) and with its
deep learning (DL) subset algorithms, domain involving creativity and art can
be strengthened by these advanced models. In fact, the traditional 3D rendering
pipeline can produce beautiful and realistic imagery, but only in the hands of
trained artists. The idea of shortening the traditional 3D modeling and render-
ing pipeline started from image-based rendering techniques. These techniques
focus on re-using image content from a pool of training pictures. For a limited
range of image synthesis and editing scenarios, these non-parametric techniques
allow non-experts to author photorealistic imagery. In recent years, the idea
of direct image synthesis (without using the traditional rendering pipeline) has
gotten significant interest because of promising results from DL architectures
such as Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANs).

Regarding this context, in this work StyleTrendGAN is presented, a novel
custom deep learning framework able to generate new fashion items. The goal of
StyletrendGAN is not to replace designers but to help them by providing more
references and inspiration, and by creating adequate models that can ease their
work and provide customers with delightful and sophisticated designs. Style-
TrendGAN consists of two phases: firstly, a Dense Extreme Inception Network
(DexiNed) [17] has been chosen to process the images in order to obtain their
edges. The resulting images were then separated into ground-truth images and
their relative sketches. Then, they are divided into train and test sets and fed
to the Pix2Pix network [9], to obtain new bag models with the application of
textures.

StyleTrendGAN has been evaluated on a newly labelled dataset of images
containing handbags collected from Instagram. “MADAME” Dataset comprises
of 55.087 pictures which show handbags. The dataset has been manually labelled
by human annotators in 10 classes of bags, thus providing a more precise dataset.

All in all, we can thus summarize the main contributions of this paper as
follows:
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– development of a generative framework that improves user’s shopping expe-
riences by developing an AI framework that can assist fashion designers in
their work;

– Our proposed model by creating new items is a way for effective future trend
prediction;

– a new challenging dataset of images containing 10 different bag classes col-
lected by Instagram, hand-labelled with ground truth and publicly available
to the research community.

This paper is structured as follows: Sect. 2 gives an overview of the back-
ground knowledge of related studies; in Sect. 3 there is a detailed description of
the methods and the entire workflow together with the required materials; Sect. 4
presents an explanation of the results obtained accompanied by conclusions in
Sect. 5.

2 State-of-the-Art

Many studies have been conducted in recent years in the fashion field as well as
in its trend over time [1], given the massive production of fashion items and its
increasing global relevance. An overview on datasets and DL methods available
in the fashion world is provided in [14].

Different approaches have been developed, mainly with the implementation
of different types of Generative Adversarial Networks [5]. GarmentGAN [18] uses
two GANs to transfer garments with the purpose of try-on. It uses a two-stage
framework consisting of a shape transfer network that learns to generate a seman-
tic map (given the image of the person and desired fashion item), and an appear-
ance transfer network that synthesizes a realistic image of the person wearing the
garment while preserving finer semantic details. In 2017, Jetchev et al. introduced
Conditional Analogy Generative Adversarial Network (CAGAN) [10], which was
one of the first works to allow to learn the relation between paired images present
in training data, and then generalize and generate images that correspond to the
relation, but were never seen in the training set. To discern the changes in color,
texture and shape from one another, Yildirim et al. [23] proposed an improve-
ment on traditional GAN approaches, by customizing conditional GANs with
consistency loss functions. Namboodiri et al. [15] improved CAGAN by rework-
ing the U-Net generator architecture, along with the usage of a combination
of ReLu and Leaky ReLu activation functions. Another challenging task which
regards the use of GANs in the fashion fields is about overlaying an item on a
model with an arbitrary pose. The approach followed by Pandey, N. et al. [16]
introduced Poly-GAN, a new conditional GAN which directly generates gar-
ments on the human pose instead of adapting it to the body shape. Xintong
Han et al. [6] worked on the same application by following a different procedure.
In particular, they analyzed the limits of GANs in relation to their ability of
applying realistic deformations to the garment. For this reason, they focused
their attention on the development of VITON (virtual try-on network). Related
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works for the virtual try-on approach include MG-VTON [3], which uses a Warp-
GAN to warp clothes to human structure and CP-VTON, which implements a
Geometric Matching Module and a Try-On Module for clothes fitting. Other
articles presented a novel application of GANs to generate new clothing starting
from requirements specified by the customers [20] or by a simple description [25].
Similarly, the work of Texture GAN developed in 2017 by W. Xian et al. [21]
followed the same objective. Users “drag” one or more example textures onto
sketched objects and the network realistically applies these textures to the indi-
cated objects. Obviously, these approaches require large texture datasets and
even user intervention. FashionGAN [24] uses cGAN to allow users to input a
fashion sketch and a fabric image to receive an image of the fabric applied on
the garment from the sketch.

A different GANs application is the one followed by Liu et al. [12] whose aim
was to study the combination of clothing attributes for outfit matches to gener-
ate outfit composition. Hsiao et al. [8] instead, proposed an outfit improvement
challenge by making minimal edits without changing the properties of the fash-
ion model with the aim of making the existing outfit more fashionable. Recently,
a work by Jiang et al. [11] proposed a new method to create new clothing styles
from an image and a single or multiple style images; they proposed two fash-
ion style generator frameworks: FashionG for single-style generation and a spa-
tially constrained FashionG (SC-FashionG) framework for mix-and-match style
generation.

In 2015, S. Xie and Z. Tu [22] developed a new edge detection algorithm,
Holistically-Nested Edge Detection (HED), which performs image-to-image pre-
diction by means of a deep learning model that leverages fully convolutional neu-
ral networks and deeply-supervised nets. HED automatically learns rich hierar-
chical representations (guided by deep supervision on side responses), important
to resolve the challenging ambiguity in edge and object boundary detection. They
implemented this framework using the publicly available Caffe Library, building
it on top of the publicly available implementations of FCN and DSN. Later, in
2018 S. Niklaus gave a personal re-implementation of Holistically-Nested Edge
Detection using PyTorch.2 This approach has proven to give back thick and poor
quality edge detection, even with blur. Furthermore, some edges were left out,
so it could be considered not so useful for the aim of this work. Dense Extreme
Inception Network (DexiNed) was implemented in 2020 by X. Soria et al. [17];
this is the network of choice for this work. It is an improvement over HED, as it
can generate thin edge-maps, avoiding missed edges at the same time.

Considering the state of art in this context, StyleTrendGAN comprises a
Dense Extreme Inception Network (DexiNed) [17] and the Pix2Pix network [9],
to obtain new bag models with the application of textures. With respect to
the above mentioned state-of-the-art works, our approach has been applied on
MADAME, a newly labelled dataset of images containing bag coming from social
media, specifically on Instagram.

2 https://github.com/sniklaus/pytorch-hed.

https://github.com/sniklaus/pytorch-hed
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Fig. 1. StyleTrendGAN workflow.

3 Materials and Methods

This section introduces the overall framework of StyleTrendGAN as well as the
dataset used for evaluation. The framework is depicted in Fig. 1 and comprises
two main components: DexiNed [17] for sketches extraction and Pix2Pix [9] for
the transformation of the input sketches into the new handbag models. Further
details are given in the following subsections. StyleTrendGAN is comprehensively
evaluated on MADAME, a publicly available dataset collected for this work.
The details of the data collection and ground truth labeling are discussed in
Subsect. 3.2.

3.1 Deep Generative Models

As already stated, DexiNed [17] is chosen as the edge detection network. It
introduces a new Convolutional Neural Network (CNN) architecture for edge
detection, capable of generating thin edge-maps, without missing edges. Unlike
the other state-of-the-art CNN based edge detectors, this model has a single
training stage, but it is still able to outperform previous models in the usage of
edge detection datasets. Moreover, DexiNed does not need pretrained weights,
and it is trained from scratch with fewer parameters tuning. The result of edge
extraction is given as input to the Generative Adversarial Network in order to
obtain the desired output. In particular, the Pix2Pix network [9] is adopted, as
it follows a totally random and automatic approach, often obtaining surprising
results. Figure 2 shows an example of sketches extraction has been implemented
with the DexiNed.

The generations of new handbag models has been implemented with a
Pix2Pix network [9]. It is basically a Conditional GAN to map edges to photo.
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Fig. 2. An example of sketches extraction with DexiNed.

Unlike an unconditional GAN, both the generator and discriminator observe
the input edge map. This method differs from prior works in several architectural
choices for the generator and discriminator: for the generator a “U-Net”-based
architecture has been used and for the discriminator a convolutional “Patch-
GAN” classifier has been used, which only penalizes structure at the scale of
image patches.

U-Net is an encoder-decoder architecture with skip connections between mir-
rored layers in the encoder and decoder stacks. This approach has been followed
because, for many image translation problems, there is a great amount of low-
level information shared between input and output and it would be desirable
to shuttle this information directly across the net. For example, in the case of
image colorization, the input and output share the location of prominent edges.
PatchGAN tries to classify if each N × N patch in an image is real or fake. We
run this discriminator convolutionally across the image, averaging all responses
to provide the ultimate output of D. It has been demonstrated that N can be
much smaller than the full size of the image and still produce high quality results.
This is advantageous because a smaller PatchGAN has fewer parameters, runs
faster, and can be applied to arbitrarily large images.

3.2 MADAME Dataset

The “MADAME” dataset (iMage fAshion Dataset sociAl MEdia) consists of
55.087 images collected from Instagram. To collect the images, it is implemented
a social media crawler algorithm that is able to search images starting from cho-
sen keywords or hashtag. Since our aim was to generate new bags, our social
crawler retrieves raw information from Instagram. The classes defined are: back-
pack, Belt bags, Bucket bags, Clutch bags, Mini bags, Cross-body bags, Shoulder
bags, Tote bags, pochette and bowling bag.

Figure 3 shows examples of MADAME dataset and Table 1 reports the num-
ber of pictures for each class.
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Fig. 3. Example of two handbags (clutch and bowling bag) in the dataset.

Table 1. Number of images for each class of MADAME dataset.

Class # of images

Backpack 4778

Belt bags 3673

Bucket bags 3689

Clutch bags 6890

Mini bags 5239

Cross-body bags 5798

Shoulder bags 7096

Tote bags 6553

Pochette 3267

Bowling bag 8104

The dataset was then fed to the DexiNed network, to obtain the correspond-
ing sketches. At this point the sketches were separated from the ground-truth
images. Both groups were then divided into 80% for the training set and 20%
for the test set, preparing them for the usage with Pix2Pix GAN, maintaining
the sketches-to-original images correspondence.

3.3 Performance Metrics

The objective of a Conditional GAN such as Pix2Pix can be expressed as:

L = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z)))] (1)

The generator tries to minimize this objective against an adversarial discrimi-
nator that tries to maximize it.

4 Results and Discussion

In this section, the results of the experiments conducted on MADAME Dataset
are reported. Two types of Learning Rate Scheduler have been tested: Linear
and Cosine. The former makes the LR decay linearly as the epochs pass while
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the latter is a type of scheduler widely used in computer vision that generally
gives better results [13]. Its function is so defined:

nt = nT +
n0 − nT

2
(1 + cos(

π

T
)), (2)

where t ∈ [0.T], nT is the target rate at time T and n0 is the initial learning
rate.

Three different configurations for the hyper-parameters were set, as reported
in Table 2.

Table 2. Experiments settings

Hyper-parameters First configuration Second configuration Third configuration

N◦ Epochs 350 500 500

Batch size 8 8 8

LR 0.0002 0.0002 0.0002

LR scheduler Cosine Cosine Linear

Graphics of the loss trend during training with the first Fig. 4, second
Fig. 5 and third Fig. 6 configuration of hyper-parameters are reported. It can
be observed that the loss trend of the generator is decreasing in all the three
experiments, as it should be. In the first graphic it could be seen that at the
350th epoch the generator loss (G L1) value is over the value of 10. Instead, in
the other two graphics, it could be seen that, as the number of epochs increases,
the trend tends to decrease until it reaches values below 10, particularly with
the linear LR scheduler.

On the other hand, the discriminator loss is always close to zero. This is due
to the fact that the generator has not yet learned to fool him correctly.

Fig. 4. Loss over time of the first training

To assess the goodness of the proposed method, three metrics have been
used: Inception Score (IS) [19], Fréchet Inception Distance (FID) [7] and Kernel
Inception Distance (KID) [2]. Results are shown in Table 3.
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Fig. 5. Loss over time of the second training

Fig. 6. Loss over time of the third training

Table 3. Experiments results

Metrics First configuration Second configuration Third configuration

IS 0.178 0.877 1.209

FID 186.938 17.8 1.68

KID 2.87 1.773 0.0938

The results reveal how the third configuration (500 epochs and Linear LR
scheduler) has proven to be the most effective in terms of all the metrics used.
The only underwhelming result is the Inception Score, which is pretty low for
all the configurations; it has to be noted, though, that is not a reliable metric
in this case because, as pointed out in [2], it uses ImageNet dataset for score
evaluation, so it has problems when the dataset domain is not present in the
ImageNet classes, as it is in this case.

Even though the results are good, some tests showed noisy and blurred out-
puts. This is due to the limited number of images of MADAME dataset. By
increasing the cardinality of the dataset and the number of epochs and looking
for a better combination between the starting learning rate and his scheduler,
even better results could be obtained with this method.
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Fig. 7. Qualitative results of StyleTrendGAN

Some qualitative results of StyleTrendGAN are shown in Fig. 7. Starting from
the edge-oriented images obtained as output from the DexiNed, Pix2Pix takes
them as input and generates new bags as final output, with surprising results.

5 Conclusions and Future Works

This paper aimed at improving the state-of-the-art models in the fashion field,
by proposing StyleTrendGAN a deep generative framework that achieves good
results in new handbag models generation. As a matter of fact, DexiNed proved
to be the first DL-based approach able to generate thin edge-maps from hand-
bags images. Experimental results and comparisons with previous approaches
shows the validity of DexiNed, outperforming them when evaluated in other edge
oriented datasets. The results obtained with Pix2Pix suggest that Conditional
adversarial networks are a promising approach for edges-to-photo translation
tasks. In addition, these networks proved to be able to adapt to the task and
data at hand, which makes them applicable in a wide variety of settings. During
the development of the work, this approach turned out to match well sketches
with the original handbags from which they were extracted.

Obviously, this paper could be considered as a starting point for the devel-
opment of multiple future works. A possible improvement challenge could be
trying to obtain good results even when the match between sketches and origi-
nal images is not guaranteed or when the dataset images increase in complexity.
In fact, it could be interesting to improve this work by considering more complex
images with a different background or even with the presence of people or other
objects depicted in them.

Other future works could see the implementation of such a model into a
Decision Support System; furthermore, it could be interesting to extend the
scope of the model outside the handbags area.
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Abstract. Gender recognition from images is generally approached by extract-
ing the salient visual features of the observed subject, either focusing on the facial
appearance or by analyzing the full body. In real-world scenarios, image-based
gender recognition approaches tend to fail, providing unreliable results. Face-
based methods are compromised by environmental conditions, occlusions (pres-
ence of glasses, masks, hair), and poor resolution. Using a full-body perspective
leads to other downsides: clothing and hairstyle may not be discriminative enough
for classification, and background cluttering could be problematic. We propose a
novel approach for body-shape-based gender classification. Our contribution con-
sists in introducing the so-called Skinned Multi-Person Linear model (SMPL)
as 3D human mesh. The proposed solution is robust to poor image resolution
and the number of features for the classification is limited, making the recogni-
tion task computationally affordable, especially in the classification stage, where
less complex learning architectures can be easily trained. The obtained informa-
tion is fed to an SVM classifier, trained and tested using three different datasets,
namely (i) FVG, containing videos of walking subjects (ii) AMASS, collected by
converting MOCAP data of people performing different activities into realistic
3D human meshes, and (iii) SURREAL, characterized by synthetic human body
models. Additionally, we demonstrate that our approach leads to reliable results
even when the parametric 3D mesh is extracted from a single image. Considering
the lack of benchmarks in this area, we trained and tested the FVG dataset with
a pre-trained Resnet50, for comparing our model-based method with an image-
based approach.

Keywords: Gender recognition · Body shape · Parametric human body model

1 Introduction

Gender recognition has a wide range of application areas, ranging from human-
computer interaction to surveillance systems, as well as commercial developments with
particular attention to retail analytics. For this task, the observation of the face is gener-
ally considered amongst the most relevant element of the body. However, there exists a
large set of additional cues, which can be analyzed so as to infer the gender information.
This includes, for example hairstyle, body shape, clothing, eyebrows, posture and gait,
as well as vocal traits, based on the voice pitch. Such additional features allow for the
recognition through a multi-modal observation, exploring different dimensions, such as
appearance, motion, and sound.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1.Overview of the proposed pipeline. AMASS [12] and SURREAL [24] are characterized by
SMPL [11] parametric mesh; the body shapes are therefore given. The FVG [26] dataset consists
of videos of walking subjects. The parametric mesh is extracted using the SPIN [10] algorithm,
from which the SMPL body shape coefficients are extracted and fed to the SVM classifier.

According to the information used for the classification, the existing gender recogni-
tion literature can be divided into two main categories: appearance and non-appearance-
based approaches. The former leverages the features extracted from human physical
appearance. These features can be static, denoting characteristics that are always present
in an individual [6] (face, eyebrows, hand geometry), or dynamic [9], as body move-
ment, activity recognition, or apparel information, like the detection of clothing and
jewelry. The literature has also explored the analysis of other non-appearance-based
features, extracting for example daily social network data [4]: information such as daily
activities, logging emails, blogs, and handwriting can be used as features for classifica-
tion. Such studies, however, are out of the scope of this work.

We propose a novel model-based approach for gender recognition that consists in
extracting the parametric 3D human body model. The use of a model-based solution
helps resolving the potential ambiguities that might arise when looking at aesthetic and
appearance-based features only. In fact, the key goal of our work consists of using the
SMPL [11] body-shapes parameters, which are invariant to clothing, hairstyle or other
parameters commonly associated to one particular gender. In this way, we ensure that
the model is sufficiently simple and reflects a standardized representation. In literature,
only a few works address this problem using the body-shape information and, to the
best of our knowledge, none of them use the parametric human body model SMPL
[11]. In addition, most of the existing works use 3D human mesh vertices as features,
significantly increasing the computational complexity, since the feature space that needs
to be investigated is very large. In our case, the number of features is shrunk to only
ten features. We also implement a CNN for comparison purposes, to evaluate our work
against image-based methods. To do so, we use a pre-trained Resnet50 [7] and we
perform training and testing on the FVG [26] dataset, comparing the results against
the ones obtained by the SVM, fed with the mesh parameters extracted from the video
sequence.
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The main technical contributions of this work can be summarized as follows:

– We propose an effective descriptor using the SMPL body shape parameter for gender
recognition via a 3D human model. We prove that this type of classification is suit-
able for those datasets that are composed of 3D meshes, as well as videos, exhibiting
the potential for the application in a wide set of use-cases, including video surveil-
lance, robotics, and biometrics.

– We show how our classifier, with a reduced feature space, improves the results
obtained by other model-based solutions proposed in the literature.

2 Related Work

Gender Recognition from Body Shapes. In literature, only a few works address the
problem of gender classification using the body shape information. In fact, while 2D
image data can be often misleading due to camera view point and image resolution, 3D
shape models offer a more comprehensible description of the observed object (subject)
at a negligible incremental cost. The authors in [21] propose a gender recognition solu-
tion based on 3D human body shapes obtained with laser scanning. The paper does not
consider the full body, and the authors use multiple features extracted from the subjects’
chest and torso. Furthermore, the authors assert in the conclusion that their approach
fails in classifying overweight or fully dressed individuals. More recently, other works
focus on the 3D mesh of the human body. The same authors present another research
on gender classification in [22], where they perform the recognition task by considering
the shape landmarks of 3D human body model. The work proposed in [25] considers
the body shape as feature, and the classification relies on the geodesic distance on the
mesh. They discover that the most relevant features are the geodesic distance between
the chest and the wrist, as well as the one between the lower back and the face. The app-
roach proposed in [16], introduces a 2D-vertex-based gender recognition model. The
authors compare the performance of two classifiers, Support Vector Machines (SVMs)
and Extremely Randomized Trees (ERTs). They obtain the most remarkable results by
using as input feature the vertices of 3D mesh and the SVM as classifier, with an accu-
racy of 78%. Using a 3D vertex-based methods makes the feature space of the classifier
very large. Originally, their meshes contained between 67290 and 68300 vertices; this
required a re-sampling (using a uniform probability distribution), to the bottom side,
namely 67290 vertices. Since this number was still very large to be processed, they
extracted the most relevant features by using Principal Component Analysis (PCA),
resulting overall in 350 components.

Gender Recognition from Full-Body Images. In computer vision, gender recognition
from whole-body images is a challenging task because the features extracted may not
be discriminative enough for the classification and because background cluttering may
be problematic. Gender classification has recently been addressed using convolutional
neural networks. In [13], a CNN is trained considering the whole person body (Global
CNN), the upper and then the lower portion of the human body (Local CNN). The Local
CNN of the upper body achieves the highest accuracy because the face of a person is
more discriminative than the rest of the body. This is supported by a feature visualiza-
tion method that shows where the CNN extracts the features on the image. When the
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face is not visible, features are concentrated in the rest of the body. In this case, the
information is achieved from clothing, hairstyle, and body shapes information. Some-
times these features are not enough for accurate classification. This is confirmed also
by Raza et al. in [18], where they propose an appearance gender recognition method
where a deep neural network is used to extract the silhouette of the pedestrian image.
The silhouette is then used as a binary mask to remove the background from the image.
The outcome is fed into a stacked sparse autoencoder (SSAE). The gender is classified
considering three different camera views (frontal, back, and mixed) and they obtain the
lowest accuracy score, as expected, on the back view. The mixed views obtain an accu-
racy slightly lower than the one in the front. The frontal view is in fact more distinctive,
as it contains information extracted not only from the body but also from the face. This
proves that the body features may not be discriminative enough to reach the accuracy
of face features. Ng et al. [13] show that by combining the Global and Local CNN from
the upper part of the body it is possible to obtain a better model, outperforming the
state-of-the-art methods.

Human Mesh Recovery from Natural Images. Model-based human pose estimation
can be faced following two different approaches. Optimization-based methods itera-
tively fit a parametric human body model, e.g. SMPL [11], to estimate the body pose
and shape of the 2D observations, usually 2D joints locations. This solution has been
presented as an alternative to preexisting models coming from the scans of different
bodies in a varied set of poses. With this model, Loper et al. [11] created realistic ani-
mated human bodies that represent different body shapes that deform naturally with
pose and exhibit soft-tissue motions like those of real humans. In contrast, regression
based methods use a deep network to directly estimate the model parameters from pix-
els. Both methods have some pros and cons. Optimization based methods tend to be
very slow and sensitive to initialization. Regression based methods, instead of taking
only a sparse set of 2D location, take into account all pixels values; at the same time,
this leads to a mediocre image-model alignment, and a large quantity of data is usu-
ally necessary for training. Regarding the first approach, SMPLify [3] has been the first
method that automatically estimates the 3D pose and shape of human body. The most
recent works have focused on regression; in fact, since there is a deficiency of images
with full 3D shape ground truth, alternative supervision signals to train the deep net-
works are searched. The majority of the solutions uses 2D annotations including 2D
keypoints, silhouettes, or part segmentation. This information can be used as input [23],
intermediate representation [14,17], and supervision [8,14,17,20,23]. In this context,
the SPIN algorithm [10], acronym of SMPL oPtimization IN the loop, presents a novel
way of tackling the problem, finding a way to use the two methods in a collaborative
fashion.

3 Datasets

Front ViewGait Dataset (FVG). The FVG dataset [26] contains videos of 226 walking
subjects, annotated by gender. It focuses only on the frontal view with three different
near frontal-view angles towards the camera and other variations in terms of walking,
speed, carrying, clothing, cluttered background and time. The 226 subjects walk along
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a straight line of 16m toward the camera. The resolution of the video is full HD and the
height of the person ranges from 101 to 909 pixels. For every subject, 12 videos have
been captured, with different inclination of the camera (-45◦, 0, 45◦) and four variations
of walking pace.

Archive of Motion Capture as Surface Shapes Dataset (AMASS). The AMASS
dataset [12] consists of a collection of 15 MoCap datasets with gender annotation, rep-
resented with a common framework and parameterization. This has been achieved by
converting the MoCap data into realistic 3D human meshes represented by a rigged
SMPL body model, via the Mosh++ method.

Synthetic hUman foR REALDataset (SURREAL). The SURREAL dataset [24] con-
tains 6 million frames of synthetic humans with ground truth pose, depth maps, segmen-
tation masks, and gender information. The synthetic bodies are created using the SMPL
body model. The SMPL parameters are fitted using the MoSh method from raw 3D
MoCap marker data. The synthetic data has been generated rendering the following
pieces of information: (i) a 3D human body model, whose pose was estimated with a
motion capture system (ii) a frame using background image (iii) a texture map on the
body, together with lightning and camera position. All these data are combined together
in order to increase the diversity of the dataset.

4 Approach

The processing pipeline we propose consists of two stages: (i) extraction and prepa-
ration of the features, and (ii) classification. Since we are considering three different
datasets, the pipeline slightly differs depending on which one is being used (see Fig. 1).
In particular, AMASS and SURREAL are characterized by parametric SMPL models;
therefore the body shape parameters are given. For the FVG dataset, instead, an addi-
tional processing stage for features extraction is needed. This is performed by using the
SPIN [10] algorithm, as follows:

– The parameters of the SMPL human parametric model are regressed with a deep
network.

– These regressed values are used by an iterative fitting in order to align the model to
the 2D keypoints.

– The fitted model is used as supervision for the network, closing the loop between
the regression and optimization method.

The SMPL body model provides a function M
(
�β, �θ

)
, that takes as input the body

shape parameters �β and the pose parameters �θ, and gives as output the body mesh
M ∈ R

3N with N = 6890 the number of vertices. The body pose is defined by a
standard skeletal rig, composed by K = 23 joints; the pose is then defined by |θ| =
3 × 23 + 3 = 72 parameters (3 for each joint plus 3 for the root orientation). The body
shapes of different people are represented by the function:
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Fig. 2. Classification Pipeline. The training data are scaled and split in folds. On the training
data the SVM Hyper-parameters are tuned. If the training and testing set belong to the same
dataset, the accuracy of the model is the average accuracy over splits. Otherwise, the accuracy is
calculated on the new testing set.

BS

(
�β;S

)
=

|�β|∑
n=1

βnSn (1)

where �β = [β1, ..., β|�β|]
T , |�β| is the number of linear shape coefficients, and the Sn ∈

R
3N represents the orthonormal principal components of shape displacements. In the

end, the body shape parameters are only ten and they can be defined as the principal
components of the shape variation learned from 3D scans of thousands of people.

In summary, the main steps of the proposed methodology are listed hereafter:

1. The image is cropped, extracting the bounding box around the person using YOLO
[19] as a detector. A bounding box is required by the SPIN algorithm, as it assumes
that the person is centered in the image;

2. The cropped image is passed to the SPIN algorithm that extracts the body shape and
pose coefficients;

3. The ten body shape coefficients are used as features for the classification, and split
into training and test samples, following a cross-validation approach;

4. The training data is scaled and the tuning of hyper-parameters is performed;
5. Finally, the trained model accuracy is calculated.

4.1 Model Selection

In machine learning, we know that tuning the hyper-parameters is a key step, which
allows building a robust and accurate model, preventing over/underfitting. In our imple-
mentation, we use the Grid Search method. We tune two grids: simple linear kernel,
〈x, x′〉 with five possible values of the regularization parameter, C and a RBF kernel
with five different values of γ and four values of C. Since the chosen datasets exhibit
a severe class imbalance we divide the data following a stratified k-fold cross val-
idation; it consists of a variation of the k-fold method, where each fold is composed
approximately by the same percentage of samples belonging to both classes. This allows
us to mitigate the possible effects of gender classification, due to the gender unbalance.
The tuning of the parameters has been done in two steps. First, we calculate the most
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suitable number of splits dividing each dataset in a range of 3 to 10, and, for each of
them, performing a model fitting. The final choice has been done by considering the
number of splits that returns the highest accuracy. The second step consists in tuning
the hyper-parameters and we choose the combination of parameters with the highest
accuracy obtained from the confusion matrix. Finally, we proceed with model training
over our different datasets with the hyper-parameters found. The accuracy of the model
is calculated by averaging the accuracy of each split if the training and testing set belong
to the same dataset, while with cross testing among different datasets the accuracy is
calculated on the new testing set. The classification pipeline is illustrated in Fig. 2. All
the experiments have been conducted on a NVIDIA RTX 3090, using Pytorch for the
network implementation and Scikit-Learn for the SVM implementation.

Table 1. Cross Validation Results. The experiments are conducted with different data splits: for
example [FVG + A] - [A] means that the classifier has been trained on FVG and AMASS, and
tested on AMASS. We also tested the algorithm adding progressively a larger amount of synthetic
samples to AMASS and FVG. For example, [A + Sn] - [A]: n is the ID of the training set
(n = {1, 2, 3, 4}); [A + Sn] - [A] means training on AMASS and SURREAL, and testing on
AMASS. A larger ID number corresponds to a larger amount of SURREAL data.

Experiment # Train # Test # Female # Male Accuracy (%)

[A]-[A] 317 159 68 91 84.23

[S]-[S] 3800 1900 977 923 99.94

[FVG]-[FVG] 5650 1130 415 715 87.38

[FVG + A] - [FVG] 214 79 22 57 83.5

[FVG + A] - [A] 214 104 58 46 95.2

[FVG + S1] - [FVG] 154 79 22 57 83.5

[FVG + S2] - [FVG] 183 79 22 57 86.1

[FVG + S3] - [FVG] 220 79 22 57 83.5

[FVG + S4] - [FVG] 294 79 22 57 84.8

[A + S1] - [A] 383 111 61 50 81.1

[A + S2] - [A] 455 111 61 50 82.9

[A + S3] - [A] 547 111 61 50 84.7

[A + S4] - [A] 730 111 61 50 86.5

5 Results

In this section, we describe the conducted experiments and the corresponding results,
to validate the effectiveness of our classifier using the SMPL body shapes parameters
for gender classification. We perform cross training and testing on three different types
of dataset: synstetic, real and registration scans. In this way we want to demonstrate the
effectiveness of the classifier on different type of data. We investigate the accuracy of
the model when combining real and synthetic data from different datasets. The experi-
mental results are listed in Table 1. The highest accuracy is obtained by the SURREAL
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dataset, as we expected; SURREAL is a synthetic dataset and the body shape parame-
ters have a perfect distribution between −5 and 5, making it a rather simple dataset to
work with. As far as the FVG dataset is concerned, the returned accuracy is 87.38%.
When we train and test on the AMASS dataset, the accuracy of classification decreases;
so, even if this dataset is made of real registration scans, it consists of subject with a
strong diversity in body shape. Instead the FVG dataset consists of real data, but its
accuracy is higher than the AMASS dataset because it is characterized by subjects that
do not strongly vary their body shapes. As far as the wrongly classified samples in
AMASS is concerned, we assume that the performance decreases because the subjects
are characterized by a sparse diversity in body shape. The failures in FVG occur gener-
ally when the subject is very far from the camera, namely exhibiting a reduced number
of relevant pixels. This makes the extraction of the SMPL parameters with SPIN not
sufficiently reliable. We then train and test the AMASS and FVG dataset adding in
the training phase a progressively larger amount of synthetic data (from SURREAL):
as we expected the accuracy increases when the synthetic data grow. As mentioned
previously this is motivated by the fact that the synthetic samples are less subject to
variations, making the classification easier and less prone to be adopted as substitutes
for the real ones in this specific task.

5.1 Comparison with Previous Body Shape-Based Methods

Since the novelty of our work consists in using the SMPL meshes, we could not find
in the literature other works for a straightforward comparison. The available state-
of-the-art papers [21,22,25] use the CAESAR dataset [2] characterized by meshes
extracted through a laser scanner. We could not apply our method to these datasets
because they are not characterized by SMPL mesh. Nevertheless, we still try to pro-
vide a fair comparison, although the differences between the meshes affect the features
extracted for the classification. These features consist of the Geodesic Distances (GD)
[25] between landmarks, which corresponds to the length of shortest path between two
points constrained on the shapes, Normal Distributions (ND) [21] on the chest region,
mesh Vertices Coordinates (VC) [16] and Landmarks Positions [22] (LP). Looking

Table 2. Comparison with previous body shape-based methods. The term RegS stands for Reg-
istration Scans, S for Synthetic Shapes and RealD are Real Data (i.e. video data). Dataset indi-
cates the train/test data,Method and Features the method and features used for the classification
respectively. The results of our solution are listed in the last four rows.

Dataset Type Method Features Train Test Accuracy(%) Pre-processing Feature space Landmarks

CAESAR RegS [25] GD 500 500 96.1 ✗ 11 �
CAESAR RegS [21] ND 1224 1224 96 � 100 ✗

CAESAR RegS [22] LP 1224 1224 98.9 ✗ 219 �
POSER [1] RegS-S [16] VC 450 140 75 ✗ 350 ✗

AMASS RegS Ours SMPL 317 159 84.23 ✗ 10 ✗

FVG RealD Ours SMPL 5650 1130 87.38 ✗ 10 ✗

AMASS - SURREAL RegS-S Ours SMPL 5146 1030 97.8 ✗ 10 ✗

FVG - SURREAL RealD-S Ours SMPL 8987 1123 92 ✗ 10 ✗
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at the methodology more in detail (see Table 2), the previous solutions require land-
mark detection or a pre-alignment process. They also have a much larger feature space.
Instead, our method does not need any landmark or pre-processing step; furthermore,
it has a much smaller feature space, resulting in a much faster computation. It is worth
mentioning that our method can be effective also when using small datasets for training
and testing, when compared to the ones used by the competing solutions. In addition,
the proposed method uses a SMPL mesh that can also be extracted from a single image,
thus it can be applied even when a laser scanner [21,22,25] is not available (e.g. surveil-
lance), giving the solution generalization and scalability properties A fairer comparison
can be conducted looking at the 3D vertex-based method presented in [16]. The authors
achieve an accuracy of 75% using a very large number of features, even after feature
reduction. With this respect, our method attains an accuracy of 87.38%, avoiding any
feature reduction processes (e.g. PCA) since the SMPL mesh shrinks the feature space
to only ten parameters.

5.2 Comparison with Image-Based Methods

In order to prove the effectiveness of our solution, also when compared to image-based
methods, we use a pre-trained Resnet50 and we train and test the architecture on the
FVG dataset. The comparison is summarized in Table 3. The CNN reaches an average
accuracy of 80% in the validation phase. When using the same dataset, our proposed
method reaches 87%. This proves the peculiarity of the body-shape features used in
this work with respect to the common features used by a simple CNN. This is also
proved in [13], where the highest results is obtained when the face of the subject is vis-
ible (80.8%). In [18] they obtained an accuracy of 82.9% on frontal views and 82.4%
on mixed views. In Fig. 3 we can see examples of misclassified subjects by the CNN
but correctly classified by our method considering the body shape parameters extracted
from the 3D mesh. In fact, our solution does not rely on visual features and only consid-
ers the body shape information for gender classification, thus making it robust to cam-
era pose changes, face appearance, and clothing. The last three columns report error in
classification for both CNN and our method, possibly due to light conditions. For this
reason, we made a use of a neutral body model for the incorrect classification samples
only for visualization purpose, since the body model does not alter the values of body
shape parameters.

Table 3. Comparison with image-based methods. We compare our proposed method against pre-
vious image-based works, as well as against the benchmark CNN we have implemented.

Method Dataset View Accuracy (%)

Ng. et al. [13] MIT [15]+APiS [27] Upper frontal body part 80.8

Ng. et al. [13] MIT+APiS Global + Upper frontal parts 82.5

Raza et al. [18] MIT+PETA [5] Frontal 82.9

Raza et al. [18] MIT+PETA [5] Mixed 82.4

Our CNN FVG Frontal all body 80

Our method FVG Frontal all body 87.38
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Fig. 3. Examples of classification output. The first row is characterized by subjects misclassified
by the CNN. The second and third rows represent the classification output of our method. The red
and green borders indicate respectively wrong and good classification output. The correct gender
is indicated by the color of meshes in the third row. (Color figure online)

6 Conclusions

We propose a novel approach for gender classification using SMPL body shapes param-
eters. This is suitable for all those datasets that are characterized by 3D meshes, as well
as videos, exhibiting the potential for the application in a wide set of use-cases, as
video surveillance, robotics, biometrics. Considering the low-dimensionality of the fea-
ture space that allows for fast computation, the proposed approach obtains satisfactory
results, yet adding desirable properties, such as the use of a parametric mesh that pro-
vides a simple and a standard representation, with a number of vertices that is lower
than the one used by competing methods. Our approach outperforms also the results of
image-based competing methods, since the features we adopt do not depend on camera
view, and they are robust to face occlusion. In the future, our goal is to create a new
dataset characterized by SMPL parametric shapes for gender recognition, as well as
the recognition of additional attributes as, for example, age. We plan to use the DMPL
[11] model, that has the same advantages of SMPL model but it considers the body
deformations produced by the body movements and impact forces with the ground.
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Abstract. Gesture recognition allows humans to interface and interact
naturally with the machine. This paper presents analytical and algebraic
methods to recognize specific combinations of facial expressions and hand
gestures, including interactions between hands and face. The methodolo-
gies for extracting the features for both faces and hands were implemented
starting from landmarks identified in real-time by the MediaPipe frame-
work. To benchmark our approach, we selected a large set of emoji and
designed a system capable of associating chosen emoji to facial expressions
and/or hand gestures recognized. Complex poses and gestures combina-
tions have been selected and assigned to specific emoji to be recognized by
the system. Furthermore, the Web Application we created demonstrates
that our system is able to quickly recognize facial expressions and com-
plex poses from a video sequence from standard camera. The experimen-
tal results show that our proposed methods are generalizable, robust and
achieve on average 99,25% of recognition accuracy.

Keywords: Facial expressions · Hand gestures · Real time
recognition · Emoji

1 Introduction and Motivations

Human communication is often a complex combination of facial expressions,
hand gestures and speech, all of which contribute significantly to a spoken mes-
sage [1]. Facial expression is one of the main ways by which human beings
communicate their intentions and emotions. For this reason, Facial Expression
Recognition (FER) is very important and can be used in many applications
such as driver safety, healthcare, video conferencing, virtual reality, and Human-
Machine Interface (HMI) [2–4]. The state of the art of the FER shows that
most of the designed systems perform three phases: image pre-processing, fea-
ture extraction, expression classification. The calculation of the feature vector
describing a facial expression is often based on the landmarks estimated by face
detection algorithms. Classification is usually done by training a learning model.
The method proposed in [5] uses an estimator of 68 facial landmarks and calcu-
lates a feature vector of distance by a selected set of landmarks around mouth
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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area and eyes since muscles in those areas change with facial expressions. The
difference between emotional and neutral feature vectors is considered as final
features to identify emotions using Random Forest Classifier. In the work in [6]
feature vector is constructed using all 68 estimated landmarks and considering
for each: coordinates, the distance from a fixed point and the direction of the
direct line towards the fixed point. Facial expression recognition was achieved
using Support Vector Classifier (SVC). The paper [7] presents the FER method
based on Convolution Neural Network (CNN). Considering the complexity of
the system, for CNN it is necessary to collect a huge amount of data, so that the
trained network has better generalization performance and can reduces over-
fitting. Hand detection plays an important role in hand gesture recognition
for applications such as sign language recognition, Human-Computer Interac-
tion (HCI), driver hand behaviour monitoring and virtual/augmented reality
interaction [8,9]. Gupta et al. [10] proposed a method for the “static hand ges-
ture” recognition based on 15 local Gabor filters, to reduce the complexity, fol-
lowed to a combination of Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) for make system invariant to scale and rotation
problem. Classification of gestures is done with the help of a one-against-one
multiclass Support Vector Machine (SVM). Chen et al. [11] introduced a “hand
dynamic gesture” recognition system from 2D video. First is applied a real-time
hand tracking algorithm, then is calculated the vector of spatial and temporal
features that is as the input to the Hidden Markov Model (HMM) based recog-
nition system. Koh [12] designs a two-stage hand gesture recognition system
(trajectory-based, shape-based) for distinguishes 15 user-defined hand gestures
that are highly representative to Visual Communication Markers (VCMs) such
as emoji. After different steps of image pre-processing and feature extraction, the
classification is performed by Machine Learning (ML) algorithms. Some research
efforts focus on integrating more aspects of communication, such as facial expres-
sion, hand gestures or speech recognition activities [13]. The researchers dealt
with both the extraction phase of the characteristics and the phase of recognition
of the expression or hand gestures using ML algorithms. The drawbacks of the
solutions based on Deep Learning (DL) models are often related to high com-
putational requirements, or specific hardware needs to perform the inferences.
Indeed, research solutions are often time and computational expensive. This rep-
resents the main gap between research state of the art and its applications for
the deployment of services and feasible solutions. Therefore, in our research on
the recognition of complex combinations of facial expressions and gestures, the
recognition phase was carried out using the characteristics calculated by analyt-
ical and algebraic methods. The development of an efficient recognition system
must overcome challenges in the face or hand detection phase such as: the seg-
mentation, in the presence of complex backgrounds in which there are many
objects in an image, the representation of the local form of the hand [14], in
the representation of the global configuration of the body and the modelling of
the gestural sequence [15]. Well-performing face and hand detection models that
also guarantee to be performed quickly in real-time and on mobile devices are
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respectively: MediaPipe Face Mesh [16] and MediaPipe Hands [17], both avail-
able in MediaPipe, an open-source framework for building multimodal and cross-
platform applied ML pipelines. The ML pipeline of the two solutions: “Medi-
aPipe Face Mesh” and “MediaPipe Hands” consist of two real-time deep neural
network models that work together: a detector that operates on the full image
and computes face or hand locations and a 3D face landmark model or 3D hand
landmark model that operates on those locations and predicts the approximate
surface geometry via regression. MediaPipe Hands infers 21 3D landmarks of a
hand, while MediaPipe Face Mesh estimates 468 3D face landmarks. With the
aim to recognize complex gestures, we defined a pool of proper analytical geom-
etry methods on the landmarks estimated by the MediaPipe models avoiding to
lean on further DL models for classification. This allowed the implementation of
a real-time complex gesture recognition system, which can be executed without
high computational or specific hardware requirements.

2 Proposed Method

This paper aims to recognize complex combinations of facial expressions and
hand gestures, including interactions that could occur between the face and
hands. To this end, we defined a set of complex gestures associated to emoji and
implemented a gesture-to-emoji recognition system based on analytical and alge-
braic methods able to process a video flow in real time. Emojis are pictograms
or ideograms used to express emotions through facial images or to describe con-
cepts through images of objects, places, activities, foods, plants, animals. They
are usually introduced to emphasize the message in digital conversations and
social media post sharing. They are used in text communications to emulate
visual cues such as facial expressions, poses and gestures [18]. To recognize hand
gestures, we have taken into consideration: if it is the right or left hand, the
orientation of the hand (vertical or horizontal), the region (palm or back), the
position of the hand in the plane, the bending of the hand, the poses of each
finger (closing, folding) and finally the reciprocal position between the fingers
(dilation, proximity (touch) or crossing). Whereas features extracted from eye-
brows, eyes and mouth have been considered for the facial expression.

2.1 Methods for Recognizing Facial Expressions

To estimate the state of the eye opening (closed, open or wide open) or of the
mouth (closed, ajar, open, or wide open) the most significant landmarks are
selected and the corresponding 2D coordinate values are used to compute the
following AR1 (i.e., Aspect Ratio) metric:

AR1 =

3∑

i=1

di

2dC12

=

3∑

i=1

√
(Pu

i .x − P l
i .x)2 + (Pu

i .y − P l
i .y)2

2
√

(C1.x − C2.x)2 + (C1.y − C2.y)2
(1)
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In particular, we extracted the same number of landmarks around the mouth
and each eye and applied the same equation for the estimation of the closing
degree. Figure 1 shows the landmarks of eyelids, whereas Fig. 2 shows the land-
marks extracted around the mouth. The metric (Eq. 1) is partially insensitive to
the small variations in the proportions of the eyes or mouth that occur between
different individuals, it is invariant with respect to uniform resizing of the image
and rotation of the face in the plane. For the eyes this invariance is obtained
by normalizing the sum of the distances between the contours of the eyelids
with respect to the distance between the corners of the eye (see Fig. 1). Whereas
for the mouth, the landmarks taken into consideration are those relating to the
inner edge and the corners of the vermilion (see Fig. 2). A similar feature was
suggested in [19] to measure the eye blink and for correct recognition a clas-
sifier that takes a larger temporal window of a frame into account is trained.
Instead, in our approach we have empirically established the threshold values
used to determine the appropriate state of opening the mouth or eyes, collecting
the values of the “Aspect Ratio” extracted from several acquisition sessions with
different participants. It has been observed that the value of the metric increases
with increasing eye or mouth opening. The separation values between the states
are determined as the average between two averages of the adjacent states. Inter-
vals of values that define the eye-opening states are determined as follows: less
than 0.5 for closed eyes, between 0.5 and 0.7 for open eyes and greater than
0.7 for wide eyes. Intervals of values that define the mouth-opening states are
determined as follows: less than 0.22 for closed mouth, between 0.22 and 0.55
for ajar mouth, between 0.55 and 0.9 for open mouth and greater than 0.9 for
wide open mouth. Oral commissures are the points where the upper and lower
lips meet, usually known as the corners of the mouth. Happiness and sadness are
detected comparing the positions of the landmarks of the oral commissures with
the are compared with those of the chin and cheek, as detailed in the following
Definition 1 and Definition 2 (see Fig. 3), respectively.

Fig. 1. Landmarks of eyelids (P k
i ) and

of the left and right eye corners (Cj).
Fig. 2. Landmarks of the upper and
lower inner border (P k

i ) and the right
and left angles of the mouth vermilion
(Cj).
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Fig. 3. Landmarks of the oral commis-
sures (Ls), of the cheek (Cks) and of
the chin (Cns) in the left and right side
of the face.

Fig. 4. Landmarks (Cs
1) of the inner

corner of the right and left eye and
landmarks of the lower part of the fore-
head (P s

i ).

Definition 1 (Smiling lips). Ll.y < Ckl.y and Ll.x < Cnl.x , Lr.y < Ckr.y
and Lr.x > Cnr.x

Definition 2 (Sad lips). Ll.y > Ckl.y and Ll.x > Cnl.x , Lr.y > Ckr.y and
Lr.x < Cnr.x

To determine whether a subject has raised or lowered eyebrows, landmarks of
the inner corners of the eyes were selected because these points are stable in the
two eyebrow poses. In addition, landmarks of the lower forehead were selected
because their position varies with the occurrence of the muscular movements
of the eyebrows (see Fig. 4). We have built a metric AR2 robust enough to be
invariant under different factors such as face size or the distance between the
face and the camera. Indeed, as shown in Eq. 2, the sum of the distances between
inner corner eye and points of the forehead is normalized by the distance between
the landmarks Cl

1 and P l
4 (left side) or between Cr

1 and P r
4 (right side).

AR
s
2 =
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d
s
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2
√
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s = l (left side) or s = r (right side)

(2)
A similar metric is proposed by the authors in [5] who have developed a

method to compute, normalize and extract a feature vector which represent
facial emotions that are classified using the random forest-based classification
technique. While in our approach the threshold values are established to deter-
mine the states that indicate the positions of the eyebrows (“normal”, “raised”,
“lowered”) and these are set using the same procedure seen for the other com-
ponents of the face, described above.

2.2 Methods for Recognizing Hand Gestures

For each hand detected by the MediaPipe Hand detector, the characteristics
that describe its configuration are extracted. Then, approaches are proposed to
determine the orientation, the fold, the position in the plane of the hand and
to identify the palm or the back. Furthermore, for each finger, the closure, the
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folding, possible reciprocal position between the other fingers and alignment with
respect to the palm is established.

Orientation: Vertical or Horizontal: To determine the hand orientation,
three fixed landmarks (marked as 0, 9, 13) of the rigid part of the hand are
considered and the coordinate values of these points are compared. Table 1 shows
the various conditions for establishing the orientation of the hand.

Table 1. Conditions for establishing the orientation of the hand. The notation “0.y”
stands for: coordinate y of the point marked as 0.

Hand Region: Palm or Back: The MediaPipe hand detector can distinguish
the right hand from the left one. This information, estimated by the detector,
together with the orientation, assigned by our algorithm, is exploited to deter-
mine whether the palm or the back of the hand is shown. In particular, we
observed that in each orientation of the left or right hand, the point to be exam-
ined corresponds to the metacarpal of the thumb (i.e., landmark 1). We thus
found relationships between the coordinates of this point and the coordinates of
the landmarks of the rigid part of the hand, marked as 0, 5, 9, 13, and 17. We
have noticed that these relationships vary within certain regions of the plane,
thus allowing it to be divided into “slices”. In this way, when the hand is posi-
tioned in the XY plane of the “world” with a certain inclination, the algorithm
assigns to it the appropriate “slice” in which it lies. In particular, for “Orienta-
tion 1” and “Orientation 3”, the x (or y) coordinate of landmark 1 is compared
with the maximum or minimum computed from the set of x (or y) coordinate
values of the metacarpal landmarks, marked as 1, 5, 9, 13, 17. Furthermore, a
similar comparison is performed for the landmark 0, corresponding to the wrist
of the hand1. Figure 5 shows an example of the conditions for the palm of the left
hand positioned in “Orientation 1”. For the hand positioned in “Orientation 2”,
to establish the region (palm or back) the coordinates of the landmarks 0 and
1 are compared, while to determine thumb-up or thumb-down the comparison
is performed between the landmarks 0, 9, and 13. Figure 6 shows an example of
the conditions for the back of the right hand positioned horizontally with the
thumb up or down.
1 maxx = max{1.x, 5.x, 9.x, 13.x, 17.x}, minx = min{1.x, 5.x, 9.x, 13.x, 17.x},
maxy = max{1.y, 5.y, 9.y, 13.y, 17.y}, miny = min{1.y, 5.y, 9.y, 13.y, 17.y},
Max = max{0.y, 1.y, 5.y, 9.y, 13.y, 17.y}, Min = min{0.y, 1.y, 5.y, 9.y, 13.y, 17.y}.
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Fig. 5. Conditions for identifying the
palm of the left hand positioned in
“Orientation 1”.

Fig. 6. Conditions that determine the
back of the right hand positioned in
“Orientation 2”.

Alignment of the Finger with Respect to the Metacarpus: The direction
of the fingers with respect to the metacarpus was analysed to establish the
alignment of the fingers to the palm. Then we calculate the normal to the plane of
the palm formed by two vectors having as extremes, respectively the landmarks 0
and 5 and the landmarks 0 and 17. For each of the four fingers, the unit direction
vectors of the straight lines passing through the reference points corresponding
to MCP and tip were determined. The alignment was examined by calculating
the angle of inclination of the unit vector of the normal with respect to the unit
vector of direction of the finger. We define the hand in the “straight state” when
the four fingers have an inclination of no less than 70◦.

Recognizing the Fingers in the “Closed” State: The thumb is defined
to be in the “closed” state when at least one of its parts (i.e., TIP, PIP, MCP)
reaches the top of the palm region. Whereas the remaining four fingers are defined
in the “closed” state when their tip reaches the palm of the hand. To simulate
this mechanism, the following two Regions of Interest (RoI) have been defined:

Definition 3 (Thumb Closing RoI). Thumb Closing RoI is the region defined
around the landmarks 5, 9, 13, and 17 and having the vertices in the points:
A= (minx, miny), B= (maxx, miny), C= (minx, maxy), D= (maxx, maxy).
Where:
minx =min{5.x, 9.x, 13.x, 17.x} − offset, miny =min{5.y, 9.y, 13.y, 17.y} −
offset,
maxx =max{5.x, 9.x, 13.x, 17.x} + offset, maxy =max{5.y, 9.y, 13.y, 7.y} +
offset.
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Definition 4 (Finger Closing RoI). Finger Closing RoI is the region defined
around the landmarks 1, 5, 9, 13, and 17 and having the vertices in the points:
A= (minx, miny), B= (maxx, miny), C= (minx, maxy), D= (maxx, maxy).
Where:
minx =min{1.x, 5.x, 9.x, 13.x, 17.x} − offset, miny =min{1.y, 5.y, 9.y, 13.y,
17.y},
maxx =max{1.x, 5.x, 9.x, 13.x, 17.x} + offset, maxy =max{1.y, 5.y, 9.y, 13.y,
17.y}.

Therefore, the thumb is in the “closed” state when at least one of its land-
marks (i.e., 2, 3, 4) is included in the Thumb Closing RoI. Each of the four fingers
(thumb excluded) is defined as being in the “closed” state when the landmark
corresponding to the “tip” is included in the Finger Closing RoI. The proposed
approach is invariant to the size, different positions and inclinations of the hand,
and to the distance between the hand and the camera.

Recognizing Fingers in the “Bent” State: Another movement considered
for the fingers is the bending of the three phalanges. To describe this behaviour,
a similar approach to the one described above has been implemented. In fact,
for each finger three regions have been determined: one which includes the land-
marks corresponding to three interphalangeal joints (i.e., MCP, PIP, DIP), the
second innermost which includes two of the joints (i.e., PIP, MCP) and the third
which presents the MCP joint. To define the finger in the “bent” state, at least
one of the three conditions must occur:
– Condition 12: minx ≤ tip.x ≤ maxx and miny ≤ tip.y ≤ maxy

– Condition 23: minx ≤ dip.x ≤ maxx and miny ≤ dip.y ≤ maxy

– Condition 34: minx ≤ pip.x ≤ maxx and miny ≤ pip.y ≤ maxy

Reciprocal Position Between the Fingers: Dilation, proximity and crossing
are the reciprocal position between the fingers. To recognize when the fingers
are two by two dilated, the distance of the reference point MCPi from the line
passing through the points MCPi+1 and TPCi+1 of the adjacent finger was
compared with the distance of the reference point TCPi from the same line. If
the distance calculated from the TCPi landmark is greater than that calculated
by the MCPi landmark, then the pair of fingers is defined in the “dilated” state.
To describe the junction of two fingertips, a region (RoI) has been defined around
one of the two fingertips and then a check is executed to see if the tip of the
other finger belongs to that region. To represent the two crossed fingers, a region
(RoI) around the three interphalangeal joints (TIP, DIP, PIP) was defined on
one of the two fingers, and then it was checked whether the landmark DIP of
the other finger belongs to that region.
2 maxx = max{mcp.x, pip.x, dip.x} + offset, minx = min{mcp.x, pip.x, dip.x} −

offset,
maxy = max{mcp.y, pip.y, dip.y} + offest, miny = min{mcp.y, pip.y, dip.y} − offset.

3 maxx = max{mcp.x, pip.x} + offest, minx = min{mcp.x, pip.x} − offset,
maxy = max{mcp.y, pip.y} + offset, miny = min{mcp.y, pip.y} − offest.

4 maxx = {mcp.x} + offset2, minx = {mcp.x} − offset2, maxy = {mcp.y} + offest2,
miny = {mcp.y} − offset2.
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Interaction Between Face and Hands: the method proposed to analyse the
interaction between the face and the hands is to trace regions (RoI-s) around
specific landmarks of the face, and then map the coordinates of the vertices of
the RoI-s on the image plane. So, when significant landmarks of the hand, also
mapped on the image plane, satisfy the conditions of belonging to these regions,
then a “hand-face” interaction is considered to have taken place. This method
has the characteristic of being invariant to the scale and inclinations of poses.

Head Tilt: the inclination of the head was determined by calculating the angle
(α) between the x-axis of the image plane and the straight line passing through
the two landmarks corresponding to the vertex of the head and the vertex of the
chin. Condition to define the head in the “inclined” state is |α| ≤ π

2.5 .

3 Real-Time Emoji Assignment

The above detailed methods have been implemented in a real-time video analysis
process. At each frame, hands and face landmarks are extracted and related
features are stored, considering the structures detailed in Table 2 and Table 3 for
face (eyebrows, eyes, mouth) and hands respectively.

Table 2. Dictionary for facial compo-
nents.

Keys Values

eyes dict Left close, open, wide open

Right close, open, wide open

State closeLeft, closeRight,
closeTwo, openTwo,
wideLeft, wideRight,
wideTwo

mouth dict State close, ajar, open, wide

State Lips smile, sad

eyebrows dict Left normal, raised, lowered

Right normal, raised, lowered

State normalTwo, upperLeft,
upperRight, upperTwo,
upLow, lowerLeft,
lowerRight, upperTwo,
lowUp

Table 3. Dictionary for hand gestures.

Objects Keys Subkeys Values

Left Right Orientation 1, 2, 3

Slice 1, 2, 3, top, down

Part palm, back

Finger Closed thumb, first,
second, third,
fourth

True, False

Finger Bent first, second,
third, fourth

True, False

Dilatate True, False

Folded true, false

Tag gesture All Closed,
4 No Closed,
All Bent,
All Stretched,
All Dilatate,
All Together,
Hand Straight

Were selected a large set of emojis and defined the task of assigning the
correct emoji to recognized move. In particular, thirteen facial expression emo-
jis were chosen, thirteen types of hand gestures, collecting 208 hand emojis to
represent the right or left hand, palm or back, and the possible positions. Fur-
thermore, emojis can be displayed according to the inclination of the hand5.
5 For further details refer to the complete set of encoded emojis and related gestures

reported in the supplementary material available at the following link.

http://visiongarage.altervista.org/gesture-to-emoji/SuppICIAP22_emoji.pdf
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To show that the system is able to recognize the possible interactions between
hands and face, 17 moves have also been chosen to be represented with emoji
(see Table 4).

Table 4. Complex emoji and detailed gesture description.

4 Experimental Results

Through our Web Application we tested our solution on real-time videos acquired
by a common webcam, involving 15 people varying age, gender, with different
facial features or proportions of the hands. During the testing each user is asked
to perform multiple sequences of complex gestures selected at random and corre-
sponding to five Categories of Emoji: a single facial expression (Cat.1), a single
hand gesture (Cat.2), two hands (Cat.3), a face accompanied by at least one
hand (Cat.4) and finally an emoji representing the interaction between face and
hands (Cat.5). The time available to carry out each pose is 120 s. If the required
pose is correctly translated to corresponding emoji within this time the matching
has success, otherwise it is considered as failed6. For each Category of Emoji,
the time needed by the participants to achieve success were collected and the
statistics are shown in Table 5. The recorded times and accuracy reflect the level
of complexity of the move to be represented and the skill of the subject in simu-
lating emoji. The user-independent recognition time is very low. Figure 7 shows
for each Category of Emoji six examples of test involving different subjects, with
different background, lighting conditions, camera distance and orientation. It is

6 The video related to a complete test is available on the supplementary material.
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possible to observe how the system is able to recognize complex gestures even
with a very large range of variabilities in real-time. Experiments shown that
our methods for the recognition of expressions and gestures are generalizable,
robust, and achieve on average 99,25% of accuracy.

Table 5. Time performance and accuracy of the recognition system for Categories of
Emoji.

Min (sec.) Max (sec.) Mean (sec.) Accuracy (%)

Cat.1 0,010969 0,87204 1,295784 100

Cat.2 0,020056 8,657423 0,49301 100

Cat.3 0,015962 46,93312 2,268474 98,76

Cat.4 0,03921 48,07147 3,415971 97,53

Cat.5 0,019948 21,2524 1,014331 100

Avg. 99,25

Fig. 7. Examples of complex gesture recognition in real-time for Categories of Emoji.

5 Conclusion

The proposed recognition method is based on the detection models offered by
MediaPipe and consists in recognizing complex facial expressions, hand gestures,
and interactions between face and hands in real-time. With the aim of recog-
nizing complex gestures, we analysed the components of the face and hands in
the various configurations assumed in the different moves. We paid attention to
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some peculiarities of the hand, being able to distinguish the palm from the back,
the orientation and the direction of the hand. We established relation between
the landmarks estimated by the detectors and defined a pool of analytical and
algebraic methods. This allowed the implementation of a system for recogniz-
ing complex gestures in real time, avoiding computational or time expensive
approaches. To show the validity of our approach, we have selected a large set of
emojis and defined the task of assigning the correct emoji to the recognized ges-
tures. Test results obtained from the real-time video analysis process show that
complex gesture recognition system is fast, generalizable to various people and
robust to a large set of variabilities. This work represents a first step toward a
generalizable real-time complex gesture recognition. In the future we could define
a more rigorous evaluation protocol and carry out large-scale experiments.
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Abstract. The realistic generation of synthetic 3D faces is an open challenge
due to the complexity of the geometry and the lack of large and diverse publicly
available datasets. Generative models based on convolutional neural networks
(CNNs) have recently demonstrated great ability to produce novel synthetic high-
resolution images indistinguishable from the original pictures by an expert human
observer. However, applying them to non-grid-like data like 3D meshes presents
many challenges. In our work, we overcome the challenges by first reducing the
face mesh to a 2D regular image representation and then exploiting one promi-
nent state-of-the-art generative approach. The approach uses a Vector Quantized
Variational Autoencoder VQ-VAE-2 to learn a latent discrete representation of
the 2D images. Then, the 3D synthesis is achieved by fitting the latent space
and sampling it with an autoregressive model, PixelSNAIL. The quantitative and
qualitative evaluation demonstrate that synthetic faces generated with our method
are statistically closer to the real faces when compared to a classical synthesis
approach based on Principal Component Analysis (PCA).

Keywords: 3D face synthesis · Generative modeling · 2D regular representation

1 Introduction

In the last two decades, the applications of virtual 3D models have risen exponentially.
Two factors behind the rise are the growth in computational power and the economic ben-
efit derived by simulating physical phenomena employing 3D models. Today, 3D face
models serve many fields including animation of faces [1–3], recognition of expres-
sion [4], and face recognition [5]. For example, realistic faces generation is important
for crowd generation in virtual reality environments [6]. However, the applications are
often limited since face data contains privacy and sensitive information that reduces or
blocks data sharing and aggregation from multiple sources. This poses a limitation to
the generation of realistic 3D faces which can be used in several contexts.

To overcome such limitations, we propose to replace the original dataset with a
synthetic replica and present a compelling solution to the generation of synthetic 3D faces
using a machine learning approach. As a first step, we follow the seminal work of Blanz
and Vetter [7] and register a common reference 3D template into every scan bringing all

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 228–239, 2022.
https://doi.org/10.1007/978-3-031-13324-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13324-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-13324-4_20


Generating High-Resolution 3D Faces 229

raw scans in full correspondence with a common parametrization. The parametrization
is insufficient to generate synthetic scans since the registered template has thousands
of highly correlated vertices. Generation methods should consider this correlation by
finding a low-dimensional decorrelated surface representation. Thus, Blanz and Vetter
[7] reduced the vertex coordinates to a small number of decorrelated scores with a data-
driven approach using Principal Component Analysis (PCA). Sampling new scans with
PCA is then straightforward; however, interpolating in the reduced PCA subspace will
not always result in natural human shapes due to the linear nature of the method. To
overcome the drawbacks of PCA and similar linear methods, deep generative models
based onConvolutionalNeuralNetworks (CNNs) are employed to capturemore complex
non-linear interactions in the data. The current state of the art advances in the field of
geometric deep learning [8] leverage the power of CNNs by adapting them to work on
meshes [9, 10]. Graph convolutions, however, restrict the resolution, and therefore, the
accuracy and amount of surface details of the 3D template.

3D Scan 
Registered 

2D Regular 
Representation

3D2D

128x128

2D3D

2D Regular 
Reconstruction  

3D Scan 
Reconstructed Vector 

Indexes

Latent Maps 32x32

16x16

quantize 

autoregression 3D Synthetic 

encoder

encoder decoder

quantize 

decoder
128x128
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PixelSNAIL

sampling
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condition

decoder

decoder

2D Synthetic 

2D3D

VQ-VAE-2 

Fig. 1. Method’s flowchart. The registered 3D scans are first converted into a regular 2D image
to feed the VQ-VAE-2 autoencoder. The PixelSNAIL later learns a prior over the latent space,
sample novel synthetics codes, decode them into the new geometric images, and, subsequently, to
3D scans.

By choosing the 3Dmesh templatewith vertices connected as a 2Dgrid, our approach
processes 3D meshes as 2D images. This makes the 3D2D mapping straightforward,
enables 2D image synthesis methods, and avoids the challenges of graph convolutions
[11]. Figure 1 shows schematically the solution we adopted, which is defined by two
phases: in the first phase, see the top part of the figure, the method learns a discrete latent
image representation given by a two layer quantized variational autoencoder VQ-VAE-2
[12]; then, in a later stage shown in the bottom of the figure, a powerful autoregressive
network PixelCNN [13, 14] with self-attention [15], called as PixelSNAIL [16] is used
to fit the latent space and sample from it. By employing such a novel pipeline, we
empirically found that our method gives more natural 3D shapes compared to the PCA-
based one. Due to the high variability of plausible 3D human shapes, the subjective
evaluation is not enough to properly assess the quality and diversity of the generated face.
A major challenge is defining a proper surrogate measure that evaluate how “human”
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is a 3D scan. In the literature, two metrics are commonly used to evaluate 3D scans:
specificity [17] measures how close a scan is to the (training) set and diversity [18]
measures the difference between a pairs of scans. In our work, instead of reporting a
single number generated by such metrics, we compare their empirical distributions of
the synthesized scans versus a test set of real faces. This allows us to measure the realism
and diversity of the generated faces in terms of a previously unseen test dataset. The
remaining paper content is structured as follows: the next section gives an overview of
the prior art, Sect. 3 describes the approach for the synthetic generation, in the fourth
section, we present the experiments and the relative quantitative evaluation. Lastly, we
conclude and give acknowledgments.

2 Related Works

In the following, we present various approaches to synthetic head generation. Many
works of research still rely on linear models [19] or multilinear models [20] due to their
simplicity and due to the expansion of 3D Morphable Models [21]. Tran et al. [22]
proposed a robust CNN-based approach to regress the PCA scores from pictures for
face recognition and discrimination. In another work, the multilinear models are used to
transfer facial expression and have the ability to animate faces [20]. While being simple
and easy to train, they do not consider the input geometry. Additionally, a review of
current methods regressing and sampling PCA scores is beyond the scope of the paper.

2.1 3D to 2D Representations

Many 2D representation methods originate from the solution of the rendering problem
which relies on so called UV maps to map 2D texture image on a 3D object. The UV
maps, by definition, provide a bijective mapping from the 3D mesh triangles to their
images on the texture image. In 2002, Gu et al. [23] showed how to optimally cut a
surface and sample it over a regular 2D square grid generating the so-called geometry
image. The problem might be more straightforward for a face geometry since the UV
maps can be created by warping of the 3D templates with a regular grid. Booth et al.
[24] presented a list of possible optimal implementations. Figure 2 shows the selected
regular template geometry for this paper on the left, the geometry image derived from
the grid and a test texture on the middle, and the texture rendered on the template on
the right. As shown in the picture, the main drawbacks of such methods are the artifacts
around the cuts or borders. However, in this example, such artifacts do not conflict with
our requirements for an accurate face model and not a full-head one.
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Smooth Mapping

Boundary Artifacts

Test Texture

Geometry Image

Fig. 2. Template. The face template on the left has a regular (triangular) mesh grid – for visual-
ization purposes the template is half rendered surfaces and half mesh. On the middle top column,
the so-called 128 × 128 geometry image for the facial template, which is naturally derived from
the regular structures of the template mesh, and a test texture to visualize the smoothness of the
UV map. On the right the test visualization with example of boundary artifacts of the UV map.

2.2 3D Face Generation with GANs

Themost common generative models employ Generative Adversarial Networks (GANs)
[25]. Abrevaya et al. [18], investigated the use of Wasserstein GAN [26] to generate
novel 3D faces with the ability to control and modify their expression. However, in our
work, we directly map the input surface into a geometry image, avoiding the need for
a fully connected generator which might not efficiently handle the complexity of the
shapes. Slossber et al. [27] and the extension work in Shamai et al. [28], similarly to our
work, converted the 3D into a 2D regular representation through non-rigid registration
techniques. In Moschoglou et al. [29], the template was mapped using a cylindrical
unwrapping as introduced by Booth and Zafeiriou [24]. While using similar concepts,
our work does not use adversarial training, a key difference that makes our method easier
to train and less affected by the so-calledmode collapsewhich affectsGANarchitectures.

2.3 3D Face Generation with Autoencoders

Apart from generative GANs models, recently, many works have overcome the linear
modeling limitations by using VAEs [30]. For example, Bagautdinov et al. [31] modeled
the face using a multiscale approach for different frequencies of details. Fernandez
Abrevaya et al. [32] exploited the power of CNN-based encoder by coupling it with a
multilinear decoder. In Li, K. et al. [33], a multi-column graph convolutional networks
is designed to synthesize 3D surfaces. They first applied a spectral decomposition of
the meshes and then trained multiple columns of graph convolutional networks. While
these methods are similar to our approach, they also differ as no one uses the quantized
autoencoder with an autoregressive network. Moreover, they do not convert the data into
2D geometry images but directly feed the registered 3D scans.
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3 Method

The definition and registration of the face template are out of the scope of the current
paper. Conceptually, we have followed the method explained in Blanz and Vetter [7, 6]
and have morphed all scans by means of non-rigid registration methods [34, 35]. Amore
detailed description of our parametric models is reported in Gallucci et al. [36]. Since the
face template already has a grid structure of 128×128 vertices, we apply a vertex-based
normalization to map the range of input values into interval [0, 1], and therefore, to
facilitate the follow up processing with the neural networks. The mapping to [0, 1] also
facilitates the normalized xyz facial data visualization of the as rgb (geometry-) images,
see Fig. 2 for an example. The range parameters for each grid vertex were retained for
denormalizing the synthetic images into 3D shapes.

3.1 VQ-VAE-2 with PixelSNAIL

The VQ-VAEmodel is introduced in [37] and it builds on top of the Variational AutoEn-
coder (VAE) [30, 38] by generalizing ideas from classical image compression methods
like jpeg. Given a dataset of observations {x(1), x(2), . . . , x(N )}, the goal of a VAE is to
learn, without supervision, a lower dimensional representation in terms of latent vari-
ables z. It is composed by an encoder E, which map the input image into latent variables,
and a decoder, which reconstruct the image from the compressed representation. In other
words, the decoder network models the joint distribution p(x|z)p(z) while the encoder
models the posterior distribution q(z|x).

In the VQ-VAE framework, the prior distribution is based on K prototype latent vec-
tors {e(1), e(2), . . . , e(K)} of dimensionDwhich quantize the latent mapsE(x), generated
by the encoder. There are exactlyK different latent vectors to choose from, so each pixel
on the latent maps is represented with the nearest quantizing vector. In Razavi et al.
[12] the two layer autoencoder VQ-VAE-2 is presented and trained on ImageNet [39].
The autoencoder is the upgrade of the VQ-VAE to include multiple hierarchical layers
which provide different quantized codebooks at different hierarchies. The decoder then
reconstructs the image using the latent maps conditioning the higher levels, which have
a smaller resolution, to the bottom ones. In the original setup the input 24-bit image with
resolution 256 × 256 was reduced to 64 × 64 bottom map and 32 × 32 top map with
K = 512 = 29 different quantizing vectors of dimension D = 64.

For new data generation we apply the autoregressive model, PixelCNN [13, 14]
with self-attention [15], called PixelSNAIL [16]. In this setup the autoregressive model
can efficiently model the prior distribution of the latent codes, creating photo-realistic
synthetic images. The idea behind the PixelCNN model is to learn the conditional dis-
tribution of the given sequence of random variables. When applied to the latent space,
the latent codes of the whole image are sorted from top left to bottom right to predict
the next code value, which is a discrete probability distribution over the K codes, in an
autoregressive fashion. In our example, the autoregressive model learns the joint distri-
butions of the latent codes on the top layer and then the distribution of the bottom codes
conditioned on the top codes.
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3.2 Metrics for Quantitative Evaluation

Our goal is to provide always realistic synthetic samples, and to achieve it, we visually
inspected the generated scans and selected suitable metrics to prove this statement. The
main idea is to prove that synthetic scans are statistically indistinguishable from a test
set of original scans excluded from training. Before computing the metrics, the scans
need to have identical parametrization corresponding to the 3D template. The identical
parametrization enables a simple distance metric between a pair of scans, defined as the
Root Mean Squared Distance between the corresponding pairs of vertices, after the rigid
alignment of one scan to another [40].

We have employed two derivative metrics used in the literature to evaluate synthetic
scans. The first metric is called diversity and has been introduced by Abrevaya et al.
[18] with the aim to produce a single number measuring the heterogeneity of a set of
scans. The diversity is defined as a distance between a random pair of synthetic scans. In
our work, we compare the empirical distribution of the diversity of 250 generated scans
with the empirical distribution of diversity in 250 original scans from the test dataset.
The second selected metric is called specificity and is defined in Davies et al. [17] for a
scan as the minimal distance to the scans in the training dataset. Similar to the diversity
distribution, we evaluate the empirical distribution of the specificity over 250 synthetic
scans and compare it with the empirical distribution of specificity in 250 original scans
from the test dataset.

4 Experiments

Within this work, we have considered two datasets of registered scans already available
at Philips Research: the SizeChina dataset of 3D head scans [41], and the CAESAR of
full body scans [42, 43] where only the head was extracted. The above data gave us more
than 5000 registered 3D face templates. We augment the face dataset by performing a
symmetric reflection over the y-axis. While in this application we assume that asymme-
tries are normally distributed on the left and on the right of face we do not know if this
is true. Nonetheless, we still believe this augmentation does not hamper the results of
the approach. The dataset was split stratified according to participant id into train 90%,
validation 5%, and test set 5%. We tested and computed the metrics only on the test set
without considering the augmentations. For the sake of experimental reproducibility, we
did not perform any other augmentation neither in training nor in test time. However, we
believe further realistic augmentations would impact and consolidate the results. Nev-
ertheless, we also notice that the current set of scans is enough to achieve the desired
outcome of statistical indistinguishability from the test set.
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PCA WEIGHTS VQ-VAE-2 

Fig. 3. Test set reconstruction mean absolute
weighted error on the left using VQ-VAE-2
and on the middle using PCA. The meshes jet
color-code ranges from blue 0.0 mm error
map to red 1.0mm. On the right the used
vertex weights are shown with color-code
that ranges from 0.0 black to 1.0 white.
(Color figure online)

In our experiments we focus on a two lay-
ers VQ-VAE hierarchy with input grid res-
olution of 128 × 128 and relative latent
maps of dimension 32 × 32 and 16 × 16.
We follow the approach described in Gal-
lucci et al. [44] to find the best combi-
nation of K = [64, 128, 256512], D =
[2, 4, 8, 16, 32, 64] and found out that,
according to reconstruction error, K = 512
is always better than smaller values. Vice
versa for big enough K we notice that
smaller dimension of D provides the best
outcomes. Hence, we used D = 2 for our
finalVQ-VAE-2model.We also reduced the
batch size to 32 compared to the original
implementation for both the autoencoder
and the autoregressivemodel the constraints
of our computational resources. The reconstruction root mean squared weighted error
per participant is 0.29 mm compared to 0.97 mm for PCA and is mostly accumulated
in the areas with higher curvature or with low weights such as eyes, mouth, nostril, and
neck, as shown in Fig. 3. We use vertex weights to improve the results in three different
situations: to facilitate the registration of the raw scans, to maximize the PCA encoding
energy in the face area of interest, andwithin the quantitativemetrics, reported in the next
section, to focus the attention of the metrics on more important facial areas of the model.
Figure 3 shows the errors maps per vertex across the test set population: as expected the
neural network reconstruction outperforms the smaller and linear PCA model – where
we encoded the registered scans in “only” 200 principal components following Gallucci
et al. [36]. To sample a new scan with PCA, we decode a 3D scan from the random
PCA scores, where each score was sampled independently from the respective marginal
empirical Cumulative Density Function (eCDF) computed over all PCA encoded scans.
The above procedure guarantees that the synthetic PCA scans inherit the eCDF from
the original data. Concerning the PixelSNAIL autoregressive model, we used the orig-
inal configuration for ImageNet apart from the batch size, 32 in our example, and total
number of epochs, 420 for both top and bottom hierarchy. The autoregressive models’
validation accuracies in predicting the latent codes after 420 epochs are 0.87 for the top
space and 0.91 for the bottom one. All the models were trained on PyTorch [45] with the
same hyperparameters as in the original implementation (excluding the one explicitly
mentioned above).

Comparing the scans by visual inspection is not a trivial task and often not an
objective metric. However, we believe that it is possible to spot some differences in the
shape distribution between the different sets by looking at the overall scan’s appearance.
We present some scans randomly selected in Fig. 4: the top right shows registered scans
with the relative PCA encoded version on the top left; the bottom scans are synthetic
and generated with our approach on the left and with PCA on the right. The PCA ones
present more variability, or, in other words, more shapes differences compared to the
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other sets. The synthetic scans generated with our approach, from a visual inspection,
present similar shape variability to the original scans compared to the PCA synthetic.
Nevertheless, this is not enough since our approach may simply replicate or clone the
original training data. We test these hypotheses in the following quantitative analysis
proving that the synthetic scans are novel and different from the original training ones.

Fig. 4. Example of facial scans (without selection). A batch of registered scans (top left), same
scans encoded (top right), synthetic scans generated with our approach (bottom left), and PCA
synthetic scans (bottom right).

4.1 Quantitative Evaluation

We have analyzed 2D representations for registered raw versus PCA-encoded vertices
and computed empirical distributions for specificity and diversity metrics. Given V the
vertices of a synthetic scan its specificity S is defined has.

S(V ) = min
t∈T

[∑N
i=1wi‖vi − vti‖22∑N

i=1wi

]1/2
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where t is the index of the training set, N = 128 × 128 = 16384 the total number of
vertices vi ∈ V ,wi ∈ W are the weights for the i th vertex as shown on the right of Fig. 3.

The diversity D of a pair of scans with vertices v1i ∈ V 1, v2i ∈ V
2
is defined as

D
(
V 1,V 2

)
=

[∑N
i=1wi‖v1i − v2i ‖22∑N

i=1wi

] 1
2

.

Specificity Diversity 

Fig. 5. EQuantitative metrics. On the left, the diversity is plotted for each i.i.d. pair and shows
that the PCA distribution is “flatter” as excepted by the linear method. On the right, the specificity
(the minimum distance versus the training set is kept) shows that our approach is much closer to
the test set. Moreover, the specificity also proves that we do not replicate the input training scans
since the minimum distance is markedly above 0 mm – with our approach above 2 mm.

The empirical distributions presented in Fig. 5 show that our approach results in
synthetic faces which are statistically close to the original scans in the test set, unlike the
PCA-based method which shows a flattened diversity distribution and higher specificity.
The figure shows that our approach closely follows the distribution of the test-registered
and -encoded scans, both in terms of diversity and specificity distributions. Moreover,
since the specificity is computed against the training scans, we demonstrate that the faces
generated by our approach are diverse from the training set since they do not collapse
to zero and have a minimum distance above 2 mm. The higher specificity of the PCA-
synthetic scans also confirms the qualitative evaluation, see example scans in Fig. 4, that
PCA-based faces have more extreme characteristics.

5 Discussion and Conclusion

We presented a novel approach that can generate high-resolution synthetic 3D scans
that combine traditional 3D parameterization approaches with the recent VQ-VAE-2
and PixelSNAIL deep learning based generative models. Our approach does not require
the parametrization of the 3D face model and can be directly applied to registered
templates, hence, allowing for a richer generation domain since synthetic scans can
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be outside the PCA linear sub-space. However, the major contribution of our work is
that our method strictly outperforms the linear PCA classical approach and generates
realistic high-resolution scans. We consider this only a first step in proving the validity
of this approach – future work will perform a benchmark versus other state-of-the-art
generative models. One main challenge is the lack of a clear quantitative metric to judge
whether a scan belongs to the “real” class since the proposed diversity and specificity
metrics may not be enough to capture all the relevant shape information. Additionally,
while we believe the two selected metrics are suited for the current evaluation of realistic
human faces, different metrics can be developed in the future. A natural extension of
our approach that can partially solve the metrics problem could combine the 3D shape
synthesis with the photo-realistic texture synthesis adding the rgb to the xyz channels
within the 2D representation.

Acknowledgments. We thank Philips Research for providing access to the datasets of facial scans
and software resources to manage the high-resolution parametric models.
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Abstract. Morra is an ancient hand game still played nowadays. In its more pop-
ular variant, two players simultaneously extend one hand in front of the opponent
to show a number of fingers, while uttering a number from 2 to 10. The player
who successfully guesses the total number of fingers scores a point. Morra can
be defined as a serious game, as it has the potential to positively affect cognition
and to improve cognitive and perceptual skills. Moreover, with its involvement of
many perceptual, cognitive andmotor skills, morra is ideal to test several cognitive
processes. This paper describes aspects of Gavina 2121, an artificial Morra player
that successfully predicts the numbers of human opponents taking advantage of
the limited ability of humans in random sequence generation. This study focuses
on automatic gesture recognition. We developed and tested a system to allow
Gavina 2121 to detect and count in real time the number of extended fingers in a
human hand. The system is based on the open source MediaPipe Hand framework
developed by Google. Our tests indicate that the system is able to accurately rec-
ognize the number of fingers extended by a human hand in real time, both in prone
and supine positions. The system is still imprecise in semi-naturalistic conditions
of an actual morra game, where the fingers of two hands need to be computed
simultaneously. Our test, still in its pilot phase, shows promising results towards a
flexible implementation of an artificial morra player that can sensibly expand the
educational, rehabilitation and research applications of Morra.

1 Introduction

Gaming is an ubiquitous activity that has characterized human behavior in every part of
the world at any historical period. In the last 20 years, there was a growing interest in
the study of beneficial influences of videogames on cognition and emotion [1]. Several
games, oftendefined as “serious games” are currently developedwith the specificpurpose
of positively affecting behavior and cognition [2].While the most of interest is dedicated
to cognitive development and rehabilitation contexts, there is also an emerging interest
in the effect of gaming in the general adult population. In a systematic review and meta-
analysis, Pallavicini and colleagues [3] found support to the hypothesis of a beneficial

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 243–253, 2022.
https://doi.org/10.1007/978-3-031-13324-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13324-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-13324-4_21


244 F. Delogu et al.

role of video gaming on healthy adult in multiple domains of cognition, processing
speed, response time, memory, task-switching, mental spatial rotation and emotion.

There is evidence about positive influences on cognition of non-digital gaming in
general. For example, many studies on board games like Chess, Shogi and Go indicate
that they are effective in cognitive rehabilitation [4] and in improving cognitive and
perceptual skills [5]. It is important to note that the distinction between videogames and
in-person games is often blurred and, by consequence, similar effects can be obtained
in digital and non-digital versions of the same games. For example, most of the popular
board and card games nowadays have digital versions available to the market. Further-
more, there is evidence that serious games have compatible effects in the non-digital
and in digital formats (see for example [6]). Recently, we have seen the emergence of
exergames, which combine the involvement of sensorimotor skills typical of physical
exercise with the power of digital settings [7]. Finally, hand games have been used in
many “serious” settings, like computational thinking education [8] and early childhood
cognitive development [9, 10].

A subset of non-digital games is represented by hand games. Hand games have been
greatly popular in history, perhaps because of their simplicity. In fact, hand games do
not require any particular setting, devices or apparatuses to be played. The most stud-
ied hand game is Roshambo (Rock-Paper-Scissors, RPS), which is a non-cooperative
strategic game that has been used as a non-computerized exergame in cognitive declining
elderly adults [11], to investigate cognitive strategies in schizophrenia [12], to understand
strategic interactions between healthy adults [13]. A game similar to RPS, yet more com-
plex, is Morra, an ancient hand game still played nowadays. In its more popular variant,
two players simultaneously extend one arm in front of the opponent to show a number
of fingers, while uttering a number from 2 to 10. The player who successfully guesses
the total number of fingers shown by the two hands scores a point. From a cognitive
point of view, Morra is a complex activity which involves, and possibly integrates, many
perceptual, cognitive and motor processes. During Morra, while listening and seeing the
numbers presented by the opponent, a player needs to select two numbers, one to be
shown with the fingers and one to be spoken. In order to be successful, a player should
select those numbers in a very careful way: the to-be-shown number should be difficult
to predict and the to-be-said number should be selected in order to target the number the
opponent will show. This requires memory of previously shown and said numbers by
the player and by his/her opponent. Moreover, this involves executive functions [14] to
inhibit the numerals uttered which must always be greater than the numbers of shown
fingers, and a dual-task attentional performance, to simultaneously detect and process
visual (fingers) and verbal (spoken numbers) information. The task also requires an
integration of visual information, with an automatic recall of the arithmetical fact [15]
and the verbal information, which concerns the numbers said by both players which are
compared with the arithmetical fact to decide who makes the point. All these operations,
summarized in the diagram in Fig. 1, are conducted in a very small amount of time (more
than one round per second).
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Fig. 1. A speculative model of the processes involved in each round of Morra playing

Morra analysis can provide a new approach to study the interaction between several
cognitive functions in an ecological setting [16]. Considering its complexity, Morra is
also a good candidate to be included in the category of serious games. The development
of an artificial agent able to play Morra at different levels of expertise against human
opponents is an important tool that can serve several goals in education, rehabilitation,
cognitive training in healthy adults and basic research. In this paper we will focus on the
development of an artificial agent able to play the Morra game against humans.

Previous studies have been published on the development of robots able to play hand
games. In particular, several robots have been developed to play RPS against humans
[17–21].

Morra and RPS are similar in many aspects as they are both zero-sum competitive
games requiring the integration of sensorimotor skills, executive functions, attention
and decision making. However, the two games also differ in many respects. Morra has
a more complicated structure, having a much larger set of combinations to remember,
involving the integration of two sensory modalities to receive the inputs, and requiring
more advanced defensive and attack strategies to master the game [16].

In recent years, Zizi developed the Morra system Gavin 1.0, an artificial agent able
to autonomously and successfully play Morra against a human opponent [22]. Recently,
Gavina 2121, a new implementation based on the experience acquired from Gavin 1.0
has been developed. Gavina 2121 (see Fig. 2) has the ability to playMorra against human
players and also allows the analysis of the behavior of human players in terms of numeric
sequences produced during games.
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Fig. 2. Gavina 2121 plays against a human opponent in a public square in Bitti (Sardinia)

In each round, Gavinamoves its robotic right arm synchronously with the opponent’s
movement, and shows a certain number of fingers. Simultaneously, Gavina, like its
human counterpart, tries to guess the sum of all displayed fingers, the ones shown by
the opponent and by Gavina itself. Gavina’s main objective is to defeat its opponent. For
this purpose, the system tends to show random sequences of numbers while trying to
detect repetition of non-random sequences of numbers shown by its opponents. Gavina
achieves this goal by using a machine learning (ML) system based on a fully automated
Bayesian network, which converges to progressively more accurate predictions. The
fact that Gavina systematically outperforms human competitors supports the theory that
humans are bad randomizers of sequences [23].

The first version,Gavin 1.0,worked as a black box and did not allow the extractions of
the strategies used towin. AsGavina2121 has the additional scope of helping the analysis
of numeric sequences produced by humans, we developed a hybrid system, which is able
to provide information on how the game estimates are produced, a characteristic of the so-
called expert systems.Themost recent implementation ofGavina uses a nondeterministic
version of the n-gram model through a Bayesian network implemented with probability
hypercubes, in a similar way to the Markov model. The system consists of 5 predictors
and an arbiter who decides which predictor is likely to have themost successful choice in
relation to themeasurement of support and confidence. Each predictor focuses on human
number sequences of different lengths and calculates the probability of the repetition
of patterns of 1, 2, 3, 4 and 5 numbers respectively. For example, if the system uses
sequences of 2 numbers to accurately predict the next number of a specific human
player, it means that, in general, that player tend to repeat a certain pair of numbers,
say 2 followed by a 5, and that using this information is for the system the best way to
predict the next number outcome. The choices of the arbiter are recorded and can be
used to interpret human performances.
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The development of gesture and voice recognition is a very important topic in the
development of multimodal interfaces [24]. A fundamental component of a hand game
robotic system able to play against human opponents is the gesture recognition system
used to recognize the hand configuration of the human player in real time. This is not a
simple problem, as human hands during hand games need to be tracked at high speed
with non-blurred images stable enough to allow gesture recognition. In this article we
will mostly focus on the sensing characteristics and how they are integrated with the
computational core and with the actuator skills of the robot.

Previously developed systems [25] used a high-speed vision system (500 fps) to
actively track and recognize the human hand gestures, processing single frames to iden-
tify fingertips located outside a predetermined circular boundary centered on the hand
palm. More recently, a similar system used the Leap motion device and two separate
machine learning architectures to evaluate kinematic hand data on-the-fly to recognize
and segment human motion activity and to classify hand gestures [20]. However, both
these implementations suffer from the use of costly capture devices and do not ensure
sufficient accuracy in finger counts.

In previous implementations of Gavina, we tried different solutions to the gesture
recognition problem in Morra. Our first solution was to use five Hall effect sensors
[26] positioned on each fingertip of the human player and a small magnet positioned
in the center of the palm of the same hand. When the player extends a certain number
of fingers, it creates an unambiguous pattern of magnetic activation in the Hall sensor
system. Specifically, the measurement of the variations of the magnetic fields detected
by each of the sensors returns the exact number played. This method, which in the
experimentation phase proved to be extremely accurate, fails to detect the correct number
of fingers when the human player produces ambiguous bending or extending of fingers.

Other solutions have been provided through the use of systems dedicated to motion
detection, such as kinect and leap motion. However, such attempts suffer from several
limitations due to the dynamics of the game. Specifically, players often rotate their wrist
and tend not to bend or extend fingers completely. Also, the presence of other hands in
the frame, the extremely variable lighting conditions, the variability of hands’ position
in the playing space, would make motion detection technology unreliable in the specific
context of Morra.

Considering the previous attempts, we are currently working on developing a recog-
nition system that can univocally return the number of extended fingers of a human hand
in real time. In this study we describe the pilot implementation of MediaPipe Hands [27]
within our artificial Morra agent Gavina 2121. Our scope is to demonstrate that Medi-
aPipe is a robust, reliable, flexible and easy to implement automatic gesture recognition
system in Gavina 2121.

2 Methods

The hand tracking solutions previously implemented in Gavina required cumbersome
apparatuses or devices. In fact, the magnetic solution described above required a glove
in which to install a magnet and sensors, and the use of additional sensors placed on
the forearm to signal, with the extension of the arm, the temporal proximity of a new
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measurement. Analogously, the use of motion detection devices required the integration
of different devices that are not easy to implement in quasi-naturalistic settings, like
morra tournaments. Therefore, we decided to test a different approach in which the
hand position is captured and tracked without utilizing additional devices like magnetic
systems or motion capture devices. To accomplish this task we used theMediaPipe hand
tracking framework [27]. MediaPipe Hands can predict landmarks on an image or a
video sequence using a pretrained convolutional neural network (CNN) and represent
its prediction on the hand detected by drawing the hand landmarks frame by frame. In
detail, a visual object is passed through a machine learning pipeline that involves two
subsequent models: the Palm Detection Model makes the system able to draw an initial
bounding box of the palm that becomes the next input of the Hand Landmark Model.
Finally, the latter model traces the 21 hand landmarks of the detected hand(s) using a
regressor to decide their positions and draw them on the visual content combined with
a prediction (and a label) of the detected hand(s).

On a practical level, we invoked the constructor of the object-class Hands by passing
the parameters necessary to define the specifics of themodel. As theMediaPipe reference
source suggests, this framework can accept five parameters. From these five, four were
crucial for our purposes during the testing phase of the algorithm: model_complexity
provided the chance to opt for a more complex convolutional network structure by
passing the value 1,max_num_hands allowedus to decide themaximumnumber of hands
that framework must track. Finally, min_detection_confidence describes the minimum
probability to detect the hand(s) in the scene and min_tracking_confidence makes the
user able to set up a value that indicates the probability threshold for tracking successfully
the hand(s). The choice of passing those values to the model was motivated by the
outcomes of the preliminary phases of the algorithm. In fact, we didn’t observe any
substantial differences in the accuracy from changing the parameters.

2.1 Apparatus

For our tests we used aHPProBook 455G2 laptop, a built-in 708879-3C2Webcammod-
ule for image acquisition. We developed our code in Python 3.9 programming language.
For image processing we used real time image acquisition, prerecorded morra from
tobii glasses 2 eye tracker, a sony HDR MV1 video camera and several commercially
available models of smartphone cameras.

2.2 Procedure

Using the framework of Mediapipe hand, which provides 21 landmarks of the 3-d posi-
tion of a hand in real time, we developed an algorithm for finger counting. In the testing
phase we assessed the reliability of automatic finger counting in different conditions.
We concentrated on hand position variability, counting fingers in real time and counting
fingers from recorded videos.

Hand Position Variability: Our first step was to test whether the system could detect
the position of the fingers of a human hand both when the hand is in a prone or supine
position. This test was necessary because Morra players in actual Morra games often
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alternate supine and prone hand positions when extending their fingers in front of their
opponent.

Counting Fingers in Real Time: The second step was to allow the system to count
fingers while displaying random numbers of fingers in real time, with an approximate
frequency of a number per second. This test was necessary to simulate the way Gavina
detects and recognizes numbers of extended fingers in a Morra game against a human
opponent. Specifically, to test if a finger is extended, the system compares the Y coordi-
nates of the distal phalanx (tip of the finger) and the proximal phalanx (the one connected
to the methacarp) from the hand landmarks received from MediaPipe. If the Y coordi-
nate of the distal phalanx is greater than the Y coordinate of the proximal phalanx, the
system will assign the status of “extended” to the finger in analysis. Finally, the system
will count how many extended statuses are present, determining the number presented
by the human player.

Counting Fingers in Images from Pre-recorded Videos: Finally,we tested if the sys-
tem was able to detect and recognize the number of extended fingers on pre recorded
videos ofMorra games. This step was important to assess the possibility to automatically
tabulate data of actual Morra games between two or four human contenders.

3 Results

Hand Position Variability: We tested the ability of the algorithm to detect fingers’
position in prone and supine hand positions (Fig. 3). As in the first tests the software was
unable to detect the numbers in prone hands, we modified the original function and split
the supine/prone hand cases by considering the landmarks of the wrist and the base of the
middle finger and comparing their y-coordinates. MediaPipe demonstrates an accuracy
of 95.7% in palm position detection. Indeed, in our final test, results indicate that our
apparatus is able to correctly detect palm position and fingers with high accuracy that
reflect high scores in finger counts (see next paragraph for statistics).

Counting Fingers in Real Time: Our system counts the number of fingers by compar-
ing Y coordinates of the distal and proximal phalanxes of each of the five fingers and
then counting the number of extended vs. non-extended statuses. Our test indicates that
our algorithm, in a total of 30 trials for prone and supine hand, could achieve 86% and
93% of accuracy, respectively.

Counting Fingers in Images from Pre-recorded Videos: The quality and the modal-
ity of theMorra game recordings was very variable. Specifically, they used smartphones,
video cameras and a mobile eye tracking system to record Morra games from a sample
of college students at Lawrence Technological University. Moreover, Morra games in
an ecological setting have the two hands of the opponents in close spatial proximity
with one another. This makes it very hard for an autonomous recognition system to
distinguish, select and process the two hands in separation. During our tests, both the
variability of the videos and the simultaneous presence of two hands in the same frame,
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Fig. 3. The system shows high accuracy in counting the number of extended fingers in real time
from hands in both supine and prone positions

made automatic finger counting very challenging to the system. The main issues consist
in unsteady camera recording, broad scene focus, poor frame angles. For these reasons,
we splitted the videos to test the model over consistent game sequences where the frames
reproduced a clear choice of the player. By reducing the exposure to those issues wewere
able to investigate howwe can improve the further recordings to prevent the system from
possible distractors and isolate the recordings containing only frames of hands involved
in the game (see Fig. 4).

Fig. 4. Simultaneous detection and tracking of landmarks from two hands in a prerecorded video
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4 Discussion

In this study we tested the robustness, reliability, flexibility and simplicity of imple-
mentation of MediaPipe Hand [27] as an automatic gesture recognition system for our
artificial Morra agent Gavina 2121. Specifically, we assessed the accuracy of automatic
recognition of the number of extended fingers of a human hand byMediaPipe in different
settings: prone and supine hands in real time camera acquisition and with pre recorded
videos.

Our results indicate that MediaPipe is able to count the number of extended fingers
of a human handwith good precision both in supine and prone hand positions making it a
good candidate for implementation inGavina2121.However, the accuracy of recognition
is reduced when the system is detecting finger position from pre recorded videos. In this
case, the presence of two hands in the same frame, the variability of the quality of the
videos and the always different dynamic of the motor behavior of human players makes
the automatic gesture recognition very challenging.

Reliable gesture recognition is of vital importance for our Morra study as it is appli-
cable to several research contexts and experimental paradigms. For example, playing
Morra against an artificial agent allows the setting of a flexible training environment
in which the user can employ different levels of difficulty with which to customize
the robot’s skills. Also, accurate gesture recognition allows telemorra, in which two
human opponents can play Morra against each other online in a virtual setting and have
Gavina as a point counter and referee. Telemorra can be applied to pedagogical and
research contexts especially in cognitive development and rehabilitation settings. Our
Morra agent can be flexibly employed in many contexts, from schools, rehabilitation
centers, experimental psychology and cognitive neuroscience laboratories.

Like other serious games [4, 5, 28], Morra has the potential to positively affect
cognition and to improve cognitive and perceptual skills. Moreover, with its involvement
of many perceptual, cognitive and motor processes, it is an ideal tool to test several
cognitive processes, as well as their development and rehabilitation [16]. An artificial
Morra player can sensibly expand the numerous educational, rehabilitation and research
applications of Morra.

Several steps need to be taken in order to use Gavina at the best of its computa-
tional capability, including increasing accuracy rates of finger counting, the integration
of speech recognition software within the system to automatically recognize spoken
numbers. Also, a virtual reality rendition of Gavina would allow a less complicated
implementation and easier reproducibility than the physical robotic agent.
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Abstract. Digital metric documentation of historical city centers is challenging
because of the complexity of the buildings andmonuments, which feature different
geometries, construction technologies, and materials. We propose a solution for
rapid documentation and classification of such complex spaces using 360° video
cameras, which can capture the entire scene and can be pointed in any direction,
making data acquisition rapid and straightforward. The high framerate during
image acquisition allows users to capture overlapping images that can be used for
photogrammetric applications. This paper aims to quickly capture 360° videos
with low-cost cameras and then generate dense point clouds using the photogram-
metric/structure from motion pipeline for 3D modeling. Point cloud classification
is the prerequisite for such applications. Numerous deep learning methods (DL)
have been developed to classify point clouds due to the expansion of artificial
intelligence (AI) capabilities. We aim to pave the way toward utilizing the convo-
lutional neural network (CNN) to classify point clouds generated by 360° videos
of historic cities. A preliminary case study in a historic city center demonstrates
that our method achieves promising results in the generation and classification of
point clouds, with an overall classification accuracy of 96% using the following
categories: ground, buildings, poles, bollards, cars, and natural.

Keywords: 360° videos · Digital recording · Historic city center · Point cloud ·
Deep learning · Classification

1 Introduction

Historic city centers feature complex geometry, heterogeneous buildings with different
materials and construction technologies, and other elements such as monuments and
vegetation, among others. This paper aims to develop a rapid mappingmethod for digital
documentation and classification. The developed solution for data acquisition relies on
360° videos acquired with low-cost cameras. 360° cameras can capture the entire scene
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using the equirectangular projection, inwhich longitude-latitude coordinates aremapped
to pixel coordinates.

Low-cost 360° cameras are made up of two or more cameras and can be pointed in
any direction, so video acquisition is rapid and straightforward. The relative orientation
of the cameras is known and can be exploited to stitch the various images into a sin-
gle equirectangular projection. Images feature a resolution of about 16–24 megapixels,
whereas videos can be acquired at 5k resolution (5120 × 2880), notwithstanding that a
few camera models already provide higher resolution.

The high framerate during image acquisition allows users to capture overlapping
images that can be used for photogrammetric applications. Moreover, the large field of
view (360°× 180°) ensures overlap between several consecutive frames. The equirectan-
gular cameramodel (also called spherical) is already available in some packages (Agisoft
Metashape, Pix4DMapper, OpenDroneMap) that can produce dense point clouds using
the photogrammetric/structure from motion pipeline for 3D modeling.

After detecting andmatching image tie points, bundle adjustment based on the spheri-
cal cameramodel allows the computation of exterior orientation parameters. Then, dense
point clouds can be extracted using the workflow proposed in [1], in which approximated
EO parameters measured with a mobile phone are used to initialize image matching and
orientation.

The generated dense point clouds are employed in many historical heritage preser-
vation applications, such as historic heritage recording [2]. Classification of point clouds
is a necessary condition for such applications. The emergence of artificial intelligence
(AI) technology sparked the development of numerous machine learning (ML) and deep
learning (DL) methods for classifying point clouds. DL methods can fully automate the
extraction of features and classification of point clouds end-to-end, allowing us to clas-
sify historical city point clouds. The goal of this paper is to pave the way toward adapting
the convolutional neural network (CNN) architecture designed for scene interpretation
to a point cloud generated by 360° videos.

In summary, our contributions are:

• this paper uses 360° videos captured by low-cost 360° cameras and a photogrammet-
ric/structure from motion pipeline for 3D modeling to produce dense point clouds;
and

• the deep learning approach is applied to the 3D point cloud generated by 360° videos
to automatically produce semantic labels for each point of a large-scale historic city
point cloud. Without the need for handcrafted features and labeled data, we achieve
an overall accuracy of 96% on the point cloud generated by 360° videos using the
following classes: ground, buildings, poles, bollards, cars, and natural.

2 Background

The commercial market offers different cameras at variable prices, usually under 1,000
USD. A few professional 360° cameras (such as the Insta Pro 2, with an 8k resolution)
are also available. They offer better image resolution but at the cost of more than 5,000
USD. Such expensive cameras are not considered in this paper.
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Low-cost 360° cameras can be manually carried using an extension pole or be
installed on a mobile platform, such as cars or drones. Nowadays, most cameras also
provide specific software for downloading the acquired frames and performing auto-
matic video stitching. The procedure also works directly on mobile devices (such as
mobile phones or tablets), but the resolution of the resulting video is usually reduced.
Desktop-based applications instead allow users to exploit maximum resolution.

360° videos are mainly used for immersive visualization. Different sharing services
(e.g., Facebook, Visbit, Youtube, etc.) allow users to upload their videos and generate
interactive bubble visualizations. Videos can also be exploited in virtual reality (VR)
headsets. However, this paper aims to use 360° videos for metric applications, especially
for generating dense point clouds with photogrammetric techniques [1].

For the classification of generated dense point clouds, ML approaches [3, 4] begin
by manually extracting various features (e.g., planarity, linearity, perpendicularity, etc.)
from the input point cloud to describe its shape or structure. After extracting the features,
they are incorporated into ML methods such as random forests [5], decision trees [6],
etc. However, such methods necessitate expert knowledge and handcrafted geometric
features for different datasets.

On the other hand, DL methods can fully automate the extraction of features and
classification of point clouds in an end-to-end manner. Various DL methods have been
proposed to process 3D point clouds, which can be divided into two different categories:
indirect and direct methods. The former requires first projecting the point cloud onto
a regular structure (e.g., multiple images [7] or voxels [8]), where convolution opera-
tions can be more easily defined. The latter directly processes raw point clouds using
multilayer perceptron (MLP) [9] or convolution operations [10, 11] techniques. Existing
3D large-scale point cloud datasets (e.g., Semantic3D [12], Paris-Lille-3d [13]) provide
training data for large-scale scene classification, allowing us to automatically classify
our historical city point clouds without the need for manual annotation.

3 Method

3.1 Generation of Point Clouds from 360° Videos

The concept of spherical photogrammetry was introduced more than a decade ago [14,
15]. The main idea is to extend the collinearity equation typical of frame cameras to
spherical geometry. The ray connecting the perspective center with the object points
projects the image points on a sphere. The positions of the points on the arbitrary sphere,
expressed as latitude (ϕ) and longitude (λ) are then mapped on the cartographic plane
with the so-called equirectangular projection that is neither conform nor equivalent by
using the following formula:

x = rλ and y = r0 (1)

with the angles (ϕ, λ) expressed in radiant. The radius of the sphere r (in pixels) can be
estimated as r = h/π = w/(2π), where (w, h) are the image width and height in pixels.
The radius corresponds to the focal length of the camera, due to the characteristics of
the equirectangular projection h = w/2. Starting from those conditions, the collinearity
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equations for spherical cameras can be derived by extending the method for adjusting
geodetic networks based on angular measurements [16].

Nowadays some commercial softwares are supporting the processing of spherical
cameras (e.g., AgisoftMetashape, Pix4DMapper). As an example, inAgisoftMetashape
the camera model is the following one:

u = w0.5 + w
2π tan

−1
(X
Z

)

v = h0.5 + w
2π tan

−1
(

Y√
X 2+Z2

) (2)

where (u, v) are the projected point coordinates in the image coordinate system (in
pixels), w and h are the image width and height in pixels, and X ,Y ,Z are the point
coordinates in the local camera coordinate system.

Even if the background of spherical photogrammetry is well defined, its applications
in some real-world situations may pose some practical issues. Nowadays, spherical
cameras allow video acquisition at a resolution similar to that of static spherical images
(5.7K). The advantage of video acquisition compared with static images is the speed
of the survey. Indeed, the operator has only to walk in the area to be surveyed with
the camera mounted on a selfie stick. Then starting from the collected videos, some
frames can be extracted and processed using the spherical camera model. However, in
the case of long duration videos and paths, hundreds or even thousands of images can be
extracted, making the successive steps of the processing quite time-consuming or, in the
worst situation, the high amount of data may prevent a correct alignment of the photos.

For this reason, some optimization strategies may be set up to speed up those stages.
In this paper, for example, approximated exterior orientation parameters captured with
a mobile phone associated with the low-cost 360° are added in the image adjustment to
reduce the search space of the matching stage only to images that are within a predefined
camera distance. This strategy enables us to reduce processing time while maintaining
the high metric quality of the final results [1].

3.2 Deep Learning-Based Point Cloud Classification

Point Set Convolution. Images have a regular grid structure so that convolutional neu-
ral networks (CNNs) can be adequately constructed and achieve SOTA in many image
analyzing tasks. The points are spatially localized using their coordinates, which share
the same characteristic as an image in that the features are also localized using their
index/coordinates in a grid [10]. This means that point clouds can be classified using the
CNN-based deep learning method.

To establish the correlation between the convolution kernel and the input points,
CNN-based point classification methods (e.g., KPConv [10], ConvPoint [17]) proposed
defining the kernel as an explicit set of points associated with weights.

Kernel Point Positions. Kernel point positions are critical to the convolution operator.
KPConv [10] determines the location of kernel points by aligning an attractive force to
the sphere center point and a repulsive force of each point to the others.While ConvPoint
[17] first randomly samples K locations in a unit sphere and then uses gradient descent
to learn more appropriate positions to continuously optimize the location of the core
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points when training the network. Considering that hyper-parameters are needed in the
KPConv method, we employ ConvPoint as our baseline.

Input Point Patch Selection. A subsampling strategy is essential to select the input point
cloud patch. AsRandLA-Net [18] has demonstrated, sampling strategies such as Farthest
Point Sampling (FPS) are computationally inefficient and are therefore inappropriate for
large-scale point clouds. While random sampling is the most computationally efficient
method, it suffers from information loss. A random sampling method with the number
of previously selected times as a constraint is used when selecting output points. As
illustrated in Fig. 1, the selected points are next utilized to determine their k-nearest
neighbors (KNN) in order to construct the point patches, where KNN is based on the
pointwise Euclidean distances.

Subsampling the input point cloud not only gradually reduces the number of points,
but also increases the receptive fields of the later layers. By stacking convolution layers,
the structure of the CNN can become hierarchical as the later layers can see the points
within the receptive fields of the prior layers.

Fig. 1. Constructing local neighbors of random selected points.

Convolution Operation. A convolution layer is defined as a weighted sum of the input
features. The correlation between the input point cloud patch and kernel points is calcu-
lated by a geometrical weighting function g(·), which takes a set of relative positions rj
of input point to kernel points as input and uses a multilayer perceptron (MLP) layer to
approximate:

g(pj, c) = MLP(pj − c) (3)

where {pj|j < |X |} is a point position in the input point cloud patch X = {(p, x)}, and c
is the positions of kernel points K = {(c,w)}.

Thus, the output feature map y of a point cloud patch X and a kernel K can be
computed by:

y = 1

|X |
∑|X |

j

∑|K |
i

wixjg(rj) + b (4)

where g(·) is the weighting function, xj is the features of point pj in the input point cloud
patch X , and the associate weights of the i-th kernel point are denoted by wi. In this
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function, each output feature is normalized by the input point size |X | to guarantee the
robustness of the network at different point cloud scales.

Architecture. As shown in Fig. 2, the DL-based classification network consists of an
encoder and a decoder. A stack of convolutional layers that compresses and automati-
cally extracts the features of the point cloud in the encoder and a symmetrical stack of
deconvolutional layers as a decoder with skip connections. In the decoder, upsampling
deconvolution layers are used in the decoder to obtain the same number of points as
the corresponding layer in the encoder. Additionally, the features from the encoder and
the decoder are concatenated to pass the features between the intermediate layers of the
encoder and the decoder. Finally, a linear layer is used to make an output dimension that
corresponds to the number of classes.

Fig. 2. The architecture of the ConvPoint network.

Evaluation Matrix. For the evaluation matrix of the semantic segmentation result, we
useOverall Accuracy (OA), Intersection-over-Union (IoU), andMean Intersection over
Union (mIoU) to describe the performance of the used model. OA is used to describe
the number of correct predictions over all points. IoU is used to describe the accuracy
for each class. As shown in Eq. 5, where Intersection refers to the overlay between
prediction and ground truth, whereas Union refers to the union of predicted and ground
truth, and the mIoU represents the average IoU for each class.

IoU = Prediction ∩ Ground Truth

Prediction ∪ Ground Truth
(5)
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4 Case Study

4.1 Dataset – Bassano Dataset

A dataset was acquired in the city center of Bassano del Grappa (VI, Italy) to test the
proposed solution. The area selected for the test is in the northern part of the historical city
center. In particular, the area covers (Fig. 3) the inner court of the Ezzelini’s Castle and
the exterior of the Cathedral of SantaMaria in Colle, the square in front of the Castle that
is currently used as a car parking area, a couple of building blocks in the surroundings of
theCastle characterized by narrow streets, and a part of the tree-lined avenue approaching
the Castle. This area was selected since it presents a variety of architectural and natural
objects typical of city centres (e.g., buildings – including situations typical of hystorical
city centers like towers and belltowers, cars, trees, road signs, electric lines, etc.) and it
allows a complete test of the proposed method for point cloud classification.

Fig. 3. Area surveyed for the generation of the dataset and path followed during the acquisition
in yellow. (Color figure online)

4.2 Acquisition and Post-processing

For the acquisition of the dataset, a 5.7k camera was used. More specifically, an Insta360
One X2 cam was mounted on the top of a selfie stick, exposure was set to automatic
mode, and a 5.7k 360° video at 30 frames per secondwas acquired for the entire areawith
the operator walking along the predefined path. The path was chosen to guarantee full
coverage of the survey area by creating a closed-loop so that a further constraint is added
during image alignment. The total distance covered by the acquisition is about 950 m,
and the time duration of the acquired video is about 25 min. The trajectory provided by
the GNSS receiver inside the mobile phone was synchronized with the image acquisition
to have an initial rough positioning of the camera frames. Image stitching was carried out
by using the software Insta360 Studio 2022 by using the dynamic stitching functionality
available in the software.
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Fig. 4. Image orientation and dense point cloud reconstruction results: oriented images (a); recon-
structed dense point cloud with confidence filter set at 3 (b); and detail of the point cloud for the
Cathedral of Santa Maria in Colle.

Starting from the collected video, a set of equirectangular frames has been extracted
(1 frame per second), resulting in about 1500 frames. The position recorded by theGNSS
receiver of the mobile phone was used as an initial estimate of the camera position (pre-
cision of this initial set of camera poses estimates was set to 10 m). Agisoft Metashape
was used for image orientation and dense point cloud reconstruction (Fig. 4). For the
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processing, a pc with 10th Generation Intel® Core™ i9, NVIDIA® GeForce RTX™
3090, and 128 GB of memory was used. Image orientation, using approximate frame
position, took approximately 10 min. Dense reconstruction, “high” quality, was accom-
plished in 10 h on the whole dataset. The obtained point cloud was filtered to reduce
noise in the data using only dense points with visibility higher or equal to 3. The final
point cloud results in a total of 89 million points.

4.3 Classification

Dataset Settings. The Paris-Lille 3D dataset [13] was acquired by the Mobile Laser
System (MLS) and it contains 38 million points taken from four scenes of two cities:
Paris and Lille. In our training phase, we use a subset of the Paris-Lille 3D dataset
(NPM3D) as our training data to reduce training time. Concerning the fact that the
intensity feature of the point cloud generated by the 360° videos (testing data) and the
data collected by the MLS (training data) are very different, testing the model trained
with the NPM3D dataset on data collected by 360° videos would produce inaccurate
predictions. Therefore, we train the networkwith a normalized intensity feature to reduce
the differences. Let P = {p, x} be the input point cloud, where p denotes the coordinates
and x denotes the intensity feature. Due to the large size of both the training and test
scenes, it is not possible for the network to feed the entire point cloud into the network at
once.We follow the setting inConvPoint and split point clouds into 8mwide blocks in the
horizontal direction, and sample 8,192 points in each block. In addition, the training data
contains 10 coarse classes: unclassified, ground, buildings, poles, bollards, trash cans,
barriers, pedestrians, cars, and natural. We reuse the classes in the NPM3D dataset, in
which we only remove 4 classes that are irrelevant to our dataset: unclassified, trash can,
barriers, and pedestrians.

Network Settings. The hyperparameters (e.g., number of output channels in each layer,
size of output points that pass to the next layer, neighborhood size, and kernel size) of
the network follow the original implementation of the fusion model in ConvNet. With
a batch size of 4, a momentum of 0.98, and an initial learning rate of 10−2, we train
the network with the NPM3D dataset on the Google Colab. At the test time, we used a
batch size of 2 on the CPU.

Classification Results. Table 1 summarizes our results. Experiment results show that
our deep learning method achieves promising point cloud classification results with an
overall classification accuracy of 96%. The overall qualitative classification result of the
Bassano historic city center is reported in Fig. 5. As shown, our classification model is
capable of producing very smooth results on the test point cloud.

Furthermore, the per-class semantic segmentation results in Table 1 demonstrate that
the model is quite efficient in identifying ground, buildings, bollards, and cars. As seen
in Fig. 6, even when point clouds in the category of cars are extremely sparse, we can
still reliably identify the category to which they belong.
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However, since the point cloud classificationmodel does not include a low vegetation
category in the training dataset, the DL model is inefficient for low natural point clouds.
As shown by the per-class result in Table 1 and the qualitative result (see Fig. 7), the low
natural points are incorrectly identified as cars and buildings.

Table 1. Classification results (%) for the Bassano dataset in terms of overall accuracy (OA),
mIoU (mean Intersection over Union), and per-class classification results Intersection over Union
(IoU).

OA mIoU Ground Buildings Poles Bollards Cars Natural

96.3 70.4 100.0 94.7 51.4 82.1 84.8 8.7

Fig. 5. The qualitative classification result of a historic city center point cloud - Bassano dataset.
Different colors correspond to different categories. (Color figure online)

Fig. 6. The qualitative classification results of correctly classified objects: (a) buildings and (b)
cars.
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Fig. 7. The qualitative classification results of incorrectly classified objects (a) low natural
classified as cars and (b) classified as buildings.

5 Conclusion

This article demonstrates how to quickly generate and classify digital metric documen-
tation of complicated historical city centers. We began by collecting 360° videos using
low-cost 360° cameras. The dense point cloud was then generated using photogramme-
try from captured high framerate and overlapping images. Finally, the generated point
clouds were automatically classified, and each point was labeled using the deep learning
method. Without the requirement of labels from the test scene, 96% overall accuracy
was achieved using the proposed macro classes: ground, buildings, poles, bollards, cars,
and natural.

In future work, wewill explore the following aspects: 1) incorporating a subset of the
semantic segmentation results from the test dataset to fine-tune the deep neural network
and further improve the classification results for small objects (e.g., low vegetations); 2)
validating the proposed method on additional historical heritage city datasets and more
detailed classes (e.g., identifying different types of buildings) to further demonstrate the
method’s feasibility.
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Abstract. Tools for HEritage Science Processing, Integration, and ANal-
ysis (THESPIAN) is a cloud system that offers multiple web services to the
researchers of INFN-CHNet, from storing their raw data to reusing them
by following the FAIR principles for establishing integration and interop-
erability among shared information.

The injection in the CHNet cloud database of data and metadata (the
latter modelled on a CIDOC-based ontology called CRMhs [20]) is per-
formed by using the cloud service THESPIAN-Mask.

THESPIAN-NER is a tool based on a deep neural network for Named
Entity Recognition (NER), which will ease the data extraction from the
database, enabling users to upload .pdf or .txt files and obtain named enti-
ties and keywords to be fetched in the metadata entries of the database.

The neural network, on which THESPIAN-NER relies, is based on a set
of open-source NLP models; transfer learning was employed to customise
the Named Entity Recognition output of the models to match the CRMhs
ontology properties.

The service is now available in alpha version to researchers on the
CHNet cloud.

Keywords: AI in natural language processing and cultural heritage
applications · Named entity recognition · FAIR data management ·
Cloud services

1 Introduction

In the framework of the European projects ARIADNEplus and EOSC-Pillar ini-
tiative of the European Open Science Cloud (EOSC) framework, Tools for HEr-
itage Science Processing, Integration, and ANalysis (THESPIAN) was developed
[2]. THESPIAN is a cloud system offering multiple web services to the researchers
of the Cultural Heritage Network (CHNet) of INFN (Istituto Nazionale di Fisica
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Nucleare). The mission of CHNet is to harmonise and enhance the expertise of the
Institute in the field of Cultural Heritage, expertise distributed among many struc-
tures spread over the whole Italian territory. CHNet includes the INFN research
groups whose activity is devoted to the development and application of technolo-
gies for the study and conservation of Cultural Heritage, but it is open also to other
national partners with expertise complementary to that of the Institute and to
international partners engaged in diagnostics in cultural heritage.

The purpose of the THESPIAN platform is to create a complete ecosys-
tem for scientific data and metadata of physical analysis on cultural heritage,
modelled according to the latest ontologies and standards, and to make them
interoperable with data generated by other disciplines and accessible on other
platforms according to the FAIR principles for data: findability, accessibility,
interoperability, and reusability [21].

1.1 The Digital Infrastructure of INFN-CHNet

The Digital Heritage Laboratory (DHLab) of the INFN-CHNet consists of a set
of software services developed targeting the needs of CHNet researchers, hosted
in a cloud environment.

The main goal is to host a cloud service to store raw data and their metadata
regarding scientific analysis on Cultural Heritage through a shared ontology imple-
mented via a web service. After that, each researcher of the network may use and
re-use their data, as well as the available data of all the other researcher of the
network, and analyse such data using a set of web services hosted in the cloud.

This follows the step of the FAIR program in the European Science Cloud
(EOSC) project; the goal is thus to have data which are findable, accessible,
interoperable and reusable [21].

These principles are implemented in the web service THESPIAN-Mask [2,5]
hosted in the CHNet cloud environment. It consists of a web platform for assisted
metadata generation, and a service for persistent storage of scientific data and
their metadata. The tool is tailored on a metadata model based on CRMhs, an
extension of the CIDOC CRM ontology [1], designed for modelling the complex
entities typical of heritage science, developed by INFN and VAST-LAB PIN [5].

The use of CRMhs also makes the information fully interoperable with other
CIDOC-CRM-compatible data, and allows their integration in existing cloud
environments and extended semantic graphs, such as the semantic data cloud
developed by ARIADNE-plus for archaeological data.

The tool we are going to describe in the following, THESPIAN-NER, is a Nat-
ural Language Processing (NLP) tool for automatic Named Entity Recognition
(NER) using two deep learning models based on different techniques, namely a
Convolutional Neural Network (CNN)-based model and Transformer model1. It
allows users to automatically annotate either archaeological documents or scien-
tific reports written in Italian (either .txt or .pdf files), by identifying and labelling

1 For some references about the usage of NER in Cultural Heritage applications, see
[8,13,15,19] and references therein.
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relevant semantic entities in the text, according to the CRMhs ontology used for
describing the metadata. The entities can then be extracted and used for building
custom queries to fetch related records available on the CHNet database, exploit-
ing the NoSQL, JSON-based realisation of the database structure.

The service is based upon two ad-hoc trained neural network: ArcheoNER, for
processing archaeological texts, and hsNER, for Scientific Reports of Analysis
on Cultural Heritage. These models were built using the open-source python
package spaCy [10–12,18] and trained using transfer learning to classify named
entities with custom labels.

Users may upload their .txt or .pdf files, containing their archaeological or
scientific reports, to THESPIAN-NER, and, employing automatic named entity
recognition, automatically extract keywords and their labels, sorted by number
of occurrences in the text, and use them to create custom queries to fetch the
CHNet database for similar entries. THESPIAN-NER offers also a small tool for
extractive summarization of the uploaded text.

The service is under current development at CHNet, and its alpha version is
available for early use on the CHNet cloud.

In synthesis, THESPIAN-NER offers authorised users the possibility of gen-
erating query (semi)automatically on the CHNet database, starting from Italian
written text files of either archaeological or heritage scientific topic, via an user-
friendly web graphical interface; it relies on the two ad-hoc trained DNN models.
The app is deployed as a service in an integrated cloud environment, compliant
to FAIR rules.

2 The NER Model

As previously said in Sect. 1.1, the deep learning model employed has been
chosen from the open-source library spaCy. The first version of the model, from
spaCy v2, was a convolutional neural network (CNN)-based model [11]; the
second version, from spaCy v3, was a transformer model [18]. We apply transfer
learning to train and fine tune these models, and to have our custom named
entity labels as outputs.

Initially, the spaCy v2 library was chosen because it offered three italian-
based pre-trained models; we have employed as base model the largest one,
it core news lg (549 MB), originally trained on the Italian Stanford Depen-
dency Treebank annotated according to the UD annotation [3,4], with four out-
put NER labels: Organisation (ORG), Miscellanea (MISC), Location (LOC) and
Person (PER).

The pipeline of the model is: tok2vec, morphologizer, tagger, parser,
attribute ruler, lemmatizer, ner; it has 500k keys, 500k unique vectors as
word vectors, embedded in a 300-dimensional vector space.

During the development of the alpha-version of the web app, spaCy v3 was
released, adding the Transformer model architecture. It was thus possible to
have a different pipeline: transformer, ner.

It was thus possible to train with transfer learning the two architectures,
compare their scores, and employ the most suitable ones for our needs.
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2.1 The Training Dataset: Archaeological Documents and Scientific
Reports Annotated with INCEpTION

The dataset for the ArcheoNER training consists of 92 Italian-written archae-
ological documents containing 5230 entities, annotated using the open-source
program INCEpTION [16]; the 9 entities to be identified within the text have
been chosen for their relevance in the archaeological sector and according to their
compatibility with top-level classes of CRMhs and the CIDOC CRM ecosystem.
They are (Name, three-letter label, HEX code for HTML rendering2):

Artefact (ART, # 6196A4 ), Site (SIT, # D4AE60 ), Person (PER,
# BF98D0 ), Time span (TSP, # 61A46A ), Activity (ACT, # D12153 ),
Organisation (ORG, # B86F9A ), Place (LOC, # EDE89B ), Period (PRD,
# ABEF70 ), Biological remains (BIO, # 89CBCA )

The dataset for the hsNER training was formed by 43 italian-written scientific
reports containing 5676 entities, annotated again with INCEpTION; in this case,
the labels, chosen for relevance and their compatibility with the CRMhs ontology,
were 15, extending the previous:

Artefact (ART, # 6196A4 ), Person (PER, # BF98D0 ), Time span (TSP,
# 61A46A ), Activity (ACT, # D12153 ), Organisation (ORG, # B86F9A ),
Place (LOC, # EDE89B ), Natural object (BIO, # 89CBCA ), Sample (SAM,
# 8E44AD ), Analysis (ANL, # 909497 ), Material (MAT, # F8C471 ), Method
(MET, # A2D9CE ), Device (DEV, # FADBD8 ), Software (SOF, # E67E22 ),
Result (RES, # 58D68D ).

The scientific reports employed refer to analysis carried out at the INFN-
CHNet node of Florence, LABEC laboratory (Laboratorio di tecniche nucleari
applicate all’Ambiente e ai BEni Culturali, laboratory of nuclear techniques for
environment and cultural heritage) [7]; the analyses in the reports were either X-
Ray Fluorescence (XRF) imaging of Pictorial Artworks or Radiocarbon dating
of various samples, either Natural objects or Artefacts.

In future development, we plan to add two additional labels: Site (SIT,
# D4AE60 ) and Period (PRD, # ABEF70 ), by enlarging the training dataset
to account for reports with such entries.

The Challenges in the Data Harvest: One of the major issues faced in the
creation of the training dataset, for both ArcheoNER and hsNER, is the harvest
of appropriate data.

Indeed, the Italian written documents have to be chosen carefully, since the
main goal of the project is the development of a web service for (semi)automatic
query generation for the CHNet database, where the users (i.e. INFN-CHNet
researchers and collaborators) may employ their written reports on scientific

2 Using the open-source add-on library displacy, is possible to render the annotated
text as HTML, where named entities are highlighted using a HEX colour. Such hex
colour is employed in the web application as a visual aid to users, in order to visually
discriminate entities among NER labels.
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analysis on archaeological and other CH-related items to fetch the database for
similar and/or related analysis entries.

This fact imposes a peculiar constraint on the nature of Italian written doc-
uments we have to employ for creating the dataset. Such constraint strongly
limits the pace at which the dataset size can be increased, thus impacting the
precision reachable by the two models.

Nevertheless, this fact do not constitute an issue. Indeed, as we will remark
later, any sufficiently working model will allow for the creation of a working
AI-powered query generator web service.

2.2 Training and Evaluation of the Model

Table 1. Comparison of the results
of the two ArcheoNER models.

ArcheoNER P R F

CNN 34.63 35.78 35.19

Transformer 30.75 38.94 34.36

Table 2. Comparison of the
results of the two hsNER models.

hsNER P R F

CNN 80.13 63.02 70.55

Transformer 70.91 76.82 73.75

The two models were trained with transfer learning [17], either on the archae-
ological dataset (i.e. ArcheoNER model) or the Scientific dataset (i.e. hsNER).
Starting from the aforementioned spaCy models, we removed the output layer,
inserting our ad-hoc output layer, and trained the model. In the end, we per-
formed the training fine-tuning.

The training was performed using an Intel(R) Core(TM) i9-10900 K CPU
3.70 GHz, and 4× 16 Gb DDR4 3600 MHz RAM.

The scores employed are Precision (P), Recall (R) and F-score (F)3, and are
reported in Table 1 for the two ArcheoNER models, and in Table 2 for the two
hsNER models. In Tables 3, 4 we report the scores divided per entity label for
the ArcheoNER models (CNN and Transformer, respectively), while in Tables 5,
6 we report the scores divided per entity label for the hsNER models (CNN and
Transformer, respectively).

Discussion of the Results: Looking at Tables 1, 2, it is immediate to realise
that the Transformer model performances are strikingly similar to the ones of
the CNN model, furnishing little (for hsNER) to none (for ArcheoNER) improve-
ment. Also, it may seem easy to state that hsNER achieves way better results
than ArcheoNER, whose results are quite far to be good.

3 We recall that

P =
TP

TP + FP
, R =

TP

TP + FN
, F = 2

P · R
P + R

, (1)

where TP are the true positive counts, FP are false positive counts, and FN are
false negative counts.
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Table 3. Results for CNN-ArcheoNER
by labels.

P R F

ACT 41.21 35.19 37.96

ART 34.61 37.96 36.21

BIO 23.91 23.91 23.91

LOC 23.85 24.31 24.08

ORG 28.79 29.69 29.23

PER 32.73 12.95 18.56

PRD 54.09 65.24 59.14

SIT 24.68 17.12 20.21

TSP 36.23 50.78 42.29

Table 4. Results for Transformer-
ArcheoNER by labels.

P R F

ACT 29.61 22.75 25.73

ART 23.33 38.42 29.03

BIO 15.38 30.43 20.44

LOC 37.61 38.17 37.88

ORG 32.89 39.06 35.71

PER 50.24 37.05 42.65

PRD 64.04 62.66 63.34

SIT 20.27 13.51 16.22

TSP 43.04 52.11 47.14

Table 5. Results for CNN-hsNER by
labels.

P R F

ACT 31.58 24.00 27.27

ANL 94.12 72.73 82.05

ART 55.56 38.46 45.45

DEV 83.33 90.91 86.96

LOC 75.00 100.00 85.71

MAT 60.00 90.00 72.00

MET 60.00 27.27 37.50

NAT 70.97 64.71 67.69

ORG 85.71 60.00 70.59

PER 66.67 40.00 50.00

SAM 83.12 50.00 62.44

SOF 100.00 100.00 100.00

RES 90.62 87.88 89.23

TSP 94.83 87.30 90.91

Table 6. Results for Transformer-
hsNER by labels.

P R F

ACT 35.29 24.00 28.57

ANL 58.62 77.27 66.67

ART 62.50 38.46 47.62

DEV 100.00 90.91 95.24

LOC 100.00 33.33 50.00

MAT 69.23 90.00 78.26

MET 38.46 45.45 41.67

NAT 89.29 73.53 80.65

ORG 88.24 75.00 81.08

PER 9.26 100.00 16.95

SAM 79.37 78.12 78.74

SOF 100.00 100.00 100.00

RES 90.91 90.91 90.91

TSP 100.00 96.83 98.39

From the comparison of Tables 3, 4 with Tables 5, 6, it may appear that
the performances of hsNER are better than the ones of ArcheoNER. Instead,
the hsNER may be overfitted to the LABEC scientific reports. In fact, applying
both models to Italian-written documents of different origin (i.e. not on Archae-
ological articles nor LABEC scientific reports), it is possible to notice that the
hsNER performance is worse than the ArcheoNER one. ArcheoNER, instead,
was trained on a more statistically sparse dataset, and thus we have more diffi-
culty in obtaining a good learning scores, which suggest that an enlargement of
the training dataset is at need, for both hsNER and ArcheoNER.
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Nevertheless, the result is not daunting, as previously stated in Sect. 2.1; in
fact, both the models can be employed for the main goal of the project, which was
building a web service for (semi)automatic query generation on CHNet database.

Indeed, both hsNER and ArcheoNER are capable of correctly identifying
the most relevant nominal entities present in the text, which usually are the
most important ones (with their labels) to construct the {key: value} query.
A most performing NER would be able to correctly identify more statistically
uncommon named entities, which are usually less important in the process of
building the query.

It is clear that an improvement on the models must, and will, be planned
in the future: either by increasing the dataset size and quality, changing and
fine-tuning the models, and so on; this will constitute an improvement in the
efficiency of the whole web service, which is now available on the CHNet cloud.

3 The Web Service: AI-powered Queries

Fig. 1. Full-stack architecture of THESPIAN-NER service, and its interaction with
the THESPIAN-Mask service.

The web service THESPIAN-NER comprises a Front-End and a Back-End ser-
vice. The Front-End, client-side service, for uploading text items (in .txt or .pdf
format), via a POST HTTP request to the THESPIAN-NER Back-End, server-
side RESTful API, and to easily compose the (AI-powered) query via the Web
User Interface, and thus, via a GET HTTP request to the CHNet database-
connected Back-End RESTful API, fetch the database (for a pictorial represen-
tation of the service architecture and user-experience-workflow, see Fig. 1).

The Front-End was developed using TypeScript (TS), the JavaScript strict
syntactical superset which adds optional static typing, and bundled using the
open-source web application framework Angular.
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Firstly, users have to upload an Italian-written document; it will be sent
to the Back-End and processed, using the best trained model; after that, the
Back-End replies by sending the annotated document as HTML, a summary of
the text obtained via an extractive summarisation process, as well as the list of
annotated entities as an array. The annotated text is thus rendered on the page
and the named entities found in the text are displayed on the text, divided for
labels and ordered by number of occurrences (see Fig. 2).

Fig. 2. THESPIAN-NER WebApp: User Interface after the Back-End reply.

At this point, users may select named entities to compose their queries by
simple clicks on the User Interface (see Table 8 for a relation between database
keys, their associated CRMhs ontology (Classes, Properties) [20], and the NER
labels); they can either perform a logic OR or a logic AND on the labels. For
example, if the user has selected from the Person (PER, # BF98D0 ) list the
named entity ’Leonardo da Vinci’, he/she may perform the query on the
database with the corresponding {key: value} of {studyObject.author:
’Leonardo da Vinci’}, as visually explained in Table 7.
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Table 7. Example of a match between the annotated entity and the relative MongoDB
query.

label entity

NER PER Leonardo da Vinci

MongoDB studyObject.author Leonardo da Vinci

key value

After their click on the appropriate button, a HTTP GET request is sent
to the THESPIAN-Mask Back-End, which, through the mongoose.js library,
can perform queries on the MongoDB database, and retrieve the entries whose
metadata fields match the composed query.

Table 8. Map between CRMhs ontology Classes and Properties (C, P) and ArcheoNER
labels.

CRMhs Entry (C, P) THESPIAN-Mask JSON key NER label

HS Study Object, has name studyObject.Name ART, BIO

HS Study Object, was created by studyObject.author PER

HS Study Object, has period studyObject.period PRD

HS Period, has start date(has end date) studyObject.periodStart(periodEnd) TSP

HS Study Object, has location studyObject.locationLabel LOC

HS Study Object, was found at studyObject.provenanceLabel SIT

HS Study Object, has owner studyObject.owner ORG

HS Analysis, was performed by analysis.institution ORG

HS Analysis, was performed at analysis.location LOC

HS Analysis, was performed during analysis.startDate(endData) TSP

HS Sample Preparation, used method sample.preparation.method ACT

The THESPIAN-NER Back-End is developed using Python and the open-
source web framework Django, and arranged as a RESTful API, capable of
responding to POST requests (the ones described above). After the file is
received, it is parsed for extracting the text as a string4 and funrished to the
stored model. After the analysis of the text, the results are sent back to the
Front-End user.

The THESPIAN-Mask Back-End is developed using the open-source, back-
end JavaScript runtime environment Node.js; it employs the modular web appli-
cation framework package Express.js, Moongose.js for creating a connection
between MongoDB and Express.js, and the node.js-middleware Multer for han-
dling multipartform-data, which is used for handling uploaded files. The
database employed is the NoSQL database MongoDB (see [2] for more details
on THESPIAN-Mask).
4 Using PyPDF2 for the .pdf parsing.
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The platforms hosting the cloud have a modular architecture based on con-
tainers, i.e. each of the previous services were containerised using Docker.

In front of these an additional container hosts a reverse proxy that acts as
an SSL/TLS terminator and enforces access control policies through a token-
based authorisation mechanism relying on the IAM service [6] developed by the
INDIGO project [9], and based on the OAuth2 protocol [14]. The container archi-
tecture allows easy deployment of the whole cloud service using an orchestrator,
such as Kubernetes.

4 Conclusions and Outlook

THESPIAN-NER, a web service for (semi-)automatic query generation to fetch
the INFN-CHNet database, is currently available in alpha-version on the CHNet
cloud. It relies on the NoSQL, JSON-organised CHNet database and its con-
nection with the ad-hoc developed CRMhs ontology. It relies also on the two
customised, open-source NER models to annotate Italian-written archaeological
text or reports of scientific analysis on cultural heritage. In order to employ the
so-found named entity to build a query, it employs the match between NER
labels, the NoSQL-database JSON metadata entries, and the ad-hoc defined
CRMhs ontology.

The app is containerised and deployed on the CHNet cloud, which employs an
OAuth2-based authorisation mechanism for enforcing connection cyber security.

The two deep learning models, ArcheoNER and hsNER, were customised
from spaCy v3 models, and trained on two ad-hoc datasets, annotated via the
open-source software INCEpTION, employing transfer learning, to recognise
named entities with archaeological and/or scientific relevance.

At first sight, the scores of the two models may appear to be not completely
satisfactory, but their performances are vastly sufficient for the development
goal; of course, it implies that further studies are required for the NER models,
both about varying model architectures, and/or by enlarging ad diversifying the
training datasets.

Nevertheless, these two models allowed us to develop and deploy the web
service THESPIAN-NER, which is currently available in the alpha version on
the CHNet cloud, leaving for the future the goal of tuning the performances
of the models, but offering right now to users easy-to-generate queries on the
CHNet database, via a cloud-based web application.
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Abstract. Mobile Adhoc Networks (MANETs) are utilised in a variety of
mission-critical situations and as such, it is important to detect any fake news
that exists in such networks. This research proposes an Ensemble Based Compu-
tational Social System for fake news detection inMANETmessaging. As such this
research combines the power of Veracity, a unique, computational social system
with that of Legitimacy, a dedicated ensemble learning technique, to detect fake
news in MANET messaging. Veracity uses five algorithms namely, VerifyNews,
CompareText, PredictCred, CredScore and EyeTruth for the capture, computa-
tion and analysis of the credibility and content data features using computational
social intelligence. To validate Veracity, a dataset of publisher credibility-based
and message content-based features is generated to predict fake news. To analyse
the data features, Legitimacy, a unique ensemble learning predictionmodel is used.
Four analytical methodologies are used to analyse these experimental results. The
analysis of the results reports a satisfactory performance of the Veracity architec-
ture combined with the Legitimacy model for the task of fake news detection in
MANET messaging.

Keywords: Computational social system · Content · Credibility · Ensemble
learning · Fake news detection · MANET

1 Introduction

Given the mission-critical nature of Mobile Ad hoc Networks (MANETs), it is essen-
tial to predict fake news in its messages. According to [7] Mobile Ad Hoc Networks
(MANETs) can be defined as a group of mobile devices that are wirelessly connected
to each other to form a dynamic, independent, and self-configuring network.

MANETs are used in a variety of applications, especially in a social setting by
the employment of message sharing amongst network members. As stated in [20] the
social and commercial benefits of MANETs exceed the technical issues associated with
them making any deployment of MANET technology for mobile applications a suc-
cess. MANETs are deployed in situations where infrastructure networks are near-to or
impossible e.g., war, post-disaster management and recovery and rural settings.
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An example of the application ofMANETs can be seen in the current Ukraine-Russia
War. In the currentwar, cyberattacks targetingUkraine’sCritical Infrastructure have been
one of the main methods utilised by Russia. As stated by [21] Russia has systematically
attacked certain critical infrastructure in Ukraine to ensure that the people of Ukraine
have little to no access to timely, accurate and legitimate information about the war. As
such with Ukraine’s connectivity to the world compromised, a MANET can be used
to allow the Ukrainian people the opportunity to communicate with each other and the
outside world and have access to information about the situation in their country. This
example will be used throughout this research to illustrate the importance of this work.

One of the major problems that MANETs face is the spread of fake news and the
inability to detect it. As stated in [12] in MANETs, one class of attack is known as a
fabrication attack where the attacker sends fake news to its neighbours in the network.

According to [18] fake news is defined as any news article that is intentionally and
verifiably false. Predicting and detecting fake news is a challenge. As stated in [9] many
consumers of online news, especially via social media, internet-enabled platforms and
message sharing networks ingest and spread fake news without cross-referencing and
verifying the news posted to such websites. Hence automated credibility validation of
news is a necessity.

A major methodology used for the prediction of fake news is the analysis of the
features of fake news to determine if any relationships exist amongst these features.
According to [28] fake news detection is subdivided into four categories based upon
the viewpoint of the detection strategy. These viewpoints are (i) knowledge-based (ii)
style-based (iii) propagation-based and (iv) credibility-based.

As stated above credibility based fake news detection focuses on detection techniques
based upon the established reputation of the news publisher. Credibility based detection,
a part of context-based detection, pays particular attention to the trustworthiness of the
news publisher as trust and fake news are intimately intertwined [3].

Alongside credibility based fake news detection, content-based fake news detection,
a sub-genre of style-based detection is also utilised to identify fake news. As stated in
[27] fake news is comprised of both the physical and non-physical content.

One major problem that computational social systems can be applied to is the cred-
ibility and content detection of the spread of fake news in MANET messaging. Compu-
tational Social Systems attempt to model and reproduce human reactions via algorithms
and processes to recognise patterns in behaviour.

Hence, to accomplish the task of fake news detection, this work proposes the
ensemble-learning based Veracity architecture. The Veracity architecture was intro-
duced by [16]. Veracity investigates how does a publisher’s social behaviour relates
to the legitimacy of his content. Veracity is a combined credibility and content based
multidimensional computational social system for fake news detection that focuses on
the capture, computation, and analysis of news publisher credibility on MANETs.

For prediction, the Legitimacy ensemble learning model is used. Legitimacy is a
unique ensemble learning model for the task of credibility based fake news detection.
This model consists of two native classification models namely, a Two-Class Boosted
Decision Tree and a Two-Class Neural Network. The Legitimacy model follows a
pseudo-mixture-of-experts methodology of combining ML techniques. To accomplish
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the functionality of a gating model, Logistic Regression is implemented to combine the
output of the two main models. The Legitimacy model was proposed by [15].

Given the relationship between social behaviour and machine learning, this work
combines both of the above architectures and proposes the unique contribution of an
Ensemble-Based Computational Social System and the five associated algorithms. This
system employs computational social systems, using an ensemble model, in an attempt
to detect fake news in MANET messaging.

The contributions of this study are as follows:

1. The design of an Ensemble-Based Computational Social System
2. The investigation of the effect of ensemble learning on the performance of

crowdsourced feedback-based prediction of fake news
3. The application of the Ensemble-Based Computational Social System to that of Fake

News Detection in MANET Messaging
4. The discussion of the architecture and evaluation results of the Ensembled Based

Computational Social System

The remainder of this paper is structured as follows. Section 2 presents the related
work in this field. Section 3 describes the Legitimacy ensemble model whilst Sect. 4
presents an understanding of the Veracity architecture and the VerifyNews, PredictCred,
CredScore,CompareText andEyeTruth algorithms. Experiments are conducted inSect. 5
using the algorithms and the results of these are discussed in Sect. 6. Section 7 concludes
the paper.

2 Literature Review

Prior research in fake news detection forMANETmessage sharing has been very sparse.
Most of the prior research efforts have focused on Fake News Detection in the MANET
subcategory of Vehicular Ad Hoc Networks (VANETs).

2.1 Vehicular Ad Hoc Networks

According to [19], there is a need for trusted information sharing in future vehicular
networks to provide a platform for road safety and news sharing. To address this prob-
lem their work provides the Three-Valued Subjective Logic (3VSL) as a solution. Their
system utilises roadside units and trust calculations. It ignores the knowledge and cred-
ibility of the message which can help to further identify the fake news. Finally, their
system allows the message to spread before it can conclude that the news is fake.

As stated in [23], road safety and traffic efficiency in the Internet of Vehicles (IoV) is
severely impacted by the unabated spread of fake news. To this end, they proposed Quick
Fake News Detection (QcFND) in their paper, which operates as a network comput-
ing framework. Their framework employs Software Defined Networking (SDN), Edge
Computing, Bayesian Networks and Blockchain technologies. Their scheme requires
a constant connection to the roadside units and infrastructure network for fake news
detection as detection is done at a central location.
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2.2 Computational Social Systems

An example of computational social intelligence at work is provided by [11] which
states that presently enormous amounts of information are generated on the Internet in
the field of emergency management research, especially on public social platforms and
this information is not being fully utilised. Their solution raises the profile of the need for
greater emphasis to be placed on the field of emergency decision making. Their solution
does not take into consideration the credibility of the publisher which has a heavy impact
on the quality of the news.

According to another similarwork proposed by [11]when news is posted to a network
in the area of automatic reading and decision support systems, one of the tasks executed
is the automatic segmentation of words. Though the text classifier of their solution seems
similar to that proposed in this work, their work does not make use of the crowdsourced
feedback that helps to validate the decision made by the system.

2.3 ML-Based Fake News Detection

Prior research in fake news detection and machine learning has been conducted.
As stated in [2], ensemble learning has been used previously in FakeNewsDetection.

According to [2] In the current fake news corpus, there have been multiple instances
where both supervised and unsupervised learning algorithms are used to classify text. In
their paper, they propose a solution to the fake news detection problem using themachine
learning ensemble approach and validates the use of such a solution. Their work focuses
only on textual features and does not make use of the credibility features of the news.

According to [17], most of the existing machine learning based fake news detection
schemes are composed of classical supervised models. In their paper, they attempt to
develop an ensemble-based architecture for fake news detection. The individual models
are based on Convolutional Neural Networks (CNN) and Bi-directional Long Short-
Term Memory (LSTM). The representations obtained from these two models are fed
into a Multi-layer Perceptron (MLP) for multi-class classification, but this model is
computationally expensive.

3 Legitimacy Ensemble Model

The Legitimacy ensemble model discussed in this research has been proposed by [15].
As described in [15], their research analyses the performance of an ensemble learning
model for fake news detection based uponmodels proposed byMicrosoft AzureMachine
Learning Studio Classic (AzureML) and described in [8].

The ensemble model consists of the following classification models.

3.1 Two-Class Boosted Decision Tree (BDT)

The Two-Class Boosted Decision Tree model has been proposed by AzureML. This
paper utilises the Two-Class Boosted Decision Tree based upon the results stated in
[14]. According to [14], from the experiments performed and the results obtained it is
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noted that the Two-Class Boosted Decision Tree performed the best. Hence, it can be
concluded that based on our selected dataset the Two-Class Boosted Decision Tree is
the best method suited for predicting Credibility Based Fake News.

3.2 Two-Class Neural Network

According to [8], a neural network is a set of interconnected layers. The inputs are the
first layer and are connected to an output layer by an acyclic graph comprised ofweighted
edges and nodes. Between the input and output layers, you can insert multiple hidden
layers.

3.3 Mixture of Experts

According to [24], they describe the original ME regression and classification models.
In the ME architecture, a set of experts and a gate cooperate with each other to solve a
nonlinear supervised learning problem by dividing the input space into a nested set of
regions used for classification. The gate makes a soft split of the whole input space, and
the experts learn the simple parameterized surfaces in these partitions of the regions.
The parameters of these surfaces in both the gate and the experts can be learned using
the EM algorithm.

3.4 Two Class Logistic Regression

According to [8], logistic regression is a well-known statistical technique that is used
for modelling many kinds of problems. This algorithm is a supervised learning method;
therefore, you must provide a dataset that already contains the outcomes to train the
model. Logistic regression is a well-known method in statistics that is used to predict
the probability of an outcome and is especially popular for classification tasks. The
algorithm predicts the probability of occurrence of an event by fitting data to a logistic
function. According to [10], one of the most commonly utilized linear statistical models
for discriminant analysis is logistic regression.

4 Ensemble Based Veracity Architecture

This research presents the Ensemble Based Veracity architecture for fake news detection
in MANET messaging. The Veracity architecture, as detailed by [16], accomplishes the
task of gathering the credibility data of the news publisher and the content-based data
of the intended message of the publisher. This is done in an infrastructureless MANET
network setting in a decentralized, social computing environment utilising computational
social intelligence. Veracity attempts to model social behaviour and such as Ukrainian
reactions to news of the war spread over a MANET. To improve performance, Veracity
uses the Legitimacy model along with the data features to predict the validity of the
news, producing this novel ensemble-based combination.
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Fig. 1. Components of the veracity architecture

Veracity involves the detection of fake news from the publisher. The components
of Veracity can be seen in Fig. 1 above. As seen in Fig. 1, Veracity is composed of
the publisher application, the news, the monitoring agent Reporter, the various MANET
neighbours, and the subscribers to the topic e.g., citizens ofUkraine. The time complexity
of this unique ensemble based computational social system. is O(n).

5 Experimental Design

TheVeracity architecture is designed as amultidimensional computational social system.
This paper however only explores one dimension of the Veracity architecture, i.e., its
ability to detect and predict fake news generated in MANET messaging. As such the
experimental design of this work only assesses the ability of the architecture to achieve
its main purpose.

The following are the test environment parameters:
The environment as seen in Fig. 2 comprises the use of OMNET++ for the purpose of

building aMANET simulation. This simulation involves the use of AODV as aMANET
routing protocol and implementing the Veracity architecture alongside it.

5.1 ML Model

For the prediction model, the Microsoft Azure Machine Learning Studio (classic) envi-
ronment is used to predict using the Legitimacy ensemble model as proposed by [15]
and discussed above.

5.2 Dataset

The dataset is inspired by that proposed by [25] and contains 17,551 generated news
records with 17,055 fake and 496 genuine messages. The dataset is a generated and
synthetic one, that has been produced by the execution of the simulation environment.
The experiments are validated on only this one dataset as there are no other that contains
the features set required for the Veracity architecture. The features generated include:
the text, eyewitness, label, source, date/time, language, listed count, location, statuses
count, followers count, favourites count, time zone, user language, friends count, screen
name, credibility score, text similarity and eyewitness score.
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Fig. 2. OMNET++ environment.

5.3 Libraries

The FogNetSim++ library as proposed by [13] is utilised to provide the publish/subscribe
functionality of the network. This library provides the functionality of publish/subscribe
by providing network members such as message brokers, routers, and wireless devices.

The experiment is conducted using the above environmental setup. The MANET
consists of 20 nodes all communicating with each other. Each node is configured as
an AodvRouter with the Veracity functionality added to them, converting each into our
unique Txc2Router. Each Txc2Router is simple in design, with all of the functionality
and characteristics of the AodvRouter, inclusive of multicast forwarding.

Any missing data in the dataset is replaced with the mode value of that range. The
data is then split using a separation threshold of 65% for training data and 35% for
testing data. The selected ML model is then trained using the training data after which
the model’s performance is scored and evaluated against that of the testing dataset.

6 Results and Observations

For Veracity, the results are shown below.

6.1 Initial Results

The results are evaluated based on the Accuracy, Precision, Recall, F1-score, and AUC
values and three types of graphs.

ROC Curve
As illustrated in Fig. 3, the results are first analysed based on the receiver operating
characteristics (ROC) curve generated based on the performance of the model. A ROC
curve is anML evaluation method that visualizes, organises, and selects classifiers based
on their performance at the task of classification [6].
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Fig. 3. ROC curve.

Precision/Recall Curve
The second method employed to analyse the performance of Veracity is the Preci-
sion/Recall Curve as seen in Fig. 4. Precision is the total value calculated when the
true positive and false positive values are added together [4]. Recall is the total value
calculated when the true positive and false negative values are added together.

Fig. 4. Precision/Recall curve

Lift Curve
The third type of analysis is Lift Curve analysis. The Lift Curve as defined by [5] is the
ratio of the result obtained with and without the classifier model applied to the prediction
task known as the lift score.

The lift curve is presented in Fig. 5.

Fig. 5. Lift curve
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Evaluation Metrics
The final type of results analysis used to analyse the experimental results are five evalu-
ation metrics. For this type of analysis, the positive value is identified by ‘t,’ the negative
value is identified by ‘f,’ and the threshold value is 0.5 for allmethods analysed.Accuracy
or value of correctness is defined by [22] as:

Accuracy = TP + TN

P + N
(1)

where TP means the number of true positives predicted by the model, TN is the number
of true negatives predicted by the classifier, P is the total of positives and N is the total
of negatives.

Precision or value of trueness is defined by [22] as:

Precision = TP

TP + FP
(2)

where FP stands for the false positives predicted by the model.
Recall or true positive rate is defined by [22] as:

Recall = TP

P
(3)

The F1 Score or the harmonic mean of precision and recall is defined by [26] as:

F1 Score = 2 ∗ precision ∗ recall

precision + recall
(4)

TheAreaUnder theCurve (AUC) value is defined by [1] as a comprehensivemeasure
of the performance of the model bymeasuring the area of the shape formed by the curves
produced in the experimental analysis. The AUC value ranges in value from 0 to 1.

The results show that Veracity performs well at the task of detection. The accuracy of
the predictive algorithm was seen to be at 96.9%. The experiment had a 100% Precision
and a 0%Recall. The F1-Score was seen to be at 0% and the AUC value was seen to be at
0.643. These results indicate that the predictive model was highly accurate and precise at
the task. The same can be seen from the ROC, Precision-Recall and Lift curves in Figs. 3,
4 and 5 above. This can also be identified by the fact that 193 values were misclassified
and 5950 were classified correctly leading to a high accuracy value. The model can also
be seen to be highly precise by the fact that the precision of the predictions was seen to
be 100%. The model also reported a 0% recall, which is a bit misleading given that the
model reports zero true positives. Given the fact that integer division using zero results
in zero, this recall value defaults to zero.
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6.2 Comparative Analysis

Fig. 6. Non-ensemble based veracity architecture evaluation metrics

Though the results of the non-ensemble-based Veracity architecture, as proposed by
[16] and as seen in Fig. 6 above, appear better, the results obtained from the Ensemble
Based Veracity Architecture show a significant improvement over them. By splitting the
feature set the ensemble model allows for two subsets of the dataset to be assessed with
the optimum number of features and provides a more targeted result.

7 Conclusion

This research introduced an ensemble-based computational social system to detect fake
news inMANETmessaging. This research attempted to answer the question of the effect
of ensemble learning on the performance of crowdsourced feedback-based prediction
of fake news. To this end, this work utilised Veracity, a known, multidimensional, fake
news detection architecture for MANET messaging alongside Legitimacy an ensemble
learning model for prediction. Veracity attempted to model social behaviour and human
reactions by capturing, computing and analysing the credibility based and content-based
features of messages posted to the MANET. To accomplish this task, Veracity, operat-
ing in a fully distributed and infrastructureless environment, employed five algorithms
namely, VerifyNews, CompareText, PredictCred, CredScore and EyeTruth. Veracity
utilised Legitimacy to predict, based upon these credibility and content features, the
validity of the news. The prediction results were analysed using four machine learning
methodologies. From the experiments conducted and the results obtained it is noted
that Ensemble Based Veracity performed excellently and successfully modelled social
reactions to the news on a MANET. It was also noted that the Ensemble prediction
model enhanced the accuracy of the prediction and as such had a positive effect on the
performance. Hence, based on preliminary results, it was concluded that the effect of
ensemble learning on the performance of crowdsourced feedback-based prediction of
fake news is positive. It was also noted that the Ensemble Based Veracity architecture is
an appropriate method for detecting and predicting Fake News in MANET Messaging.
Future work in this area involves investigating the energy efficiency considerations and
performance of the Ensemble Based Veracity Architecture.
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Abstract. Archival institutions and program worldwide work to ensure
that the records of governments, organizations, communities and indi-
viduals be preserved for the next generations as cultural heritage, as
sources of rights, and to hold the past accountable. The digitalization
of ancient written documents made of parchment were an important
communication mean to humankind and have an invaluable historical
value to our culture heritage (CH). Automatic analysis of parchments
has become an important research topic in fields of image and pattern
recognition. Moreover, Artificial Intelligence (AI) and its subset Deep
Learning (DL) have been receiving increasing attention in pattern rep-
resentation. Interest in applying AI to ancient image data analysis is
becoming mandatory, and scientists are increasingly using it as a pow-
erful, complex, tool for statistical inference. In this paper it is proposed
PergaNet a lightweight DL-based system for historical reconstructions
of ancient parchments based on appearance-based approaches. The aim
of PergaNet is the automatic analysis and processing of huge amount of
scanned parchments. This problem has not been properly investigated by
the computer vision community yet due to the parchment scanning tech-
nology novelty, and it is extremely important for effective data recovery
from historical documents whose content is inaccessible due to the deteri-
oration of the parchment. The proposed approach aims at reducing hand-
operated analysis and at the same time at using manual annotation as a
form of continuous learning. PergaNet comprises three important phases:
classification of parchments recto/verso, the detection of text, then the
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detection and recognition of the “signum tabellionis”. PergaNet concerns
not only the recognition and classification of the objects present in the
images, but also the location of each of them. The analysis is based on
data from the ordinary use and does not involve altering or manipulating
techniques in order to generate data.

1 Introduction

Ancient written documents made of parchment were an important communi-
cation mean to humankind and have, for that motive, an invaluable historical
value to our culture heritage (CH). Before the middle ages, these documents
were the primary writing equipment and they were the vehicle of culture, up to
their replacement by paper [4]. Therefore, it becomes imperative that they be
preserved and perpetuated in order to extend their life span in the interests of
population and future generations [18].

Currently, digitization of historical parchments is extraordinarily convenient
as it allows easy access to the documents from remote positions and removes the
need for possible adverse physical management [6]. This arrangement is partic-
ularly suitable to archives and museums who retain such invaluable historical
documents whose contents are unavailable and which cannot be fully restored
by conventional tools, and are laborious to read directly due to high levels of
damage and the delicate nature of the material. Such damaged parchments are
notably prevalent in archives all over the world [11]. Digital representations of
parchments allows to reduce this problem by giving to the operators the possi-
bility to read their contents at any moment, from remote locations, and without
necessitating harmful physical management of the document.

Thus, automatic analysis of parchments has become an important research
topic in fields of image and pattern recognition. It has also been a considerable
research issue for several years, gaining attention recently due to the potential
value that can be unlocked from extracting the information stored in histor-
ical documents [7]. Moreover, Artificial Intelligence (AI) and its subset Deep
Learning (DL) have been receiving increasing attention in pattern representa-
tion. Unlike simple artificial neural networks, DL algorithms are not only used
for the mapping from representation to output but also to learn the representa-
tion itself [8]. Interest in applying AI to ancient image data analysis is becoming
mandatory, and scientists are increasingly using it as a powerful, complex, tool
for statistical inference. Computer-based image analysis provides an objective
method of scoring visual content independent of subjective manual interpreta-
tion, while potentially being more sensitive, consistent and accurate. Learned
representations often result in much better performance than can be reached
with hand-designed representations. To date, parchment analysis has required
user interaction, which is very time consuming for such data. Hence, the effec-
tive automatic feature extraction competence of Deep Neural Networks (DNNs)
decrease the demand for a independent handcrafted feature extraction process.

Considering the above, in this paper it is proposed PergaNet a lightweight
DL-based system for historical reconstructions of ancient parchments. The aim
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of PergaNet is the automatic analysis and processing of huge amount of scanned
parchments. This problem has not been investigated by the computer vision
community properly yet due to the parchment scanning technology novelty, and
it is extremely important for effective data recovery from historical documents
whose content is inaccessible due to the deterioration of the parchment. The
proposed approach aims at reducing hand-operated analysis and at the same time
at using manual annotation as a form of continuous learning. The whole system
needs manual tagging of large training data. Up until now, large datasets have
been necessary to boost the performance of DL models and all manually verified
data will be used as continuous learning and will be maintained as training
datasets.

The institute “Archivio di Stato di Milano”, the State Archives in Milan
holds a wide asset of parchments belonging to 12th and 13th centuries. The
Archive hosts a great collection of parchment documents that is identified by
the “signum tabellionis” of notary. These signa are useful to establish a histori-
cal reconstruction of the documents since the notary who signed the document
belonged to a specific historical period. PergaNet comprises three important
phases: classification of parchments recto/verso, the detection of text, then the
detection and recognition of the “signum tabellionis”. PergaNet concerns not
only the recognition and classification of the objects present in the images, but
also the location of each of them. The study expands the implementation of AI
in archival science: a method that could be reproduced by many other Archives
and for different types of documents. The analysis is based on data from the
ordinary use and does not involve altering or manipulating techniques in order
to generate data. This provides actionable insights that are helpful to identify
text as style and not as reading. The preliminary results of the proposed app-
roach show the effectiveness and the suitability of this method. It is a significant
step towards finding the best path to automatically process and analyse a huge
amount of scanned parchments data.

The paper is organized as follows. Section 2 provides a description of the
approaches that were adopted for analysis of ancient documents. Section 3
describes the proposed DL-based pipeline. In Sect. 4, an evaluation of our app-
roach is offered, as well as a detailed analysis of each component of our frame-
work. Finally, in Sect. 5, conclusions and discussion about future directions for
this field of research are drawn.

2 Related Works

In literature, in several works it has emerged that the main difficulty in auto-
matic analysis of old parchment is the deterioration of the ink of the original
text. This fact is due to the iron corrosion in the residual ink particles that were
absorbed into the parchment. Thus, several researcher have proposed the appli-
cation of image enhancement techniques to improve the quality of the digital
document [13]. With the advancement of DNNs the features based approaches
evolved in DL approaches.
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The restoration of ancient document was the aim of the DL approach pro-
posed in [1]. The authors proposed Pythia, an ancient text restoration model
that recovers missing characters from a damaged text input using DNNs. Its
architecture was designed to handle long-term context information, and deal
efficiently with missing or corrupted character and word representations. For
the training, they wrote a pipeline to convert PHI, the largest digital corpus of
ancient Greek inscriptions, to machine actionable text, called PHI-ML.

In [15], the authors proposed a DL method for under-text separation. In
particular, they have used a deep generative networks, by leveraging prior spatial
information of the under-text script. To optimize the under-text, they emulated
the process of palimpsest creation. This was performed by generating the under-
text from a separately trained generative network to match it to the palimpsest
image after mixing it with foreground text.

A Generative approach is also adopted in [16]. Tamrin et al., in fact, proposed
a framework that followed a two-stage approach. The first one was devoted to
data augmentation. A Generative Adversarial Network (GAN), was trained on
degenerated documents. This network allowed the generation of synthesized new
training document images. In the second stage, the document images generated
before, was advanced with the choice of an inverse problem model with a DNN
architecture.

The recent success of DL methods in image analysis related tasks has been
also inspired the work proposed in [3]. In this paper, the authors adopted a
fully convolutional neural network (FCNN) [9] for semantic labeling of pixels.
Their idea was to use skip connections to combine the coarse features from deep
layers with fine features from shallow layers to improve the final segmentation.
The framework described allowed end-to-end training of an energy minimization
function along with a semantic labeling network namely as Primal-Dual Net
(PDNet).

A DL-based system was also proposed in [5] for Ethiopian ancient Geez char-
acter recognition system. The authors used a deep convolutional neural network
for recognizing twenty-six base characters of this alphabet. Their system com-
prised the pre-processing phase of digitized ancient images, the segmentation
stage to extract each character, and the feature extraction within the DNN.

Wiggers et al. [17] proposed two approaches for content-based image retrieval
and pattern spotting in ancient document images by DL. Firstly, they pre-trained
DNN model to deal with the inadequacy of training data. Then, they used a
Siamese Convolution Neural Network trained on a previously collected subset of
image pairs from the ImageNet dataset to determine the similarity-based feature
maps.

In [2], it is proposed a system for recognizing ancient character for allowing
users to organize the ancient Asian documents by DL algorithms. They applied
the state-of-the-art DL-self-attention. The experiment were assessed on Ora-
cle Bone Inscriptions and Kuzushi characters recognition, which also prove the
effectiveness self-attention in ancient character recognition.
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Nguyen et al. [10], adopted also a DL approach for facing with noisy condi-
tions. The DNN followed an encoder-decoder structure by combining convolu-
tion/deconvolution layers with symmetrical skip connections and residual blocks
for improving reconstructed image. They also described a global attention fusion
to learn the significant regions in the image.

Considering the development of AI technologies, and in particular DL, in this
paper it is proposed PergaNet a DL-based system for the automatic establish-
ment of historical reconstruction of scanned ancient parchments. PergaNet could
be adopted by archives and museums for reducing manual annotation by human
operator and for preserving CH. The main contributions could be summarized
as follows:

– the design of an efficient lightweight DL-based system to realize the automatic
learning and analysis of ancient documents.

– the automatic design method of DNN combined with an object detector for
improving the recognition accuracy.

– The study can also support scholars in the humanities in doing research con-
cerning historical documents. In fact, it also contributes by enhancing easy
access to the historical documents.

3 Materials and Methods

The overall framework of PergaNet for learning parchment features is depicted
in Fig. 1. As stated in the Introduction, PergaNet framework consists of three
stages: classification of parchments recto/verso, the detection of text, then the
detection and recognition of the “signum tabellionis”. Firstly, a network trained
on a dataset of scanned parchments is needed to solve a classification task:
recto/verso. This phase is performed by VGG16 Network [14]. After, inspired
by the work in [19] the text in the image is detected. Then, YOLOv3 [12] was
used, an architecture that learns to predict bounding box locations and classify
these locations in one pass.

In the following subsections, we describe each part of our framework as well
as the dataset used for evaluation.

3.1 Parchments Digitalization and Annotation: Dataset Collection

The dataset used for the evaluation comprises 2700 images. The dataset is col-
lected by the parchments of the “Archivio di Stato di Milano” the State Archives
in Milan holds a wide asset of parchments belonging to 12th and 13th centuries.
These images were labelled in different classes belong to notarial family. In par-
ticular, for each class two kind of parchments is available: recto and verso of the
document. The recto contains the signa tabellionis of the notary and in some
cases in the parchment there is two different signa. Table 1 reports the classes of
our dataset and the number of recto and signa present in the collection (Fig. 2).
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Fig. 1. PergaNet workflow. The scanned parchments are labelled based on signa tabel-
lionis. This signum gives to images an historical period. Then a DL-bases system is
able to detect text and signa in parchments as well recognizes the signum of the notary.
Other data analytic layers are designed to provide insights from historical and system
performance perspectives.

Table 1. Dataset of scanned parchments of the “Archivio di Stato di Milano”

Scanned Parchment Recto Verso

Notary 1 44 44
Notary 2 74 74
Notary 3 50 48
Notary 4 116 116
Notary 5 134 130
Notary 6 99 99
Notary 7 142 142
Notary 8 378 378
Notary 9 316 316

3.2 Deep Learning Pipeline

As stated, PergaNet is based on DL approaches devoted to different tasks. Firstly,
it is important to classify the recto and the verso of the parchment. This step
is fundamental, since the recognition and the historical reconstruction is based
on the signum tabellionis, this object is present only in the recto side. For this
reason, a binary classification is performed. We chose VGG16 Network [14] for
its suitability and effectiveness in image classification task. After that inspired by
the work of Zhou et al. [19], PergaNet detects the text in the image. This phase
allows to exclude the text included in the parchment in the phase of recognition
of the signa. The DNN model chosen is EAST for the word detection [19]. Finally,
a Convolutional Neural Network has been employed for the signa detection. Our
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Fig. 2. Examples of scanned parchments dataset images.

approach uses YOLOv3 [12] an algorithm that processes images in real time. We
chose this algorithm because of its efficiency in computational terms and for its
precision for detection and classification of objects. The network is pre-trained
using COCO1, a publicly available dataset, this choice aims to reduce the need
of having a large amount of training data, with a high computational cost.

The DL pipeline is depicted in Fig. 3.

Fig. 3. PergaNet DL pipeline.

1 https://cocodataset.org/#home.

https://cocodataset.org/#home
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4 Results and Discussions

In this section, the results of the experiments conducted on dataset is collected
by the parchments of the “Archivio di Stato di Milano” are reported.

The first task is the binary classification of the parchment sides: recto and
verso. As stated before we have chosen as DNN Model VGG16 Network. For the
training phase the following setting has been used:

– Image reshape to 224 × 224;
– Data normalization: mean subtraction, std scaling;
– Augmentation with image rotation and flip;
– Batch size: 16;
– Adam optimizer;
– Learning Rate: 10e−4 (from 0th to 10th epoch) and 10e−5 (from 10th to

20th epoch);
– Cross-Entropy loss;
– Training from scratch;
– 20 epochs.

Table 2 reports and depicts the results of the binary classification. It is pos-
sible to note that the accuracy is high, thus confirming the suitability and the
effectiveness of the proposed approach.

Table 2. Binary classification Recto/Verso of the parchments results.

Class Precision Recall F1 Accuracy

Recto 1.00 0,70 0,83 0,85
Verso 0.77 1.00 0.87 0,85

Figure 4 represents the classification prediction compared with the ground
truth. Label 0 refers to Recto side, Label 1 to the Verso one

The second experiments is devoted to the detection of the words in the text
of the parchments. Figure 5 depicts the results of the text detection.

The last task is performed for the detection and the recognition of the signum
tabellionis. YOLOv3 algorithm is trained and validated by using total 2700
images for signa detection of nine classes of notary. In the training phase, a
group of pre-trained weights on COCO dataset is used as the initial parameters.
Each model is trained by 200 epochs. After training process, the model is tested
on 300 test data. The ground truth of the signa in each image of test is deter-
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mined by the manual annotation. The performances of the proposed method
are shown in Table 3. From Table 3, it can be quantitatively observed that the
proposed method provide good results in the classification of nine notary classes.
Moreover, the qualitative results are shown in Fig. 6.

Fig. 4. Binary classification prediction compared with the ground truth. Label 0 refers
to Recto side, Label 1 to the Verso one.

Fig. 5. Word detection results.



PergaNet: A Deep Learning Framework 299

Fig. 6. Detection of signum tabellionis.

Table 3. Results obtained in the test phase on 300 images never seen in the training
phase.

Class Precision Recall mAP F1 score

Notary 1 0.748 0.779 0.734 0.777
Notary 2 0.66 0.7 0.661 0.729
Notary 3 0.576 0.679 0.607 0.624
Notary 4 0.576 0.559 0.607 0.604
Notary 5 0.666 0.669 0.667 0.664
Notary 6 0.666 0.699 0.607 0.604
Notary 7 0.676 0.779 0.707 0.724
Notary 8 0.86 0.8 0.761 0.829
Notary 9 0.768 0.789 0.734 0.777

5 Conclusion and Future Works

Computer-based image analysis provides an objective method of scoring visual
content independent of subjective manual interpretation, while potentially being
more sensitive, consistent and accurate. In this paper, PergaNet a lightweight
DL-based system is proposed for historical reconstructions of ancient parch-
ments. The aim of PergaNet is the automatic analysis and processing of huge
amount of scanned parchments of 12th and 13th centuries belonging to “Archivio
di Stato di Milano”. PergaNet is based on a DL pipeline that comprises three
stages: classification of parchments recto/verso, the detection of text, then the
detection and recognition of the “signum tabellionis”. Firstly, a network trained
on a dataset of scanned parchments is needed to solve a classification task:
recto/verso. This phase is performed by VGG16 Network. After, the text in
the image is detected. Then, YOLOv3 was used, an architecture that learns to
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predict bounding box locations and classify these locations in one pass. The study
expands the implementation of AI in archival science: a method that could be
reproduced by many other Archives and for different types of documents. The
experiments yield high accuracy and demonstrate the effectiveness and suitabil-
ity of our approach. Further investigation will be devoted to improve PergaNet
by employing a larger dataset and extracting additional informative features for
a better analysis and for deducing further insights. Moreover, we will extend the
evaluation by comparing our DL pipeline with other existing systems.
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Abstract. Cultural heritage buildings damage detection is of a great
significance for planning restoration operations. However, the buildings
analysis is generally performed by experts through on-site qualitative
visual assessments. A highly time-consuming task, hardly possible at the
scale of large historical buildings.

This paper proposes a new neural network architecture for automatic
detection of spalling zones in limestone walls with color images. This
architecture consists of the latest YOLO network, enhanced with lay-
ers of transformers encoder providing more comprehensive features. The
performances of the proposed network improve significantly those of the
YOLO core network on our dataset of over 1000 high resolution images
from the Renaissance style Château de Chaumont in the Loire Valley
(France).

1 Introduction

The preservation of historic buildings requires a careful examination of the status
of their facades and structure in order to plan restoration operations. This expert
analysis of heritage buildings is usually done by qualitative visual assessments on
site. This is a time-consuming task that is difficult to carry out exhaustively on
the scale of large historic buildings, on the entire facade of a castle, for example,
due to the size of the buildings and the areas that remain unobservable by an
expert from the ground. On the other hand, the increasing use of techniques of
3D acquisition and color camera mounted on a drone to scan the entire building
gives experts access to more and more complete data. But the amount of data
is such that it is necessary to develop algorithms to automatically detect the
damaged areas on color images to facilitate their work.

In this paper, we propose to use state-of-the-art deep learning techniques
for object detection to identify spalling areas on the facades of Loire Valley
castles. Within the Loire Valley, a group of castles emblematic of Renaissance
architecture present facades of blocks cut in tuffeau stone, a fine-grained lime-
stone of white color, which allows the creation of magnificent ornaments sculpted
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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in the stone. But this soft and very porous limestone is particularly sensitive to
humidity variations and atmospheric pollution. The facades of the castles show a
deterioration of the stones with time. The monitoring of these buildings requires
an inventory of the different areas and types of deterioration, according to the
illustrated ICOMOS ICIS glossary on stone deterioration patterns generally used
as a reference [1]. One of the most damaging degradation in limestone masonry
of Loire Valley castles is scaling in forms of spalling, a crack that develop in
parallel to the stone surface, forming plates with a few centimeters depth that
eventually fall, leaving a powdery surface [5].

We have built a database of more than thousand tagged images of limestone
walls to train convolutional neural networks such as YOLO [6], a one-stage end-
to-end model capable of detecting objects in real time, to test these capabilities
on a castle scale (Fig. 1). We then propose an improved architecture including
multi-head attention layers in the YOLO head that shows better performance
(Fig. 2).

Fig. 1. Orthophoto of the east inner facade of the château de Chaumont-sur-Loire.

The rest of the paper is structured as follows. Section 2 reviews existing
damage detection methods using deep learning. Section 3 describes the pro-
posed network, its architecture, and its main strengths. Section 4 presents the
dataset and technical implementation details, before presenting the results of
the comparative study. Finally, Sect. 6 concludes this paper by considering the
perspectives of this work.

2 Related Work

Different types of stone deterioration patterns: scratch, crack, detachment, flak-
ing, blistering, discoloration, biological colonization (moss, lichen),etc., are listed
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by experts according to the illustrated glossary ICOMOS-ISCS [1]. Some of them
represent losses of material and irregularity of the relief, while others are only
chromatic alterations.

Early work on automatic stone damage detection in color images used tra-
ditional thresholding methods based on color histograms [10]. In [15], machine
learning techniques has been introduced for the detection of stone-by-stone alter-
ations on the walls of the Stirling Chapel in Scotland. The selected areas show
either singular relief irregularities on the 3D model for losses or inhomogeneity in
color images for chromatic alterations. The extracted features are used as inputs
in a logistic regression classification algorithm.

Recently, work has adapted deep convolutional neural networks trained on
large databases of generic images of objects and pets to detect stone deteriora-
tion. AlexNet [7] and GoogleLeNet [14] were used to classify about 2,000 images
of the bricks cropped from the orthophotos of the wall of the Forbidden City into
four categories: intact, spall, crack, and efflorescence [18]. A continuation of this
work used on a more recent and powerful network like Faster R-CNN based on
backbone ResNet101 for detecting spalling and efflorescence on two orthophotos
(57,780× 11,400 pixels) of the Palace Museum, China [19].

Authors in [8] also used Faster R-CNN, but with Inception as backbone,
which is an older and less efficient model than ResNet101, because it does not
use the residual information. They detect four types of damages: crack, loss,
detachment, biological colonization. The images are from the regular report
of nationally designated cultural properties in 2017 by the Cultural Heritage
Administration of South Korea.

Fig. 2. The detection are in blue and the ground truth in orange. (a), (b) are example
of detection performed with the proposed network and (c), (d) are example of detection
performed with YOLOv5x network on the same images. (Color figure online)

Following the example of previous works, we have tested the YOLO network
[6] for the detection of surface spalling on the exterior limestone walls of two
Renaissance castles. To our knowledge, YOLO has never been tested in the
context of detecting alterations on the walls of historical monuments, especially
on walls made of fine limestone (tuffeau). This type of masonry, emblematic of
the famous castles of the Loire Valley, is characterized by the search for a very
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homogeneous visual effect limiting the contrast of the joints with very similar
colors of the stones in shades of cream to yellowish according to the layers of the
quarry, which makes the task of segmentation more difficult.

This paper proposes a new neural network architecture for automatic detec-
tion of spalling zones in limestone walls with color images. This architecture con-
sists of the latest YOLO network, enhanced with layers of transformers encoder
providing more comprehensive features. The next section gives more details on
the proposed architecture

3 Proposed Method

The proposed network architecture use convolution and self-attention and is
mainly based on the YOLOv5x [6]. The input image is introduced into the
YOLOv5x backbone, which is made of convolution 3 × 3 with stride 2, followed
by a cross stage partial(CSP) bottleneck [17] with depth 3. The final layer of
the backbone is a spatial pyramid pooling layer [3], sometimes its named the
neck. It helps the network performed detection of objects at different size and
scale. The output of the backbone is a feature map. This feature map from the
backbone is additionaly refine in the Head. In this step, the classic YOLOv5x
architecture performed more CSP Bottleneck. Our proposed network instead
performed transformer self-attention modules with upsampling and concatena-
tion with corresponding layers outputs from the backbone . Finally, the detect
part is used to predict boxes, label and the confidence of the model.

The recently proposed Vision Transformers (ViT-YOLO) network [20] also
achieves a possible way of combining YOLO architecture with transformer. How-
ever, that approach differs from our solution in methodology and in terms
of desire output. ViT-YOLO receive as input a vector of the patches of size
16×16×3 of a color image and predict as output the class of the image. It is an
image classification network. Transformers requires a huge database to achieve
state of the art performance. On the other hand, the combination with con-
volution layers only in the head, as in our proposed network allows to benefit
from the convolution operations in the backbone and prevent the need of a huge
dataset to achieve good performance (Fig. 3).

3.1 Transformer

Transformer architecture is a recent introduction in image processing technique.
It has been introduced in 2017 and is a self-attention based architecture that
become a standard in natural language processing [16]. Recent work has intro-
duced self-attention in image processing and demonstrate its efficiency in rich
features extraction for more accurate detection [2].

As shown in Fig. 4, a self-attention building block is made of the softmax of
a scaled output of the matrix multiplication between a query (Q) and a key(K)
vectors define in Formula (1), and the value(V) vector.
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Fig. 3. Architecture of the proposed network.

Q,K, V = mWq,k,vWq,k,v ∈ RDx3D (1)

with,
m the input matrice;
D the dimensions for V and K;
and W a learned weights respectively for q, k and v.

S = softmax(QKT )

S ∈ RN×N , N = hw/P 2
(2)

with,
hw the image resolution;
and P the number of patches,

softmax(x) =
exi

∑
exi

(3)

SA = SV (4)

SA : self-attention output
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Fig. 4. Architecture of a self-attention building block [16].

3.2 Anchors

YOLO is an anchor based object detection model. The model generates thou-
sands of anchors of multiple size (height and width) and at various ratios from
which it maintains only those that have a high probability of containing an
object. Then the selected anchors are refined progressively to remain few with
the highest score of fitting an object.

The anchor generation process is typically configured by setting the anchor
parameter that is a list of the desire default anchor size. Default anchor size are
defined in the model architecture. More the anchor size adjusts to the variability
of the possible bounding boxes in the dataset better the model learn and the
greater is its precision in the detection. To obtain the most fitted anchors, we
choose to learn the anchor parameter from a k-means algorithm, which find out
by clustering the size of overall bounding boxes of the dataset.

3.3 Bounding Box Filtering

As in the process on detection several redundant bounding boxes are generated,
non-maximum suppression(NMS) [4] is generally used to perform the selection of
the relevant bounding box to keep forward. It considers the overlap area between
the bounding boxes as the main criteria to decide which box to suppress.

In recent studies, different type of non-maximum suppression are introduced,
GIoU-NMS [12], DIoU-NMS [21]. In our proposed network, we used DIoU-NMS
which consider the overlap area and also the normalized distance between the
bounding boxes central points. This approach helps the network to converge
faster than with a typical NMS or a GIoU-NMS.
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3.4 Loss Function

The loss function is an evaluation metric for the errors between the network
prediction and the target during the training process. The proposed network
use is a sigmoid activation followed by a binary cross-entropy loss. The sigmoid
activation adjusts the network prediction output in the range [0, 1]. The binary
cross-entropy loss compares the network prediction probability p (p ∈ [0, 1]) with
the target y and calculate the error based on the negative average of the log of
the correct p (see Formula 5).

Loss = − 1
N

N∑

i=1

−(yilog(pi) + (1 − yi)log(1 − pi))) (5)

4 Database and Implementation Details

4.1 Dataset

The dataset is made of 1012 sub-images with the size of 256×256 pixels extracted
from the color images of the outer walls of the Château de Chaumont-sur-Loire
(Fig. 1). The ground truth is provided by manual labeling conducted by experts.
Experts usually label on orthomosaics from an on-site observation. Orthomosaics
are created from a set of photos taken along the facade and assembled and
rectified automatically from 3D modeling by photogrammetric software, MicMac
[11]. This cartographic representation is very convenient for monitoring large
historic buildings and provides access to actual surface measurements.

But for the detection of stone alterations it is better to work on the original
color images which have much better quality and resolution than orthomosaics.
The areas tagged by the experts on the orthomosaic were therefore projected
onto the original color images based on geometric modeling and camera pose, as
ground truth to train and test the networks.

Table 1 presents the distribution of the spalling areas in the dataset. A total
of 3955 areas of spalling alterations was tagged on 1012 different images from
the database. The training set represents 75% (759 images/2859 spalling areas)
and the test set 25% (253 images/1096 spalling areas) of the overall database.

4.2 Implementation Details

The training is performed on a workstation running with the operating system
OpenSUSE Leap 15.2. The Intel gpu-node used Intel Xeon Gold 6248 2.5 GHz
processor with four(04) NVidia Tesla V100 graphics card of 32 GB memory each.
The node contained 40 core with 192 GB of RAM. The source code environment
is python 3.7, CUDA 11.2, cuDNN 8.1, Torch 1.9, Torchvision 0.10, along with
others.
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Table 1. Distribution of spalling areas in the image dataset

Data Images Spalling zones

Train set 759 2859

Test set 253 1096

Total 1012 3955

The testing a performed on a personal laptop with 16 GB memory, CPU
Xeon E5-2620 v4 and a single NVIDIA Quadro P5000. This confirms the ability
of the proposed network to be exploited by cultural heritage experts without the
need of an extensive computational power.

The network training settings has been adjust to build in line with our work-
station configuration and running environment. The network size is 256 × 256,
aligned with the image size. One class is considered in the experiment, the
spalling damage. The learning rate parameter is set to 0.01. We use SGD with
a momentum of 0.937, a weight decay of 0.0005, a batch size of 12 and we use
the one cycle learning rate policy [13].

Typically, the YOLOv5x network is pretrained on the Microsoft COCO
database [9]. We refine the pretrained weights on our dataset by transfer learn-
ing. For our proposed network, a layer matching has been applied to input the
pretrained weights from the COCO database into the corresponding layer in our
network and learn the transformers layers we introduce from scratch with three
(3) warm-up epoch at initial momentum 0.8 to help reduces instabilities in early
training.

The results of the experiments performed are detailed in the following section.

5 Experiments

We present the experiments on the proposed network architecture and compare
its performance to the classic YOLOv5x network performance.

As shown in Table 2 the proposed network obtain a mean average precision
of 79% while the classic YOLOv5x is at 74% at IoU = 0.50. Same precision of
88% is realized by the two models, which means when they detect a damage
bounding boxes much of them are real damages which is a good indicator for
the cultural heritage experts.

However the proposed network does much better in recall than YOLOv5x,
which means the ratio of the accurate damage zone detection performed by the
proposed network to the actual relevant number of damage zone detection is
higher. This offer better reliability to avoid excluding multiple zone of damage
in the detection process.

The Fig. 5 below shows the detection of the two networks on various images
from the test set. The test set contains several challenging limestone wall images.
Both network relatively performed well in the particular case of images. However,
the proposed network detects more damage zone in complex, crowded images
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while the classic YOLOv5x detect often less. Thus, it improved the efficiency of
the cultural heritage experts in achieving better monitoring.

Table 2. Metrics comparison of the proposed network and YOLOv5x.

Methods Precision Recall F1 score mAP at IoU = 0.50

YOLOv5x 0.88 0.77 0.82 0.74

Ours 0.88 0.80 0.83 0.79

Fig. 5. Comparison of detection results: (a) proposed network, (b) YOLOv5x. In each
case, the blue bounding boxes represent the detection and the orange the ground truth.
(Color figure online)

Figure 6, present the evolution of the loss, mAP, precision and recall for
the proposed network and YOLOv5x during the training process. The mean
average precision of the proposed network progress better than the other. Same
observation for the precision and the recall metrics value progression.

However the loss convergence is less than the YOLOv5x loss convergence
during the training process. This may be explained by the fact that YOLOv5x
network has been pretrained on a large dataset, Microsoft COCO, of approxi-
mately 328 000 images. While the proposed network has been mainly trained
from scratch on the custom data details in Sect. 4.
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Fig. 6. Comparison of the evolution of the loss, mAP, precision and recall for the
proposed network and YOLOv5x during the training.

Despite the small size of our custom dataset the convergence obtain might
also be improved by the use of Distance IoU a box filtering approach known for
its contribution to the rapid convergence of the trained network.

6 Conclusion

This paper proposed a novel network architecture for the detection of damage on
limestone wall images. The proposed network combining the transformer build-
ing layer and YOLOv5 network. We enhance the network learning capabilities
with new practice such as anchor learning with k-means and Distance-IoU Loss.

As shown in the experiments, this improved the detection of the spalling on
limestone wall and outperformed the YOLOv5x network pretrained Microsoft
COCO dataset and fine-tuned. This represents a significant improvement to
facilitate the process of damage annotations by cultural heritage experts.

Further improvement would likely be to experiment the proposed network
architecture on a large dataset containing images from various cultural heritage
buildings in limestone, expecting to increase the performance on a larger dataset
of limestone wall damage.

Acknowledgment. The authors benefited from the use of the cluster at the Centre
de Calcul Scientifique en région Centre-Val de Loire.
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15. Valero, E., Forster, A., Bosché, F., Hyslop, E., Wilson, L., Turmel, A.: Automated
defect detection and classification in ashlar masonry walls using machine learning.
Autom. Construct. 106, 102846 (2019)

16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

17. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CspNet: a
new backbone that can enhance learning capability of CNN. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pp. 390–391 (2020)

http://arxiv.org/abs/2010.11929
https://doi.org/10.1007/s12665-015-4212-2
https://github.com/ultralytics/yolov5
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1803.09820


Transformers with YOLO Network for Limestone Damage Detection 313

18. Wang, N., Zhao, Q., Li, S., Zhao, X., Zhao, P.: Damage classification for masonry
historic structures using convolutional neural networks based on still images. Com-
put. Aid. Civil Infrastruct. Eng. 33(12), 1073–1089, (2018)

19. Wang, N., Zhao, X., Zhao, P., Zhang, Y., Zou, Z., Ou, J.: Automatic damage
detection of historic masonry buildings based on mobile deep learning. Autom.
Construct. 103, 53–66 (2019)

20. Zhang, Z., Lu, X., Cao, G., Yang, Y., Jiao, L., Liu, F.: ViT-YOLO: transformer-
based yolo for object detection. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2799–2808 (2021)

21. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster
and better learning for bounding box regression. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)



Medical Transformers - MEDXF



On the Effectiveness of 3D Vision
Transformers for the Prediction

of Prostate Cancer Aggressiveness

Eva Pachetti1,2(B) , Sara Colantonio1 , and Maria Antonietta Pascali1

1 “Alessandro Faedo” Institute of Information Science and Technologies (ISTI),
National Research Council of Italy (CNR), Pisa, Italy

{eva.pachetti,sara.colantonio,maria.antonietta.pascali}@isti.cnr.it
2 Department of Information Engineering (DII), University of Pisa, Pisa, Italy

Abstract. Prostate cancer is the most frequent male neoplasm in Euro-
pean men. To date, the gold standard for determining the aggressiveness
of this tumor is the biopsy, an invasive and uncomfortable procedure.
Before the biopsy, physicians recommend an investigation by multipara-
metric magnetic resonance imaging, which may serve the radiologist to
gather an initial assessment of the tumor. The study presented in this
work aims to investigate the role of Vision Transformers in predicting
prostate cancer aggressiveness based only on imaging data. We designed
a 3D Vision Transformer able to process volumetric scans, and we opti-
mized it on the ProstateX-2 challenge dataset by training it from scratch.
As a term of comparison, we also designed a 3D Convolutional Neural
Network, and we optimized it in a similar fashion. The results obtained by
our preliminary investigations show that Vision Transformers, even with-
out extensive optimization and customization, can ensure an improved
performance with respect to Convolutional Neural Networks and might
be comparable with other more fine-tuned solutions.

Keywords: Vision Transformers · Prostate cancer · ProstateX-2

1 Introduction

According to the World Health Organization, prostate cancer (PCa) is the most
common tumor among European men [1]. For PCa patients, a biopsy followed
by a microscopic examination of the collected specimen is, at the moment, the
gold standard for diagnosis. Usually, before resorting to biopsy, the patient
undergoes a multiparametric magnetic resonance imaging (mpMRI) examina-
tion. mpMRI investigations typically involve the acquisition of axial T2-weighted
(T2w) images, used to investigate the anatomy, and diffusion-weighted images
(DWI), from which the apparent diffusion coefficient (ADC) maps are derived.
By comparing T2w images and ADC maps, radiologists make an early quali-
tative diagnosis according to the Prostate Imaging Reporting and Data System
(PI-RADS) [2] guidelines. The PI-RADS score assigns a numerical value between
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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1 and 5 to the suspected lesion, which is an index of probability that the lesion
constitutes an aggressive prostate neoplasm. The higher the PI-RADS score,
the greater the likelihood that the suspected nodule is malignant. Typically if
PI-RADS ě 3, the patient undergoes a biopsy. At this point, the tumor’s aggres-
siveness is assessed by examining the biopsy specimen, and a grade known as
the Gleason Score (GS) is associated with the lesion. If GS ě 3+4, the tumor is
considered clinically significant [3]. In particular, for patients with lesions having
GS ą 3+4, treatment is foreseen; in all other cases, the patient usually undergoes
active surveillance [4].

However, this early diagnosis is affected by inter-operator variability since
most depend on the radiologist’s experience and the acquisition protocol used.
For this reason, the patient may be over-diagnosed if the biopsy reveals a tumor
that is not clinically significant [5]. Because of all these reasons, there is now
an increasing need for an automated tool that can diagnose PCa in a non-
invasive, robust, and reliable manner. Several studies to date are focusing on
building machine learning models that exploit the potential of deep learning for
the automatic classification of PCa lesions from mpMRI images. Most of the
works attempt to classify clinically significant from non-significant PCa (i.e., GS
ď 3+3 vs. GS ě 3+4) [6–9]. Only a few studies have addressed the issue of
PCa aggressiveness, i.e., low-grade (LG) (GS ď 3+4) vs. high-grade (HG) (GS
ě 4+3) lesions. In [10], the authors exploited the AlexNet model pre-trained on
the ImageNet dataset, and they fine-tuned it on axial T2w images, sagittal T2w
images, and ADC maps following a transfer learning approach. In particular,
they leveraged a combined loss function that reduces feature variances between
the same classes obtaining an AUROC of 0.869. In [11], the authors optimized
several 2D CNNs with and without Attention Gates, training them with only
T2w images, with only ADC maps, and with the combination of the two modal-
ities, building a multimodal CNN. The CNN with Attention Gates trained on
T2w images produced 0.875 AUROC.

Assessment of PCa aggressiveness is a challenging task for several reasons.
First of all, the lesion occupies very few pixels within the image. In addition, it
may occur in different areas of the prostate; therefore, the network must be able
to identify it among other tissues before classifying it. For this reason, many
works are now focusing on building an end-to-end model, which first detects the
lesion and then classifies it [12–14].

Recently, Vision transformers (ViTs) have gained popularity in Computer
Vision, exceeding the performance of CNNs in almost all tasks: classification
[15], object detection [16] and segmentation [17]. They have seen an increase in
their application also in medical imaging [18]. Classic ViTs require large amounts
of data to be trained. Because of this, usually transfer learning approach is
exploited. In this work, we wanted to verify ViTs’ effectiveness in addressing a
challenging task as the prediction of PCa aggressiveness without any pre-training
steps but by training them from scratch on 3D acquisitions.
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In the following sections, we describe our experiments with 3D ViTs, and
basic 3D CNNs applied to a freely available dataset (i.e., ProstateX-2 [19]).
Firstly, we introduce the dataset used and how this was prepared for training
the deep learning models. Afterward, we give a description of the 3D ViT archi-
tecture used and of the training pipeline. We do the same for the 3D CNN models
that we exploited to compare and evaluate the performance ensured by 3D ViTs.
Therein, we report the results and compare our work to one belonging to the
state-of-the-art addressing the same task. Finally, according to the results, we
establish the potential effectiveness of 3D ViTs in determining PCa severity.

2 3D Vision Transformer and 3D CNN Development
for Prostate Cancer Classification

The work aims to develop a 3D ViT model for assessing PCa aggressiveness based
on axial volumetric T2w imaging data. Starting from the ViT model proposed
in [15], we modified the architecture by reducing the number of parameters to
train the model from scratch on the ProstateX-2 challenge dataset [19]. We
also designed a 3D CNN and trained it from scratch on the same dataset as a
reference model against which we compared our 3D ViT.

2.1 Dataset Composition

The dataset for the ProstateX-2 challenge [19] was acquired at the Radboud
University Medical Centre (Radboudumc) in the Prostate MR Reference Center.
The dataset contains 112 lesions from 99 patients. GS is provided for each lesion
to be used as ground truth. Each study was performed through mpMRI, of which
we exploited only axial T2w acquisitions since according to [11], they provide
better results in the application of deep learning models for the assessment of
PCa severity. In terms of aggressiveness, the dataset is composed as follows:
77 LG (69%) and 35 HG (31%). As for the location of the lesion, the dataset is
organized as follows: 50 peripheral (PZ) (44%), 47 anterior fibromuscular stroma
(AS) (43%), and 15 transition (TZ) (13%).

2.2 Data Preparation

To provide the model with only the most meaningful information, we selected
only a subset of slices for each MRI scan, thus reducing the size of the 3D
volume processed by the deep learning models. Based on the supplementary
information provided with the dataset, we first selected the slice that contains
the lesion. Hence, starting from that slice, we selected two slices above and below
for a total of five slices per lesion. This approach allowed us to consider slices
that contain the lesion or are strictly around it. Next, we harmonised the pixels
dynamic from [0 ´ 216] to [0 ´ 28], and we converted each image type from
uint16 to uint8. This operation did not affect the image quality since the uint16
range is barely exploited. Indeed, the maximum value assumed by the pixels in
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all acquisitions was 800. This procedure ensures that each image has the same
range of pixel values.

Since not all the patients had equal image sizes, to make the procedure repro-
ducible to further processing, we rescaled all the images to the most common
and largest ones in the dataset (i.e., 384× 384). This approach limited the num-
ber of patients that required resampling and avoided losing information due to
down-sampling.

Assuming that the prostate is placed within the center of the image, we
center-cropped each slice to let the model focus only on the prostate gland. The
final size of each image was 128× 128. Through a visual inspection, we verified
that this size was appropriate to include the prostate glands of all sizes in the
crop’s field of view and yet, at the same time, remove most of the tissue that
does not belong to the gland. Eventually, for each lesion, we obtained a volume
of size 128× 128× 5.

Since the dataset was unbalanced, we applied, to the training dataset only,
three data augmentation techniques: vertical flip, horizontal flip, and rotation.
Since the training set was composed of 54 LG and 27 HG volumes, we chose
9 HG volumes randomly with a fixed seed, and, for each one, we added three
augmented versions to the set. In the end, the training set was composed of 54
LG and 54 HG volumes.

Eventually, we applied a mean normalization by calculating the mean value
of the pixels across all the volumes within the training set only and subtracting
it from all the slices in the training, validation, and test sets.

2.3 3D ViT Architectures

The ViT model used in this work stemmed from the one introduced in [15]. Since
this model was designed to be trained on 2D images, we modified its structure
so that it could work on 3D volumes by processing 3D patches. As a result,
the only change necessary was in the embeddings’ processing, as they could no
longer be derived from 2D images but from 3D volumes. For this, we introduced
an input variable z that represents the number of slices of the input volume and
so of each patch, and we replaced the 2D convolutional layer used to compute
the patch embeddings with a 3D convolutional layer.

All the three architectures described in the original work [15] were designed
to be pre-trained on large datasets and then fine-tuned on smaller datasets.
As we were working on 3D data, we avoided transfer learning and trained the
3D ViT from scratch. Considering the limited size of the ProstateX-2 dataset,
we then rescaled the original architecture to significantly reduce the number
of parameters to be set. We determined the most suitable architecture with a
grid search on 18 different configurations (see Table 1), designed by varying the
following parameters: Multi Layer Perceptron (MLP) size (d), hidden size (D),
number of layers (L), and number of attention heads (k). In all configurations,
we used a patch size (p) of 16 on the plane (i.e., the shape of the patch was
16× 16× 5). This value seemed reasonable to allow the ViT to process enough
information for each patch. In addition, some preliminary tests using p “ 8
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showed significantly worse results. We chose L and k values with the purpose of
significantly reducing the number of parameters w.r.t the architecture proposed
in [15]. After, we derived D value by exploiting the relation (1)

D “ p2c

k
, (1)

where c is the number of channels in the image. Finally, we calculated d value
according to (2)

d “ p2cn , (2)

where n is the number of patches. We also tested the d value used in the ViT-Base
architecture described in [15], which is equal to 3072.

Table 1. The values considered in the grid-search.

Patch size d L D k N configuration

16 2048 4 64 4 1

32 8 2

16 16 3

6 64 4 4

32 8 5

16 16 6

8 64 4 7

32 8 8

16 16 9

3072 4 64 4 10

32 8 11

16 16 12

6 64 4 13

32 8 14

16 16 15

8 64 4 16

32 8 17

16 16 18

2.4 3D ViTs Training

Training, validation, and test of the models were coded in Python by employ-
ing the following modules: Pytorch (v. cuda-1.10.0) [20], Keras (v. 2.7.0) [21],
Tensorflow (v. 2.7.0) [22], Numpy (v.1 .20.3) [23], Scikit-learn (v. 0.24.2) [24],
Pydicom (v. 2.1.2) [25], Pillow (v. 9.0.1) [26] and Pandas [27].
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Since the goal of this work was a preliminary investigation of the effectiveness
of ViTs in PCa aggressiveness, we did not perform a comprehensive hyperpa-
rameter optimization; instead, we focused mainly on optimizing the architectural
features of ViTs via the grid search described above. The hyperparameters’ val-
ues used are: Learning rate = 1e–4, Weight decay = 1e–2, Number of steps =
1000, Batch size = 4, Warmup steps = 1000, Optimization algorithm = Adam,
Loss function = Binary Cross Entropy. To make each training run reproducible,
we exploited the reproducibility flags provided by Pytorch [20], Numpy [23], and
Random [28] libraries, choosing a seed equal to 42.

We split the entire dataset into two: 90 lesions (80%) were used for the grid
search and the final training of the best-performing architecture; 22 lesions (20%)
were kept for the final test of the best-performing architecture. We ensured a
strict patient separation by this split. This means that all the lesions of the same
patient were contained only in one of the two splits to avoid any data leakage.
In addition, we stratified w.r.t the aggressiveness label (23 LG and 1

3 HG) and
the lesion location (25 PZ, 2

5 AS, and 1
5 TZ).

We used the 90-lesion sub-set to carry out the grid search. This sub-set was
further split into two sub-sets: 90% used for training and 10% used for validation.
As a result, the validation set comprised 9 lesions (4 PZ [3 LG + 1 HG] + 4
AS [3 LG + 1 HG] + 1 TZ HG). For each ViT configuration, we evaluated the
following metrics: specificity, sensitivity, accuracy, AUROC, and F2-score. The
training was performed according to an ad-hoc early-stopping criterion defined
as follows.

Early-Stopping Criterion. On the validation set, we measure both the speci-
ficity and the sensitivity at each epoch. If both metrics are greater than 0.6,
we save the model at that epoch. In the subsequent epochs, if the specificity
and sensitivity condition still occurs, as well as an increase in AUROC, the best
model is updated. If this condition is never met, we save the model that has
the higher AUROC. When possible, this criterion ensures that the model can
distinguish between both classes more accurately.

At the end of the grid search, we chose the best configuration based on
the performance on the validation set, and we re-trained it with a 5-fold cross-
validation (CV) to obtain more statistically reliable results. Namely, the training
set was divided into five equally distributed folds, of which, in turn, one was used
as a validation set. This way, we minimized possible splitting bias. Moreover, also,
in this case, we stratified w.r.t classes and lesion zones. The five models were
finally evaluated on the same test set (i.e., the 22 lesions mentioned above). We
reported performance as mean and standard deviation across each training run.

2.5 CNNs Architectures

As a comparison, we designed a 3D CNN and trained it by following the same
approach used to train the 3D ViTs. The 3D CNN model consisted of three con-
volutional blocks (the composition of each block is described in Table 2) and four
fully connected layers. We performed an architecture optimization of this model
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as done for ViT’s architecture. A total of five configurations were considered.
In each configuration, we varied the size of the Max Pooling kernel within the
three convolutional blocks. As detailed in the Keras library [21] documentation,
a kernel consists of (dim1, dim2, dim3), where dim1 corresponds to the depth,
dim2 to the height and dim3 to the width of the kernel. So, we investigated five
different combinations of the placement and number of kernels acting only on
the plane ((1,2,2)) and kernels acting also on the third dimension ((2,2,2)). We
provide a complete description of the different configurations in the Table 3.

Table 2. The composition of the 3D CNN convolutional blocks. In the first block, k
= 7, while k = 3 in the other two blocks.

Convolutional block

3D Convolutional layer (kernel k× k× k)

3D Max pooling layer

Batch normalization layer

3D Convolutional layer (kernel 1× 1× 1)

Table 3. The composition of the five alternative configurations of the 3D CNN. MP:
Max Pooling.

N configuration MP kernel size

1 (1,2,2) (1,2,2) (2,2,2)

2 (1,2,2) (2,2,2) (2,2,2)

3 (2,2,2) (1,2,2) (1,2,2)

4 (1,2,2) (2,2,2) (1,2,2)

5 (2,2,2) (2,2,2) (1,2,2)

To train each 3D CNN’s configuration, we exploited the same dataset parti-
tioning used for 3D ViTs. To make the results comparable, we again evaluated
the performance of each configuration by training the model with the fixed split-
ting of the dataset. Regarding the early-stopping criterion, we established that
if the validation loss did not decrease for more than five consecutive epochs,
training was stopped. We then re-trained the best configuration by applying
the 5-fold CV, and we evaluated all five models on the test set, reporting the
mean and standard deviation results. The training hyperparameters were set
as follows: Learning rate = 1e–4, Epochs = 20, Batch size = 4, Optimization
algorithm = Adam, Loss Function = Cross Entropy.
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3 Results

3.1 3D ViT Results

The following parameters led to the best-performing 3D ViT: p “ 16, d “ 2048,
L “ 6, D “ 32 and k “ 8. This corresponds to the configuration number five in
Table 1. An overview of the model is depicted in Fig. 1. On the 5-fold CV training
this model provided 0,775 AUROC and 0,523 F2-score. In particular, the best
split w.r.t the AUROC metric yielded 0,927 AUROC and 0,735 F2-score. We
reported complete results for all the five CV models in Table 4.

Fig. 1. Our best-performing ViT architecture.

3.2 CNN Results

The best 3D CNN configuration resulted as the number four of those shown
in Table 3. By applying the 5-fold CV on the test set, this model yielded 0.585
mean AUROC and 0.215 mean F2-score. The best split w.r.t the AUROC metric
provided 0.635 AUROC and 0.3125 F2-score. We reported all the results for the
five CNN models in Table 5.

4 Discussion and Conclusions

This study aimed to evaluate the effectiveness of 3D ViTs in assessing the aggres-
siveness of PCa, as this deep learning model is emerging as a new gold standard in
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Table 4. Results on the test set of the best-performing 3D ViT configuration for each
CV splitting.

Cross-validation fold Specificity Sensitivity Accuracy AUROC F2-score

1 0,688 0,667 0,682 0,74 0,606

2 0,875 0,167 0,682 0,698 0,185

3 0,75 0,333 0,636 0,708 0,333

4 0,75 0,833 0,773 0,802 0,758

5 0,688 0,833 0,727 0,927 0,735

Mean (SD) 0,750 (0,076) 0,567 (0,303) 0,700 (0,052) 0,775 (0,094) 0,523 (0,254)

Table 5. Results on the test set of the best-performing 3D CNN configuration for each
CV splitting.

Cross-validation fold Specificity Sensitivity Accuracy AUROC F2-score

1 1.0 0.167 0.773 0.583 0.2

2 0.813 0.167 0.636 0.604 0.179

3 0.938 0.167 0.727 0.552 0.192

4 0.625 0.333 0.545 0.635 0.313

5 0.9375 0.167 0.727 0.552 0.192

Mean (SD) 0,8625 (0,145) 0,2 (0,068) 0,682 (0,215) 0.585 (0,089) 0.215 (0,050)

several computer vision tasks. As a starting point, we exploited the architecture
proposed in [15], and we modified it to preprocess 3D patches and significantly
reduce the number of parameters. In this way, we could train it from scratch
using a small amount of data, such as the ProstateX-2 challenge dataset [19].
With a grid search of the architectural features of the newly defined 3D ViT
model, we selected the best-performing architecture and evaluated it via a CV
approach. We designed and trained from scratch a 3D CNN model to have a basic
reference model against which to compare our 3D ViT. It is worth noting that, to
our knowledge, this is the first study in which a 3D CNN is trained on volumet-
ric scans to predict the aggressiveness of PCa. Indeed, three-dimensional CNN
models have been previously exploited only to distinguish clinically significant
from non-significant lesions [6,7]. As a result of our comparison, we found that
3D ViT outperformed 3D CNN when trained with the same pipeline. Although
both models exploited volumetric information, the 3D CNN likely suffered more
from the lack of data. The best-performing 3D ViT instead, despite the limited
amount of data and without any specific structural optimization, provided quite
good results, reaching an AUROC of 0.927 on the test set in the best dataset
partitioning strategy.

As a further means of comparison with state-of-the-art methods, we com-
pared our results with those obtained in [10], which is the only work, to the
best of our knowledge, that addressed our same clinical task on the ProstateX-2
challenge dataset. For the sake of clarity, we highlight the differences between
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our work and [10]. In [10], the authors fine-tuned the AlexNet model instead
of training a CNN from scratch; in addition, they exploited 2D images cropped
around the center of the lesion rather than 3D volumes cropped around the
prostate. They also performed training with more data since, in addition to the
ProstateX-2 challenge dataset, they used 132 additional lesions from a private
dataset. Finally, they split the dataset randomly, while we ensured a stratified
and complete separation among patients. We reported the results of the compar-
ison in Table 6. We must emphasize that despite our model’s lower performance,
it was obtained with a smaller training set. Furthermore, unlike [10], we ensured
a complete separation of patients between training and test sets, as well as a dou-
ble stratification, w.r.t. class and the lesion’s zone. This approach suppressed any
bias in favor of the model’s classification capabilities.

Table 6. Comparison between our 3D ViT and the 2D CNN from [10].

Model Specificity Sensitivity Accuracy AUROC F2-score

Our ViT 0,750 (0,076) 0,567 (0,303) 0,700 (0,052) 0,775 (0,094) 0,523 (0,254)

CNN from [10] - 0.794 (0.012) 0.738 (0.014) 0.809 (-) -

Our study has been conceived as a preliminary investigation and, as such,
it has some limitations. Indeed, we did not apply any image enhancement steps
nor any architectural optimization of the original ViT model by, for instance,
including anatomical priors or employing diverse loss functions. ProstateX-2 is a
challenging dataset as it contains lesions in different areas of the prostate gland.
We applied the 3D ViT only to T2w scans, as these appeared more informative
according to our previous research in the field [11]. Nonetheless, the contribu-
tion of ADC maps in cancer lesions located in diverse gland zones might be
informative, and they could enable a multimodal 3D ViT to predict lesions’
aggressiveness more accurately. Overall, as a first exploratory step, our results
are encouraging and suggest that 3D ViTs, trained from scratch, might be a
viable strategy for assessing PCa aggressiveness. Further research is needed to
verify this claim, especially on larger datasets and on datasets acquired with
different protocols and from various institutions. This approach would be nec-
essary to validate the robustness and generalization capabilities of the 3D ViT
model. All these additional experiments will be the subject of our future works.
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Abstract. Over the past couple of years, Transformers became increas-
ingly popular within the deep learning community. Initially designed
for Natural Language Processing tasks, Transformers were then tailored
to fit to the Image Analysis field. The self-attention mechanism behind
Transformers immediately appeared a promising, although computation-
ally expensive, learning approach. However, Transformers do not adapt
as well to tasks involving large images or small datasets. This propelled
the exploration of hybrid CNN-Transformer models, which seemed to
overcome those limitations, thus sparkling an increasing interest also in
the field of medical imaging. Here, a hybrid approach is investigated for
Pigment Signs (PS) segmentation in Fundus Images of patients suffering
from Retinitis Pigmentosa, an eye disorder eventually leading to com-
plete blindness. PS segmentation is a challenging task due to the high
variability of their size, shape and colors and to the difficulty to dis-
tinguish between PS and blood vessels, which often overlap and display
similar colors. To address those issues, we use the Group Transformer
U-Net, a hybrid CNN-Transformer. We investigate the effects, on the
learning process, of using different losses and choosing an appropriate
parameter tuning. We compare the obtained performances with the clas-
sical U-Net architecture. Interestingly, although the results show margins
for a consistent improvement, they do not suggest a clear superiority of
the hybrid architecture. This evidence raises several questions, that we
address here but also deserve to be further investigated, on how and
when Transformers are really the best choice to address medical imaging
tasks.
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1 Introduction

Transformers are the hype of the moment within the deep learning community.
The topic was propelled by the 2017 seminal paper of Vaswani [20], that pro-
posed the Transformer architecture in the Natural Language Processing context.
Rapidly, the Transformer was adapted to tackle various image processing tasks.
Several architectures were proposed, ranging from hybrid approaches mixing tra-
ditional CNNs with self-attention based mechanisms, to pure Transformer-based
ones, such as ViT [4] that showed the possibility to perform image classifica-
tion with an architecture directly inspired to the NLP one. A Transformer is
based on the self-attention mechanism, whose ability to learn both long- and
short-range dependencies, if provided with enough input, has been claimed in
several works including the cited ViT. However, the core of the self-attention
calculation is based on a dot product among all the input pairs, thus making
it computationally unfeasible when working on big-sized images, while requiring
large datasets to ensure performances. Indeed the first successful applications
of Transformers usually involved classification tasks on large dataset of small
images. Hybrid CNN-Transformer approaches tried to overcome these problems,
with the aim to exploit self-attention also for smaller datasets, bigger images and
more complicated tasks such as segmentation or detection [5,6]. The adaptation
of Transformers to address those issues sparkled a great interest in the field of
medical imaging, with an always increasing number of proposed new architec-
tures addressing several topics [6], including medical images segmentation. Here,
we address the task of segmenting Pigment Signs (PSs) in ocular Fundus Images
(FI). PSs are the hallmarks of the Retinitis Pigmentosa (RP), a disease encom-
passing a group of genetically heterogeneous eye disorders, whose effects involve
a progressive visual field loss with night visual impairment that will eventually
lead to complete blindness. No cure is available for RP at the moment, but
therapies can be used to delay the degeneration effects if early administered.
The typical signs of the disease (that also include attenuated retinal vessels and
optical disc pallor) are characteristic PSs slowly accumulating in the retina. Seg-
menting PSs in FI is challenging: FI are very variable from patient to patient,
hence resulting in a wide range of different colors and intensities; RP is not a
common disease, and the publicly available dataset are few and include a limited
number of images (our private dataset contains 100 images from 10 patients); FI
are large (in the order of thousands of pixels both for height and width); they
contain information at a very small scale, thus preventing any successful resizing
strategy; furthermore PSs are usually very close to blood vessels with which they
share very similar coloration. Due to these features, and the complexity of the
segmentation task, we opted for a hybrid architecture, to exploit the advantages
coming from the spatial inductive bias of a classical CNN alongside the Trans-
former long range detection ability. Among the existing architectures we chose
the Group Transformer U-Net (GT U-Net) described in [7] because: i) it couples
the bottleneck approach described in [18] with the sub-patches extraction process
inspired by the successful swin transformer [8]. Hence it is able to capture both
long-range and small-sized dependencies while being less demanding than a pure
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Transformer; ii) it has been used by the authors to segment retinal blood vessel
in FI - a somehow similar problem - with very interesting performances. It is
known that deep learning architectures, when working from the scratch on a new
task, need a very careful parameter tuning process. Moreover, it appears that
Transformers, although generating smoother loss functions (as a result of their
architecture), very often show non-convex loss landscapes when the number of
training data is reduced [12]. The main aim of this work is to explore the impact
of the training choices on the network performances. We worked on the number
and size of the input patches, the batch size, the loss function, and the optimizer
and scheduler used for the learning process. The preliminary results, that we
would like to share with the community, is that not all that glitters is gold: with
a careful set of choices, the GT-UNet displays interesting performances, but not
at all better than a classical U-Net on which a similar tuning strategy is applied.
This finding leaves us with some unanswered questions: is it a Transformer archi-
tecture really the best choice for a medical segmentation problem, where usually
the number of available images is not high? is it a hybrid Transformer the best
choice for the task of PSs segmentation? Are really Transformers worth all the
computational resources they require? We try to get some intuitions about these
topics, that deserve to be further investigated in the future.

2 Methods

The problem of segmenting PSs in FI with a deep learning approach has been
already investigated in [3], where the authors use a U-Net architecture on the
public RIPS dataset [14]. Here we use GT U-Net, a hybrid Transformer model
that tries to combine and exploit the benefits of both the U-Net structure and
the bottleneck multihead self-attention mechanism proposed by Srinivas et al. in
[18]. In detail, the first convolutional block of the U-Net architecture is replaced
with a bottleneck block, both in the encoding and in the decoding paths. Each
bottleneck block implements a multihead self-attention (MHSA) mechanism in
which locality, inside the input image or feature map, is obtained including a
relative distance-aware positional encoding. Furthermore the GT U-Net intro-
duces a grouping strategy (called Group Transformer), inspired by the famous
Swin Transformer [8]: the input is split in smaller patches, on which the before
described MHSA is applied. In order to learn long-range relationships among
distant features, the visual field becomes bigger as the network goes deeper. The
GT U-Net combines the ability to learn local and invariant features (typical
of the convolutional networks) with the detection of long range relationships,
although at the cost of an increased computational complexity.

Here we investigate the performances of the GT U-Net, taking into account
several settings including the input size, both in terms of number of patches and
of patch dimension, the batch size, the loss function, the chosen optimizer and
its learning rate (i.e. initial learning rate and associated scheduling strategy).
See Table 1 for a listing. We adopted a commonly used approach in the field:
since input images are too big to fit in memory we extracted patches in a random
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Table 1. List of the investigated parameters

Parameter name Values (unit)

Patch size (H = W) 64/128 (pixels)

Batch size 64/128

Number of patches 6000/20000/40000

Optimizer Adam/SGD

Scheduler Cosine/Cyclic/One Cycle

Loss Cross Entropy/Lovasz/Focal Tversky/Dicetopk

Initial learning rate 0.25–0.00005 (see text for details)

fashion from them. Following the hypothesis that a larger patch could enhance
the long-range dependencies captured by Transformers, we increased the size of
the considered patch with respect to the vanilla GT U-Net.

Coupling a well-chosen LR with a good scheduling strategy is an impor-
tant choice, that, in practice, also depends from the used optimizer. We selected
adaptive optimizers supporting both the ‘warm restart’ strategy and a scheduling
approach in which the LR is changed over each batch. We used: i) an implemen-
tation of the Adam optimizer [1] that includes the warm restarts, the per-batch
scheduling approach (based on an inner cosine-annealing strategy) and a decou-
pled weight decay technique to reinforce regularization [10]); ii) we used the
classical pytorch Stochastic Gradient Descent (SGD) coupled with two cyclical
schedulers, namely the Cyclic and the One Cycle Scheduler [16].

To select the initial LR we followed the advice and indications given in [17]:
to have some hints on how the loss is dependent from the LR, we calculated
the values of the loss corresponding to different learning rates. The LR was
changed in a predefined range spanning different orders of magnitudes. The
calculation was performed along several batches of training data. In principle,
the LR corresponding to the steepest gradient could be automatically extracted
as the best, but in practice it often happens that it corresponds to local minima
or singularities of the loss function. To avoid choosing a wrong LR, we visually
inspected the loss-vs-LR plot to select the initial value. We adapted the code
provided in [13] to perform both the calculation and visualization. We repeated
the process for each combination of chosen loss/optimizer/batch size.

Since there is a close interplay among the batch size and the chosen LR when
using SGD, with a larger batch size enforcing stability but lowering a bit the
performances, we initially kept the number of extracted patches the same of
our previous work and investigated the variability induced on both the Cyclical
and One Cycle schedulers when doubling the batch size. We also assessed which
of the two scheduler displayed a more reliable behaviour. After, we raised the
number of extracted patches, under the hypothesis that more input would be
beneficial for a (hybrid) Transformer architecture.

We also investigated the use of different loss functions, to try to understand
their impact on the network performances. Inspired by the work of Ma et al. [11],
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we decided to use: i) a Distribution-based loss, namely the Cross-Entropy loss;
ii) two region-based ones, namely the Lovasz loss and the Focal Tversky loss;
iii) a compound loss, namely the Dice TopK loss. Except for the Cross Entropy
and Lovasz losses (for which we used the pytorch standard implementation, and
the code proposed by [2], respectively) the others were taken from the code
associated to the cited Ma et al. paper [11].

Lastly, we picked the models with the best performances and run them with
a even higher number of patches to push further the investigation on how the
size of the input could influence the obtained results.

3 Data

A private dataset of Fundus Images containing PS of RP, acquired at the Eye
Clinic of University of Campania “Luigi Vanvitelli”, has been adopted for the
experiments. The dataset is composed by 100 FI acquired from ten patients.
Five FI per eye, overlying different parts of FI were acquired for each patient.
Indeed, 96 images contain PS while in 4 images PS are absent. The images
were acquired using the digital retinal camera Canon CR4-45NM (Canon UK,
Reigate, UK). The images have a resolution of 1440 × 2160 pixels. Also for
the same patient, the images display a wide variability in terms of contrast,
color balancing and focus/sharpness. An expert in the field of ophthalmology
was asked to manually segment each image, marking all the pixels, assumed
to belong to a PS, with a high degree of confidence. So, for each image was
generated a binary mask containing PS and which represents the Ground Truth
of our dataset. In addition, binary masks delineating the Fields of View were
generated. This private dataset is different from a benchmark dataset namely
RIPS [14], mainly for two aspects: i) the number of patients is higher, but for
each patient only one session was acquired, and ii) the PS are located on the
pericentral region closer to the blood vessels with which they share a similar
color. These aspects make the present dataset more appealing as a benchmark.

4 Experiments and Results

To compare the performances obtained by the various combination of models,
losses, optimizers, schedulers, learning rates, batch sizes, and input size we adopt
the standard metrics, i.e. Accuracy, Sensitivity, Specificity, and F-Measure. They
are based on the definitions of: True Positives (TP), i.e. the number of pixels cor-
rectly classified as PSs; True Negatives, the number of pixels correctly classified
as normal fundus; False Positives (FP), the number of pixels wrongly classified
as PS; False negatives (FN), the number of pixels wrongly assigned to normal
fundus. The standard metrics are then defined as follows: Sensitivity = TP/(TP
+ FN); Specificity = TN/(TN + FP); Accuracy = (TP + TN)/(TP + TN +
FP + FN); F-measure = 2TP/(2TP + FP + FN).

The input dataset is split in a training set containing 8 patients, and a vali-
dation and test sets containing a single patient each, for a total of trainn = 80,
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validn = 10 and testn = 10 images, respectively. We consider the best model
as the one having higher F-measure on the validation set. The metrics for each
experiment are averaged on all the test images.

Code was run for both the models on a single NVIDIA V100 GPU used in
exclusive mode. In Fig. 1 the computing time is shown for both the architectures
and on the three different input sizes used. The difference, as expected, is striking,
with the U-Net running - for the largest input size - in less than two days, and
the GT U-Net requiring more than a month.

Fig. 1. Elapsed times (in days) for the GT U-Net/U-Net models with respect to the
input patches number.

We started our experiments by investigating the effect of the input size, batch
size and their interplay with the SGD optimizer. We started from a number of
patches npatches = 6000, and selected the initial LR by visual inspection of the
Loss-vs-LR plot (LR = 0.05). Pach size psize is set to 64 (as in the original
paper) or 128. Also the batch size bsize is set to 64 or 128. The loss function
is the standard Cross-Entropy. We also repeated the experiments with both the
Cyclic (CY) and One Cycle (OC) Scheduler, to have some indication on what
was the most reliable between them. On the combination psize = 64, bsize = 64
the OC scheduler seems to show one of the superconvergence behaviour claimed
in [17] with the F1 on the test being 0.72 (i.e. better and faster than all the other
tests in the same conditions). On all the other experiments the CY scheduler
has the higher F1. Hence we kept it as the default scheduler for SGD in all the
subsequent experiments. Concerning the batch size, when raising it from 64 to
128 we noticed a slight improvement (F1 = 0.65) that is more evident when the
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psize is set to 128. In this case we have an interesting F1 = 0.72, thus reinforcing
the intuition that using a larger patch size is beneficial for the learning. Since
the batch size seems not to be so relevant for the results, we decided to keep it
low (i.e. bsize = 64) whereas we set psize = 128 throughout all the other tests.

Table 2. Performance measures of the GT U-Net and U-Net models on the different
approaches, i.e. using Adam or SGD as an optimizer, and Cross-Entropy (CE), Lovasz
(LO), Dicetopk (DT) or Focal Tversky (FT) as loss. The number of input patch is
20000. For each approach the best values are in bold, whereas absolute best values are
underlined.

Architecture Optimizer Loss F1 Accuracy Precision Sensitivity Specificity

GT U-Net SGD CE 0.643 0.995 0.610 0.679 0.997

DT 0.708 0.997 0.854 0.605 0.999

LO 0.535 0.992 0.421 0.734 0.994

FT 0.676 0.996 0.711 0.645 0.998

ADAM CE 0.788 0.997 0.826 0.754 0.999

DT 0.758 0.997 0.799 0.720 0.999

LO 0.723 0.996 0.692 0.758 0.998

FT 0.676 0.996 0.642 0.714 0.997

U-Net SGD CE 0.741 0.997 0.860 0.651 0.999

DT 0.776 0.997 0.806 0.749 0.999

LO 0.228 0.972 0.138 0.656 0.974

FT 0.517 0.991 0.396 0.745 0.993

ADAM CE 0.788 0.997 0.833 0.748 0.999

DT 0.764 0.997 0.901 0.663 1.000

LO 0.777 0.997 0.804 0.752 0.999

FT 0.657 0.995 0.555 0.804 0.996

We then decided to increment the number of patches to npatches = 20000, and
to investigate the role of two optimizers (i.e. AdamW and SGD) in combination
with several loss functions. It is well known in literature that segmentation tasks
may benefit from using a loss function that is closer to the measure used to
assess the test results. Cross-Entropy is considered the standard, but is a per-
pixel measure. Hence we used a wide range of functions which calculate the loss
in a more sophisticated way with the aim to better guide the whole learning
process. We calculated the loss-vs-LR plot to visualize the loss landscapes and
identify the initial LRs for all the combinations of optimizers and losses. The
losses parameters were left at the default values.

As a reference for the reader, we briefly recall the results presented in a
preliminary work [15]. Models were run on the same machine above described,
with the pytorch standard Adam implementation as optimizer, and on the same
training, validation and test sets. The other parameters were: npatches = 6000,
psize = 64, bsize = 64. The best results were obtained by the U-Net with the
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Lovasz Loss (F1 score = 0.70) and by the GT U-Net with the Cross-Entropy Loss
(F1 score = 0.675). At the end of all the parameter tuning and loss exploration
we obtained the results shown in Table 2.

Fig. 2. Two sample image portions, and the segmentations obtained by the models
with the Adam optimizer for all the losses. Legend: GR = ground truth, GT = GT
U-Net; U = U-Net; CE = Cross-Entropy Loss; DT = Dice Topk loss; LO = Lovasz
Loss; FT = Focal Tversky Loss

Strikingly, the best F1 is obtained, for both the models, using the classical
combination of Adam with the CE. Even more striking is that the two models
achieve a very similar result. It should be noted that the combined loss DiceTopK
shows very interesting results for all the approaches, thus suggesting that - with
a better tuning of its hyper-parameters - maybe even better results might be
obtained. It seems to be the most reliable loss, since it gives very interesting
results always, whereas all the others display oscillating behaviours, in particular
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when the SGD optimizer is used. The Lovasz loss confirms its promising results
when combined with ADAM on the U-Net model.

The quality of the obtained segmentation could be visually inspected by
looking at Fig. 2 where we show the results obtained for two image portions
(A and B). Only a reduced part of the whole retina image is shown, to better
visualize small PS. Segmentations are shown for all the used losses.

Finally, to get some intuition on how relevant is the amount of input patches,
but also to try to further understand to which extent the Transformer contributes
to the results, we set npatches = 40000, following the suggestion that increasing
the input would help the Transformer in having better performances. Nonethe-
less, also in this case the results do not show a superiority of the GT U-Net over
its classical counterpart. However, this might be also due to a reduced amount of
initial images: although extracting a lot of patches, this might not really extend
the amount of information provided, since the variability is still restricted to 10
patients.

5 Discussion and Conclusions

Although being a preliminary result, it is striking to see that the GT U-Net
performances are comparable but not better than its classical U-Net counterpart.
This observation raises several questions that remain open and deserve to be
further investigated. It is a Transformer always a better choice for medical image
segmentation? Are really Transformers worth all the effort needed, in terms
of both computational and time resources? Although generally Transformers
seem to perform very well, there are for sure some drawbacks that should be
taken into account. Apparently the MHSA mechanism induces smoother loss
landscapes [12]. However, this seems to apply only when large input datasets
are considered, with non-convex landscapes being generated when the number
of input images is too low. This behaviour is not fully explored yet, but it seems
to corroborate the well-known Transformer need of having very large datasets
in input. When this necessity is not met, a very careful choice of the training
parameters is mandatory to obtain interesting performances. This tuning process
might be very time consuming: in our experiments the GT U-net training times
were measured in weeks, whereas the U-Net completes in days. Another question
to take into account regards the specific problem of PS segmentation: is it a
Transformer approach the most suitable for our problem? We postulated the
need for learning the long-range dependencies to discriminate among pigments
and blood vessels. The latter have a well-defined spacial continuity on a larger
scale than pigments, thus the blood vessels ideally would be better caught using
a Transformer. Maybe this is again a problem related to the paucity of the
training image dataset: this is a common problem in the field of medical images,
where data collection is complicated and often limited. On the other side, getting
more images would require having more computational resources, thus strongly
limiting the research groups that could afford similar approaches. Bringing all
together: given our problem, input dataset, chosen architecture and available
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computational resources it seems more efficient using a simple U-Net rather than
the GT U-net. Interestingly, this could be a very reasonable choice as stated in
the very recent paper of [9]. The authors note that the power of the hybrid
CNN-Transformer architectures is usually attributed to the Transformer part.
However is not really understood to what extent the Transformer contributes to
the hybrid architectures performances, and authors show that - if carefully tuned
- a classical CNN could perform as well as a hybrid architecture, but with the plus
of having the well established CNN’s simplicity and economy. Hence, we plan
to further study the problem of PS segmentation exploring several directions: i)
implementing a pure CNN with all the suggestions proposed in [9] to see if and
how performances would improve; using a pure Transformer such as [19], both
starting from the scratch or using a pre-trained model, to try to assess how the
Transformer’s MHSA mechanism is relevant for our problem. Concluding, we
would like to share with the community of medical imaging a preliminary yet
interesting finding: maybe CNN are perceived as old if compared with the way
more fashionable Transformers, but they are still cheap, efficient and affordable.
We think that further studies are still needed to fully understand which are
the conditions and the tasks on which Transformers could be the best choice,
especially in the field of medical imaging.
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Abstract. Automated liver segmentation from radiology scans (CT,
MRI) can improve surgery and therapy planning and follow-up assess-
ment in addition to conventional use for diagnosis and prognosis.
Although convolution neural networks (CNNs) have became the stan-
dard image segmentation tasks, more recently this has started to change
towards Transformers based architectures because Transformers are tak-
ing advantage of capturing long range dependence modeling capability in
signals, so called attention mechanism. In this study, we propose a new
segmentation algorithm using a hybrid approach combining the Trans-
former(s) with the Generative Adversarial Network (GAN) approach.
The premise behind this choice is that the self-attention mechanism of the
Transformers allows the network to aggregate the high dimensional fea-
ture and provide global information modeling. This mechanism provides
better segmentation performance compared with traditional methods.
Furthermore, we encode this generator into the GAN based architecture
so that the discriminator network in the GAN can classify the credibil-
ity of the generated segmentation masks compared with the real masks
coming from human (expert) annotations. This allows us to extract the
high dimensional topology information in the mask for biomedical image
segmentation and provide more reliable segmentation results. Our model
achieved a high dice coefficient of 0.9433, recall of 0.9515, and precision
of 0.9376 and outperformed other Transformer based approaches.

Keywords: Liver segmentation · Transformer · Generative adversarial
network

1 Introduction

Liver cancer is among the leading causes of cancer-related deaths, accounting for
8.3% of cancer mortality [14]. The high variability in shape, size, appearance,
and local orientations makes liver (and liver diseases such as tumors, fibrosis)
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challenging to analyze from radiology scans for which the image segmentation is
often necessary [3]. An accurate organ and lesion segmentation could facilitate
reliable diagnosis and therapy planning including prognosis [5].

As a solution to biomedical image segmentation, the literature is vast and
rich. The self-attention mechanism is nowadays widely used in the biomedical
image segmentation field where long-range dependencies and context dependent
features are essential. By capturing such information, transformer based segmen-
tation architectures (for example, SwinUNet [2]) have achieved promising per-
formance on many vision tasks including biomedical image segmentation [7,15].

In parallel to the all advances in Transformers, generative methods have
achieved remarkable progresses in almost all fields of computer vision too [4].
For example, Generative Adversarial Networks (GAN) [6] is a widely used tool
for generating one target image from one source image. GAN has been applied to
the image segmentation framework to distinguish the credibility of the generated
masks like previous studies [9,11]. The high dimensional topology information is
an important feature for pixel level classification, thus segmentation. For exam-
ple, the segmented mask should recognize the object location, orientation, and
scale prior to delineation procedure, but most current segmentation engines are
likely to provide false positives outside the target region or conversely false neg-
atives within the target region due to an inappropriate recognition of the target
regions. By introducing the discriminator architecture (as a part of GAN) to
distinguish whether the segmentation mask is high quality or not, we could
proactively screen poor predictions from the segmentation model. Furthermore,
this strategy can also allow us to take advantage of many unpaired segmenta-
tion masks which can be easily acquired or even simulated in the segmentation
targets. To this end, in this paper, we propose a Transformer based GAN archi-
tecture as well as a Transformer based CycleGAN architecture for automatic liver
segmentation, a very important clinical precursor for liver diseases. By combin-
ing two strong algorithms, we aim to achieve both good recognition (localization)
of the target region and high quality delineations.

2 Proposed Method

We first investigated the transformer architecture to solve the liver segmenta-
tion problem from radiology scans, CT in particular due to its widespread use
and being the first choice in most liver disease quantification. The self-attention
mechanism of the Transformers has been demonstrated to be very effective app-
roach when finding long range dependencies as stated before. This can be quite
beneficial for the liver segmentation problem especially because the object of
interest (liver) is large and pixels constituting the same object are far from each
other. We also utilized an adversarial training approach to boost the segmenta-
tion model performance. For this, we have devised a conditional image generator
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Fig. 1. Block diagram of the Transformer GAN. Generator (a) and discriminator com-
ponents (b) include Transformer blocks (red). (c) CycleGAN with two generators and
two discriminators is illustrated. (Color figure online)

in a vanilla-GAN that learns a mapping between the CT slices and the segmen-
tation maps (i.e., surrogate of the truths or reference standard). The adversarial
training forces the generator model to predict more realistic segmentation out-
comes. In addition to vanilla-GAN, we have also utilized the CycleGAN [13,17]
approach to investigate the effect of cycle consistency constraint on the segmen-
tation task. Figure 1 demonstrates the general overview of the proposed method.

2.1 Transformer Based GAN

Like other GAN architectures [10], Transformer based GAN architecture is com-
posed of two related sub-architectures: the generator and the discriminator. The
generator part could generate the segmentation mask from the raw image (i.e.,
segmentation task itself), while the discriminator can provide us with the con-
fidence of such generated mask compared with the expert-human annotated
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masks. GAN provides a better way to distinguish the high-dimensional mor-
phology information. The discriminator can provide the similarity between the
predicted masks and the ground truth (i.e., surrogate truth) masks. Vanilla GAN
considers the whole segmentation to decide whether it is fake or not.

2.2 Transformer Based CycleGAN

One alternative extension to the standard GAN approach is to use transformer
based segmentation model within the CycleGAN setup. Unlike a standard GAN,
CycleGAN consists of two generators and two discriminator networks. While the
first discriminator accepts the raw images as input and predicts the segmenta-
tion masks, the second generator takes the predicted segmentation maps as input
and maps them back to the input image. The first discriminator classifies the
segmentation masks as either real or fake, and the second discriminator distin-
guishes the real and the reconstructed image. Figure 1 illustrates this procedure
with liver segmentation from CT scans. The CycleGAN does not require paired
examples to conduct the classification and predictions, and the training can
be performed in an unsupervised manner which is a real strength compared to
vanilla GANs.

To embed transformers within the CycleGAN, we utilized the encoder-
decoder style convolution transformer model [13]. The premise behind this idea
was that the encoder module takes the input image and decreases the spatial
dimensions while extracting features with convolution layers. This allowed pro-
cessing of large-scale images. The core transformer module consisted of several
stacked linear layers and self-attention blocks. The decoder part increased the
spatial dimension of the intermediate features and makes the final prediction.
For the discriminator network, we tried three convolution architectures. The
vanilla-GAN discriminator evaluates the input image as a whole. Alternatively,
we have adopted PatchGAN discriminator architecture [8] to focus on small
mask patches to decide the realness of each region. It splits the input masks
into NxN regions and asses their quality individually. When we set the patch
size to a pixel, PatchGAN can be considered as pixel level discriminator. W have
observed that the pixel level discriminator tends to surpass other architecture for
segmentation. Figure 1 demonstrates the network overview. In all of the experi-
ments, the segmentation model uses the same convolution transformer and pixel
level discriminator architectures.

3 Experimental Setup

We have used Liver Tumor Segmentation Challenge (LiTS) dataset. LiTS con-
sists of 131 CT scans. This dataset is publicly available under segmentation
challenge website and approved IRB by the challenge organizers. More informa-
tion about the dataset and challenge can be found here1.

1 https://competitions.codalab.org/competitions/17094#learn the details.

https://competitions.codalab.org/competitions/17094#learn_the_details
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All our models were trained on NVIDIA RTX A6000 GPU after implemented
using the PyTorch [12] framework. We have used 95 samples for training and
36 samples for testing. All models are trained on the same hyperparameters
configuration with a learning rate of 2e−4, and Adam optimizer with beta1
being 0.5 and beta2 being 0.999. All of the discriminators use the pixel level
discriminator in both GAN and CycleGAN experiments. We have used recall,
precision, and dice coefficient for quantitative evaluations of the segmentation.
Further, segmentation results were qualitatively evaluated by the participating
physicians. Our algorithms are available for public use.

Table 1. Performance of Transformer based methods on the LITS dataset [1].

Method Dice coefficient Precision Recall

Transformer [13,16] 0.9432 0.9464 0.9425

Transformer - CycleGAN (ours) 0.9359 0.9539 0.9205

Transformer - GAN (ours) 0.9433 0.9376 0.9515

4 Results

We presented the evaluation results in Table 1. Our best performing method
was Transformer based GAN architecture, achieved a highest dice coefficient
of 0.9433 and recall rate of 0.9515. Similarly, our transformer based CycleGAN
architecture has the highest precision, 0.9539. With Transformer based GAN, we
achieved 0.9% improvement in recall and 0.01% improvement in dice coefficient
with respect to the vanilla Transformers. It is to be noted that we have used also
post-processing technique which boosts the performance for“all” the baselines
to avoid biases one from each other.

Figure 2 shows our qualitative results for the liver segmentation. We have
examined all the liver segmentation results one-by-one and no failure were iden-
tified by the participating physicians. Hence, visual results agreed with the quan-
titative results as described in Table 1.
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Fig. 2. Transformer based GAN liver segmentation results. Green: True positive, Red:
False Positive, Blue: False Negative (Color figure online).

5 Conclusion

In this study, we explored the use of transformer-based GAN architectures for
medical image segmentation. Specifically, we used a self-attention mechanism
and designed a discriminator for classifying the credibility of generated segmen-
tation masks. Our experimental result showed that the proposed new segmenta-
tion architectures could provide accurate and reliable segmentation performance
as compared to the baseline Transformers. Although we have shown our results
in an important clinical problem for liver diseases where image-based quantifi-
cation is vital, the proposed hybrid architecture (i.e., combination of GAN and
Transformers) can potentially be applied to various medical image segmentation
tasks beyond liver CTs as the algorithms are generic, reproducible, and carries
similarities with the other segmentation tasks in biomedical imaging field. We
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anticipate that our architecture can also be applied to medical scans within the
semi-supervised learning, planned as a future work.

Acknowledgement. This study is partially supported by NIH NCI grants R01-
CA246704 and R01-CA240639.
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Abstract. The livestock sector, like other sectors, has a high environmental impact
and we must find solutions to reduce it to accomplish the requirements for a more
sustainable production system in line with the EuropeanGreenDeal requirements.

The aim of this paper is to show a case study in which it is evaluated the effect
of PLF technology on the environmental impact of dairy cattle farming by using
simulations of Life Cycle Assessment (LCA). This case study involves the use
of pedometers for an improved detection of oestrus events in order to make more
efficient the livestock activities and the related environmental impact. The results
show that the application of LCA can work as a feasible approach to get insight
in the significance of the environmental benefit of applying PLF tools on farms.

Keywords: Environmental sustainability · Dairy cows · Monitoring · Efficient
management

1 Introduction

It is widely known and recognized that the livestock sector has both positive and negative
impacts on the environment. These latter are related mostly to the emissions caused by
animals such as methane from enteric fermentation of dairy cows and to the emissions
from the storage, treatment, and field distribution practices of slurry [1]. Considering
the big growth of the sector of the last decades and that it is continuing to expand to
respond to the global increased demand for animal products, the livestock sector needs
a critical reflection [2–4]. A possible trade-off between the positive and negative effects
of livestock production on the environmental impact can be identified with an enhanced
holistic efficiency and performance, partiallymade possible by technology and improved
farm management [1, 3]. Measures to reduce emissions have been widely studied and
proposed in the recent past, and often mitigation strategies introduced on farms [5].
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However, carrying out accurate measurements by experimental work is very expensive
in equipment, monitoring techniques, time required for several seasons and manpower.
Therefore, for evaluating the environmental impact of different processes, models and
secondary data are commonly used, which have the advantage of being more widely
adoptable, although less accurate. When it is required to compare different scenarios in
which technologies are present or not, the main issue is to collect accurate data about the
case in which no technologies are available, because less data are available. This makes
comparisons more difficult. Moreover, for some cases like emissions from naturally
ventilated buildings there are even no accurate monitoring techniques, therefore, the
error might be even bigger than the positive effect of technology. In particular, ammonia
concentrations could be measured with expensive techniques but measuring methane or
monitoring the ventilation rate is much more challenging.

In the context of evaluating the environmental impact of processes in which different
methods or technologies are adopted andneed to be compared, theLifeCycleAssessment
(LCA) approach is helpful because it allows to have a holistic view on the system and
evaluate possible side effects on the environmental perspective of different mitigation
strategies [6, 7]. However, also the effect of ecosystem services and territorymaintenance
need to be mentioned [6, 8] and is not properly included in LCA studies. Evaluations on
the effect of global warming are widely increasing, due to its important role in current
and future policies [1, 3], especially in view of the European Green Deal and Farm to
Fork strategy that aim to abate greenhouse gases (GHG) emissions by 2030.

To achieve the primary goal of a farmer (i.e. production of milk, meat, eggs, fiber,
etc.) high productivity in an economically sustainable way is fundamental. Growing
healthy animals, with good performances, welfare, and a balanced use of inputs (e.g.,
feed) is the key point [9]. These aspects have also an environmentally sustainable façade,
since a balanced use of inputs in respect to the outputs, good performances, efficiency,
high yields, and high welfare and health indicators are positive aspects for an envi-
ronmentally sustainable livestock system [10]. In addition, considering that farms are
reducing in number while increasing the number of farmed animals, monitoring all indi-
viduals within the herd is challenging for a farmer, and automatic systems, sensors and
technology can be of help [11, 12]. Technologies able to support farmers in monitoring
big herds and single animals and in the decision-making process are spreading widely.
They also bring benefits to the monitoring of variables that have become impossible
to be continuously monitored by humans, such as the identification of night-time or
silent oestrus events [13, 14], variations in behaviour [15–17], but also the monitoring
of other variables that help improve welfare, such as the microclimate in the barn (i.e.
temperature, relative humidity, wind speed) [18] and the air quality (i.e. pollutants con-
centration in air) [19]. Furthermore, until now farmers, researchers and policy makers
have focused their attention on animals in their production stages, but it is important to
provide enhancements to the non-productive phases as well, since they are the future
productive herd: animals growing in healthy conditions will be more robust and resistant
to illnesses or stresses during their productive stages. Paying attention to young animals
also influences the environmental perspective. In fact, heifers not adequately farmed (i.e.
fed and monitored) will postpone their first calving, thus prolonging their unproductive
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age. In this context it is much interesting to evaluate the environmental impact of this
difference. However, as mentioned, measuring the potential environmental advantage
of new PLF technology in comparison with the absence of technology is quite complex
because setting up experimental studies that compare this condition (with PLF) with the
one prior to the installation of PLF tools entails the difficulty of not having specific data
in that previous period. Collecting accurate data during several seasons is expensive,
takes a lot of time and manpower and is often not accurate enough to come up with
reliable results.

The example that we use aims to show the potential of LCA to evaluate environmen-
tal impacts on dairy cows, thus comparing the environmental sustainability of a farm
equipped or not with PLF, in particular with pedometers. In this condition, both the age
of the first calving and the efficiency of the heat detection are evaluated. A simulation
is carried out for a traditional dairy cattle farm, modelling the effect of PLF installation.
The benefits of PLF in this example can serve as insights in the general use of PLF and
show the interest in having the possibility to quantify the beneficial effect of PLF on
farm.

2 Materials and Methods

2.1 Farm Description

To evaluate the environmental performance of a dairy cattle farm in which pedometers
or other similar technological support is introduced to detect heat events, a dairy cattle
farm of average dimensions located in Northern Italy was identified.

This farm has no technological support, since it is a traditional farmwhere the farmer
is still evaluating the potential benefit of introducing sensors/tools (Traditional Scenario,
TS). In Italy, in fact only about 30% of farms have PLF tools for heat detection [20],
which is by far one of the most widespread tools. This farm has the characteristics
reported in Table 1 regarding herd dimension, average dry matter intake (kg DMI d−1)
and milk production (kg milk d−1) in the different phases of the lactation.

Considering the lack of technological support in the herd monitoring, the perfor-
mances of these cows are not optimal; cows farmed in this farm have an average age at
first calving equal to 28months, and the pregnancy rate and fertilization success are quite
unsatisfactory, on average with 3 months of failed inseminations. This is quite common
in Italian dairy cattle farms of this type [21]. In addition, the lactation lasts longer than the
theoretical 305 DIM, and it reaches 395 DIM before drying, which creates unnecessary
environmental impacts and needs therefore to be avoided.
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Table 1. Farm characteristics in the traditional scenario.

Variable Unit TS

Dairy cows n 180

Dry cows n 28

Heifers n 82

Calves n 70

Dairy cows kg DM d−1 23.0

Dry cows kg DM d−1 12.0

Heifers kg DM d−1 12.0

Calves kg DM d−1 8.0

Total lactations n 3

Milk prod. at 0–90 DIM kg d−1 45

Milk prod. at 90–210 DIM kg d−1 37

Milk prod. at 210–305 DIM kg d−1 26

Milk prod. at 305–365 DIM kg d−1 22

Milk prod. at 365–395 DIM kg d−1 21

2.2 Modelled Scenarios

Beside these traditional farm characteristics, two improved situations are modelled and
tested on their environmental impact consequences:

– “Optimal Scenario” (OS): in this case, the farmer adopts the best technologies that
can support the heat events detection, such as the measurement of the progesterone
level in milk. In this case, the farmer properly grows heifers and promptly identifies
the oestrus window, even when it occurs at night-time, or it is silent. Thank to this
improved management practice, the first calving takes place at 23 months, which is a
proper timing for not encountering parturition problems [22]. The subsequent calving-
conception interval (CCI) is minimized since monitoring progesterone in milk can
allow identifying at best the oestrus events and defining when to inseminate the cow.
This implies that the lactation proceeds in its optimal theoretical duration and the cow
is dried off after 305 DIM;

– “Intermediate Scenario” (IS): in this case, the farmer installs common technology
solutions like accelerometer sensors/pedometers on the cows.This allows the detection
of heat events with a better accuracy than humans but with possible detection errors. In
this case, the heifers are properly grown, but insemination and the subsequent calving
take place later than in OS (calving at 25 months). This condition is quite common in
Italian livestock farms of Northern Italy, where 25 months represents the average age
of the first calving [23]. Due to not identifying all of the estrus events, some failures
in cows’ fertilization are considered, and therefore they are dried off after 365 DIM,
which is also a common practice.
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Table 2 reports the differences in the age at first calving and the duration of lactation
of TS (traditional scenario), IS (intermediate scenario) and OS (optimal scenario).

Table 2. Age at first calving and duration of the lactation in the three scenarios (traditional,
intermediate and optimal, respectively for TS, IS and OS).

Variable Unit TS IS OS

Age at first calving months 28 25 23

Duration of lactation days 395 365 305

2.3 LCA and Climate Change

After a literature survey and previous experience on the assessment of environmental
sustainability of dairy farms inNorthern Italy, an equation that links dairy efficiencywith
climate change was defined [7, 24, 25]. From this equation, the environmental impact
for the category of Climate Change (CC; kg CO2 eq.) was quantified and used to predict
the environmental impact of the modelled scenarios.

3 Results and Discussion

Table 3 reports the average dry matter intake (DMI; kg DM) per scenario of farmed
animals during the early growing stages and, for dairy and dry cows, for each lactation.

Table 3. Dry matter intake of the entire herd per lactation per scenario.

Variable Unit TS IS OS

Dairy cows t DM 1635.3 1511.1 1262.7

Dry cows t DM 13.4 13.4 13.4

Heifers t DM 275.5 246.0 226.3

Calves t DM 67.2 67.2 67.2

Total ingestion t DM lact−1 1991.5 1837.7 1569.7

Table 4, instead, shows the milk production of the 180 dairy cows in the 3 scenarios,
depending on the length of their lactation period. Here, IS and OS show a lower total
ingestion for dairy cows because of the shorter duration of the lactation compared to
TS, and because of the shorter duration of the diet as a heifer (i.e. different age at
first calving). Similarly, for milk production it is observed that IS and OS produce less
milk than TS, because of the shorter duration of the lactation period. In this period,
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however, the lactation curve is decreasing, therefore milk production is lower and milk
quality reduces as well. Both aspects of feed intake and milk production contribute to
the calculation of the Dairy Efficiency (DE; kg milk kg DMI-1), which is expressed as
the amount of milk produced per amount of feed ingested. DE results higher in OS and
lower in IS and TS.

Table 4. Milk production of the farmed dairy cows (n. 180) per lactation per scenario, and the
calculated average dairy efficiency (DE; kg milk kg DMI−1).

Variable Unit TS IS OS

Milk prod. 0–90 t d−1 729 729 729

Milk prod. 90–210 t d−1 799.2 799.2 799.2

Milk prod. 210–305 t d−1 444.6 444.6 444.6

Milk prod. 305–365 t d−1 237.6 237.6

Milk prod. 365–395 t d−1 113.4

Total milk production t lactation−1 2323.8 2210.4 1972.8

Dairy efficiency kgmilk kgDMI
−1 1.17 1.20 1.26

A literature search was carried out searching for studies in which both the Dairy
Efficiency (DE) of livestock farms and the calculated Climate Change (CC) data were
reported. From the analysis of these data have resulted the values shown in Table 5. The
linear regression among these values is reported in Eq. (1) and shows quite satisfactory
results, with R2 = 0.69:

CC = −1.6763 ∗ DE + 3.6122 (1)

Table 5. Mean and standard deviation of DE and CC from literature for calculating Eq. (1).

n. farms DE CC Authors

33 1.35 (0.26) 1.38 (0.32) Lovarelli et al.
(2019)

102 1.19 (0.25) 1.51 (0.53) Zucali et al.
(2017)

The application of Eq. (1) to the studied scenarios, results in CC (kgCO2eq kgmilk
−1)

values for the 3 scenarios as: 1.65 (TS), 1.60 (IS) and 1.50 (OS), respectively. This is
a simplification in the quantification of CC, because it assumed that the composition
of the animals’ diet and milk quantity and quality are not affected by any difference in
the 3 scenarios. Instead, the different CC values are caused by the duration of one diet
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instead of the other and of one lactation duration instead of the other. For a more detailed
assessment, additional considerations could be done to include the possible effects of
different productivity, milk quality and udder health due to the different management
opportunities and technological equipment. In this preliminary study, these differences
were excluded to avoid additional variability.

Some further considerations can be made by making equal lifetimes for the cows.
Both a longer and a shorter lifetime have been tested as follows: (a) if cows in OS live
longer, reaching equal levels of IS and TS (i.e. 66 or 72months) or (b) if cows live shorter
(i.e. also IS and TS have lifetime equal to 58 months as in OS). Of course, this is an
assumption based on the need to compare all scenarios based on the common productive
duration, set equal to 3 lactations. When changing the lifetime to make it comparable
in the 3 scenarios, the number of lactations becomes the variable. In this condition, the
cows in IS and TS need 8 and 14months more, respectively, than cows in OS to conclude
the 3rd lactation. Therefore, if cows in OS had a prolonged productive period, they would
eat (with a diet for dry and dairy) and produce more, as reported in Table 6 (they would
add one dry period and one lactation – partial in BS-66 or complete in BS-72).

Table 6. Results for prolonged lifetime of OS.

Variable Unit OS-66 months OS-72 months

Lifetime months 66 72

Additional milk prod. t 1328.4 1972.8

Total milk prod.a t 7247 7891

Additional feed t 765.4 1323.7

Total feeda t 5474 6033

Dairy efficiency kgmilk kgDMI
−1 1.32 1.31

Climate change kgCO2eq kgmilk
−1 1.39 1.42

a referred to lifetime

Conversely, if the cows in TS and IS had a shorter productive period to compare
them with cows in OS, then the results would be as reported in Table 7, with a common
lifetime equal to 58 months, thus not being able to start (TS) or conclude (IS) the 2nd

lactation.
The results of CC reported in Table 6 and 7 were calculated based on the different

DE values that result from the modelled assumptions. Both DE and CC result better in
OS in all the modelled options (i.e. OS, OS-66 months and OS-72 months), followed by
IS.
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Table 7. Results for shortened lifetime of TS (-14 months) and IS (-8 months).

Variable Unit TS-58 months IS-58 months

Lifetime months 58 58

Lowered milk prod. t −2324 −1238

Total milk prod.a t 4647.6 5392.8

Lowered feed t −9.1 −5.6

Total feeda t 5965.3 5507.6

Dairy efficiency kgmilk kgDMI
−1 0.78 0.98

Climate change kgCO2eq kgmilk
−1 2.31 1.97

a referred to lifetime

4 Conclusions

The example used in this case study shows that using a PLF technology that permits a
more accurate identification of oestrus events and that avoids missed inseminations in
dairy cows, finally leads to relevant reductions in the Climate Change impact category.
Therefore, it is important to direct farmers towards improvedmanagement practices sup-
ported by the high potentialities of technologies and of artificial intelligence predictive
models. LCA can work as a feasible approach to understand the significance of an envi-
ronmental benefit when applying a certain PLF technology on farms. Certainly, a more
comprehensive LCA study can be done by considering not only the impact category of
Climate Change but also the other environmental impact categories listed in an LCA
study, in order to understand if additional benefits can be achieved in the system.
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Abstract. The behavior of animals reflects their internal state. Changes
in behavior, such as a lack of sleep, can be detected as early warning signs
of health issues. Zoologists are often required to use video recordings to
study animal activity. These videos are generally not sufficiently indexed,
so the process is long and laborious, and the observation results may vary
between the observers. This study looks at the difficulty of measuring
elephant sleep stages from surveillance videos of the elephant bran at
night. To assist zoologists, we propose using deep learning techniques to
automatically locate elephants in each camera surveillance, then mapping
the elephants detected onto the barn plan. Instead of watching all of the
videos, zoologists will examine the mapping history, allowing them to
measure elephant sleeping stages faster. Overall, our approach monitors
elephants in their barn with a high degree of accuracy.

Keywords: Animal behavior · Object detection · Mapping

1 Introduction

In an internationally renowned modern zoo, improving animal management,
farming, and welfare standards is an essential and ongoing scientific process. As
a result, developing novel tools for monitoring and analyzing animal behavior
is becoming a critical issue for animal park management. Especially, continuous
and direct observation of animals by humans 24 hours a day, seven days a week
is impractical, both financially and in terms of animal behavior.

The video surveillance systems for monitoring animal activity have several
advantages over animal-based systems, including lower installation and main-
tenance costs, a modular and scalable system, and, most importantly, a non-
invasive technique for animals. However, this approach faces some technical and
scientific challenges, including poor image acquisition conditions at night, the
presence of dust, and a large number of cameras, all of which make the duty of
notation difficult for breeders and carers.
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Fig. 1. An image was captured using camera 5 of box C. The image shows two ele-
phants, one awake and the other lying down.

Fortunately, the deep learning (DL) techniques make this approach possible
to address these challenges, as evidenced by the proliferation of research in recent
years on the analysis of human behavior from videos [8]. As a result, it is possible
to develop a methodology for analyzing animal behavior. An example of this is
to use a video surveillance system to detect dairy estrus at night [36]. We can
also refer to an automated tracking method for measuring behavioral changes
in pigs [18]. Recently, a panda face recognition algorithm based on deep neural
networks was developed using multi-camera and demonstrated pandas in their
daily activities [4].

This framework will investigate elephants’ behaviors, particularly at night.
The central aspect is concerned with health management to identify sleep-
deprived elephants. Another factor is to observe herd interactions at night. Do
nocturnal herd movements, for example, bothersome elephants more than oth-
ers? In this context, the idea of our work is to use a DL approach to automati-
cally process nighttime images captured by surveillance cameras, which focuses
on automated object detection of elephants. In addition, projections of each
elephant’s location on the enclosure plan to track the herd’s nighttime move-
ment. This study’s findings will benefit animal parks by reducing zoologists’
workload through intelligent video surveillance and help them to understand
the nature of elephant sleep better. This study may also serve for future applied
research on automatic animal monitoring in intensive farms. For example, based
on the elephants’ color and size, this work can easily be re-targeted to the cat-
tle. The rest of this paper is structured as follows. Section 2 reviews the latest
object detection approaches. Section 3 provides an overview of the framework
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and describes the proposed method for detecting elephant groups during sleep
in the zoo enclosure. Section 4 discusses the experimental results of databases
used in this work. Finally, Sect. 5 concludes the study with general debates and
works for the future.

2 Object Detection

This section investigates approaches for object detection to identify the behav-
ior of elephants in video clips. Not only should these approaches detect object
location, but they should also help to classify objects to aid in semantic inter-
pretation. Traditional solutions solve detection as a classification of candidate
border boxes by using handcrafted features like HoG [5] and SIFT [20]. Recent
DL is the basis of new solutions [15]. Typically, two components form a modern
detector, a backbone for transforming images to feature maps and a head for
predicting classes and boundary object boxes. VGG [25], ResNet [9], DenseNet
[11], ResNeXt [35], and MobileNet [10] are the most common backbone models.
There are two major types in the head part: two-stage and one-stage models.

The two-stage models first propose multiple object candidates, known as
regions of interest (RoI). Then classify the region candidates and refine their
location. Region-based Convolutional Neural Networks (R-CNN) is a popular
two-stage model [7]. Over the years, many modifications have taken place in the
networks of this family. To reduce redundant CNN computation in R-CNN for
acceleration, Faster R-CNN [23] contains a Regional Proposal Network (RPN)
instead of the Selective Search algorithm [29]. Due to overfitting at training
and a quality mismatch at inference, Cascade R-CNN [2] concatenates several
detectors trained with increased intersection-over-union (IoU) thresholds. Later,
Libra R-CNN [21] integrates samples of IoU-balanced, balanced feature pyramid,
and balanced L1 loss to address training imbalances.

Alternatively, the one-stage models directly predict classes and box locations
without generating a sparse RoI set. YOLO [22] is one of the first efforts to
propose a unified architecture that divides the image into a regular grid and
makes two bounding boxes predict each cell. In the following years, researchers
used anchor boxes, a better backbone, and several further tweaks to develop
multiple YOLO variants [6,30]. In addition, SSD [16] predicts class scores and
bounding boxes using multi-scale features. RetinaNet [13] employs a focal loss
function to deal with class imbalance during training. In the case of EfficientDet
[27], as its name suggests, EfficientNet [26] serves as a backbone network with
Bidirectional Feature Pyramid Network (BiFPN) as the feature network and a
shared prediction class/box network.

Besides these two models, the success of Transformers in many computer
vision fields recently led to a new paradigm for object detection [12]. The cru-
cial part of the Transformer is the multi-head attention, which can increase
model capacities significantly. The first proposal was the TRansformer DEtec-
tion (DETR) network [3]. It uses a simple architecture by combining CNN and
Transformer encoder-decoder. When compared to other detectors, DETR was
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the first end-to-end object detector that did not require handcrafted components
such as rules-based training target assignment or non-maximum suppression
post-processing. Later, a DETR variant [37], inspired by deformable convolu-
tion, developed multi-scale deformable attention modules.

3 Proposed Approach

This section discusses the proposed methodology for detecting sleeping zoo
elephants and mapping the herd’s nighttime movement. These elephants are
brought to an elephant barn every evening (around 6 pm) until the following
morning. They will often take short naps and choose to lie down to sleep. Figure 1
shows some sleeping zoo elephants lying down. During their slumber, which lasts
between 4 and 6 h, the elephants awaken and wander around the barn. The barn
has nine boxes, one of which is a central box that connects the four boxes on the
left with the four boxes on the right. A total of ten surveillance cameras have
been installed in the barn to detect sleeping zoo elephants. Figure 2 shows the
cameras’ positions on the enclosure plan. The amount of sleep each elephant is
calculated by zoologists using video recordings from surveillance cameras. The
process is lengthy and laborious due to the number of cameras complicating
re-identification and the non-optimal image acquisition conditions resulting in
missing detection.

Fig. 2. Plan of the enclosure: boxes correspond to capital letters, small trapezoids
with numbers indicate cameras’ position within the building, large trapezoids indicate
cameras’ field of view, and arrows correspond to box doors.

The proposed solution included two steps. The first step is to use each cam-
era surveillance to locate the elephants and determine which ones are awake
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or asleep. An object detection model detects elephants on the different surveil-
lance cameras and then classifies them in a standing or lying down class. The
second step is to project the position of each elephant detected to its actual
location onto the plan of the enclosure. Consequently, zoologists will be able to
track elephants without watching all of the videos. The homography method [1]
is a well-known method for converting a monitored scene to a plane. Firstly,
four or more corresponding points between the video and the enclosure’s plan
are selected. Then, based on these corresponding points, the conversion of the
homography matrix is calculated. For instance, if points p are the video’s fea-
ture points and the corresponding points in the enclosure plan are points P. The
relationship between p and P is represented by the equation below. H (h11, h12,
h13, h21, h22, h23, h31, h32, h33) is a 3× 3 homography matrix.

⎡
⎣
Px
Py
1

⎤
⎦ =

⎡
⎣
h11 h21 h31
h21 h22 h23
h31 h32 h33

⎤
⎦

⎡
⎣
px
py
1

⎤
⎦ (1)

Since there are several cameras, each camera has its homography matrix. Next,
the position of the detected elephant is projected to its actual location onto the
enclosure’s plan using the homography matrix, as shown in Fig. 3.

Fig. 3. Illustration of homography induced by a surveillance camera’s image and the
enclosure’s plan. A 3× 3 homography matrix connects the two points (x, y, 1) and (x’,
y’, 1).
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4 Experimental Evaluation

This section presents the results obtained using our approach. We first describe
the database used. We compare in the second step the performance of three well-
known DL approaches to object detection-based neural networks (namely two-
stage, one-stage, and Transformer) using standard metrics from the literature
such as mean average precision, precision, and recall. Then, we present some
experimental mapping results. Finally, we show some improvements and some
advantages of our approach.

4.1 Data

The videos used to create the samples were all obtained from the monitoring
system at the Beauval Zoo in France. In the particular case of this project, it
would require hours of watching surveillance videos to select and extract the
desired videos, then manually create ground truth boxes for the elephants in
each frame of the video using image annotation software such as LabelImg [28].
We assembled a set of 2160 nocturnal images and looked at two classes: awake
elephant and asleep elephant. The images from all cameras are used to train
the object detection models. It is worth noting that an elephant can be filmed
by two cameras simultaneously in some situations. In this case, we label the
clearest elephant due to the poor conditions for acquiring images at night and
the fact that the cages of the other box hide this elephant. The training and test
data contain representations of all possible scenarios. As shown in Table 1, the
database was divided roughly 70% for training and 30% for testing.

Table 1. Configuration of the database

Total number of images 2167

Training images 1517

Test images 650

Number of classes 2

4.2 Detector Evaluation

Due to the growing popularity of DL, many open-source software libraries imple-
ment SoTA object detection algorithms. The results provided for Faster R-CNN
and Cascade R-CNN are relied on the Detectron2 framework [34]. Similarly, we
relied on the PyTorch implementation for Scaled YoloV4 [33], EfficientDet [32]
and DETR [19]. In the mentioned implementations in Table 2, we used the same
default model training settings as in the COCO dataset [14]. In all experiments,
we used pre-trained backbones. It’s worth noting that we choose smaller typical
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backbones for this comparison to set a standard benchmark for different sorts
of detectors. The two- and one-stage detectors were trained using a stochastic
gradient descent (SGD) optimizer [24], whereas the Transformer detector used
an AdamW optimizer [17]. The initial learning rate values range from 10−3 to
10−5 for each model. We also employed common augmentation strategies for the
selected models, such as flipping, cropping, and scaling the image. To evaluate
the performance of object detectors, multiple criteria, such as precision and recall
based on true/false positives (TP and FP) and false negatives (FN), are used.
A low precision detector is prone to false alarms, whereas a low recall detector
misses targets. Furthermore, we used the F-score, which is especially helpful in
determining the capacity to limit both FP and FN. Their formulas are defined
respectively as the following:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F − score = 2 × P ×R

P + R
(4)

However, the final performance metric is mean Average Precision (mAP),
which computes the average precision value for recall values ranging from 0 to 1.
As for the experimental procedure, an Intel (R) Core (TM) i9-9900K 3.60 GHz
processor, 2 Nvidia Titan RTX GPUs, and 64 GB DDR3 RAM were used for
training. Table 2 lists the detection results of all the tested methods regarding the
mean average precision, recall, precision and F-score. The findings reveal that
the Scaled-YoloV4 architecture achieves higher performance for all computed
measures. When compared to other detectors, the Scaled-YoloV4 uses and com-
bines new features (most notably, Cross-StagePartial-Connections (CSP), a new
backbone capable of improving CNN’s learning capability [31]) that make its
design suitable for efficient training and detection. On the other hand, DETR
has the worst performance, which could be because the input resolution of the
feature maps is limited in the DETR as a feature encoder, as the complexity of
the attention module increases quadratically with increasing input resolution. As
in our case, small datasets can present additional challenges for training Trans-
former models. For the rest of the work, we will apply the homography mapping
based on the bottom center of the box as determined by the Yolov4-P5 detection.

4.3 Homography Evaluation

To assess the performance of homography estimation, we calculate the average
distance between points transformed by annotated homographies and points
transformed by estimated homographies. We examine a total of 100 annotated
homography frames. The average error of homography is 0.7 cm on 1920 × 1080
images, which is small. Figure 4 depicts some of our method’s detection and
mapping results from the elephant barn surveillance cameras.
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Fig. 4. A one-minute example of detection and mapping results. The yellow dots rep-
resent awake elephants, while the pink dots represent sleeping elephants. (Color figure
online)

Table 2. Benchmarks for tested models of elephants dataset.

Type Model Backbone mAP P R F-score

Two-stage Faster R-CNN ResNet-50 0.593 0.616 0.689 0.650

Cascade R-CNN ResNet-50 0.612 0.649 0.662 0.655

One-stage EfficientDet EfficientNet-B2 0.683 0.663 0.713 0.687

Scaled-YoloV4 CSP-P5 0.711 0.891 0.942 0.915

Transformer DETR ResNet-50 0.497 0.416 0.395 0.452
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The proposed approach generates bounding boxes that confine the elephants,
with their locations projected on an enclosure plan (as shown in Fig. 4). We can
reliably recognize elephants with high accuracy and robustness, indicating that
the approach is well-suited to supporting zoologists in their investigations and
decreasing their effort. Using this software, the zoologist can jump directly to
points of interest, which means they won’t have to perform as much annotation
work and follow a herd of elephants without sifting through all the surveillance
cameras. We reach the approach’s limits due to the difficulty of detecting ele-
phants hiding behind other elephants. We conclude that this use case requires the
integration of additional constraints related to adding a spatio-temporal module
or setting the cameras to have a better perspective to ensure that we have at
least a camera without an occlusion view.

5 Conclusions and Future Work

This work contributes a reliable method for detecting and mapping zoo ele-
phants to track the herd’s movement at night and identify sleeping elephants. By
comparing SoTA object detection models, we demonstrated that our suggested
approach achieves the best performances with Scaled-YOLOV4. The bounding
boxes generated by the object detection model allow us to determine elephants’
current locations. We then proceeded to map via homography the location of
the elephants on the enclosure plan. The Breeders and the carers will be relieved
of long stares in front of computers thanks to the findings of this study, which
will enable them better comprehend herd dynamics at night. Future work for
this project will include the development of automated ID identification of each
elephant to reduce the labor of zoologists in elephant identification.
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Abstract. Our purpose is to design a system for Quick Quality analysis of cere-
als, pulses, and grains using Artificial Intelligence implementing hardware and
software technologies, which could swiftly analyze the type and quality of bulk
grains without human intervention. Our aim is detecting and image processing
to assess the grain’s quality, which is also used as food for livestock, that is an
important problem since high food quality has a great impact on animal health,
overcoming the limitations of prior work in this field. In our methodology, the
complete grain is analyzed to determine its quality by placing it in a controlled
environment with a 13 Megapixel, 4K Camera Module to perform the initial step
for image processing procedures, before implementing a Neural network.

Surpassing the hurdles of samples to estimate the quality of the complete
grains, we demonstrated a full-grain scan technique, resulting in a unique hard-
ware system that can more efficiently estimate the quality of the entire grains.
Furthermore, our technology yields faster results since it captures the moving
grains on the conveyor belt using a precise, fast camera module, which is ana-
lyzed by expeditious NVidia Jetson Nano. We applied automation in every step
of this process by using vacuum tubes to collect the grains, a filter to align them,
conveyor belt with a variable notch for optimum grain disposal. In summary, our
study describes innovative developments stemming from a system that provides
proper analysis of bulk grains, cereals, and pulses as well as automation of the
system.

Keywords: Image processing · Neural network · NVidia Jetson Nano

1 Introduction

Grains are the most important commodity for peasants in our society to boost their
agricultural and livestock farming revenue. The amount of automation used to assess
grain quality is modest, and most of the job is done by hand. The task is so large that
requires a lot of testing experience. Itmakes expensive and time-consuming as import and
export trading have grown in popularity. This inconsistency is becoming increasingly
apparent. One of the elements whose examination is more complex and complicated
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than that of other factors is varietal purity (Gowda and Alagasundaram 2016). Visual
inspection is used to quickly check grain type and quality in the current grain handling
system. This evaluation procedure, on the other hand, is arduous and time-consuming.
Physical factors such as exhaustion and vision, mental state induced by prejudices and
job pressure, and working environments such as incorrect lighting, temperature, and
so on, can all have a significant impact on a grain inspector’s decision-making ability.
The quality of grain is determined entirely by the grain type and its purpose. It consists
of a variety of physical (moisture content, kernel size), sanitary (fungi and mycotoxin
count), and intrinsic (fat content, protein content, hardness, and starch) quality criteria.
Color, composition, bulk density, odor, fragrance, size, and shape are all elements that
influence grain quality. Grains and pulses will be degraded if there is one discolored
kernel, according to US standards. Insects, heat, molds, weathering, sprouting, frost,
illnesses, non-uniform maturity, and lack of/partial grain filling can all cause damage
which reduces the whole quality of grains for animal food (Lasztity and Salgo 2002).

1.1 Problem Definition and Solution

The main issue of quality analysis is when the quality of the entire grain is judged upon
analyzing a certain sample of grains. This problem can be addressed by building a dedi-
cated hardware setup and software system for carrying out the process in a smooth quick
and accurate manner. Quality analysis using image processing and neural networking
technique is a popular research domain. It is time-efficient, which allows researchers to
focus on the results rather than the analysis process. We created a technology that can
instantly determine the kind and grade of any bulk grain without the need for significant
human assistance. Automation is where our technique fits in, the system uses Artificial
intelligence to detect the type of grains, and image processing involves taking measure-
ments of objects within an image and assigning them to groups or classes. Depending
on the type of grain or pulses and its purpose, grain processing will have various goals
for different individuals. The minor axis length and major axis length of grains are used
to evaluate grain form, and therefore the relationship between period and dimension of
grains is so important. Detailed grain form size, period, and breadth are adopted by the
library database.

2 Literature Review

Inspection of cereal and grain quality is crucial for both domestic andworldwidemarkets.
For classification and quality analysis, the sample image is compared to the database
image.When it comes to food grain quality, every aspect of supply andmarketing profit is
taken into account. In the existing grain-handling system, visual examination is employed
to quickly determine grain kind and quality. A model for quality grade assessment and
identification is constructed based on morphological and color parameters (R, G, B).
Principal component analysis was a method of image processing that used the extended
maxima operator to detect the chalky area in grain (Sidnal et al. 2013).
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Using image processing techniques, a system for grading and analyzing rice grains
based on grain size and form has been developed. The quality of grains is influence by
both physical and chemical variables (Bergman et al. 2012). The edge detection approach
is employed in this study to estimate the region of each grain’s borders. To recognize
the edges of grains, a sophisticated edge detector is used. Based on their dimensional
characteristics, grains were appropriately identified as whole or fractured kernels (Group
2015). When it comes to analyzing the visual quality of kernels, the image processing
method was shown to have a lot of potential. ICC, AACC, ISO, and CODEX-approved
brand-making quality determination methodologies for wheat and rye are employed
(Suismono 2013). The quality assurance system is the result of years of hard work.
They were, however, attempting to analyze the sample grains using neural networks
and various image processing approaches. As a result, there was no requirement for
them to create a specific hardware configuration for carrying out their research method.
However, the primary issue is that, we cannot determine the quality of complete grains
only by analyzing their samples. This issue is handled in our technique, for which we
had to create a dedicated hardware configuration in order to complete the procedure in
a smooth, speedy, and precise manner with disciplined software system.

3 Methodology

3.1 Approach Technology

This arrangement works under the industrial internet of things (Fig. 1).

Fig. 1. Hardware setup of the system

Development of the system requires aHardware setup to compensate for the software
processing. The automation of collecting and disposal of grains for efficient estimation
of quality. The Hardware Machinery is structured as follows (Fig. 2).
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Fig. 2. Flowchart of the hardware setup

The automation of the system is handled with NVidia jetson Nano where the image
capturing and processing technique is involved, with the Neural networking for a precise
process that involves input layers, hidden layers, and output layers in the initial phase
that gives the activation value. Based on the activation value we collect data for the
knowledge base table (Fig. 3).
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Fig. 3. Flowchart of software system
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4 Implementation

4.1 Hardware System

The machinery of the system is organized in a way such that a sample of stored rice
grains from a scalable container with a capacity of 10 tons starts the process. The grains
are subsequently sucked from the storage container to the input container by the grain
vacuum tube, which is powered by a 1/4-hp engine (Fig. 4).

Fig. 4. Storage container with vacuum tube

The input container has a vibrating motor and a variable notch outlet on the conveyor
belt, which is specially manufactured at high speed for grain analysis and filtration at
high capacity. The unstructured grains are released onto a conveyor belt that is operated
by a component stepper motor, and a filter with an equal space divider with a wedge
surface assists the grains in keeping equal spacing in an ordered way. Make certain that
the mass flow rate is managed and that the grains coming out do not overlap.

Consequently, these grains are allowed to enter the controlled environment of the
black box setup, which is equipped with a broadband lighting system for superior illu-
mination and a 13 megapixel, 4K camera module that is reliable in detecting defects
and foreign materials in the grains, and is ideal for regular and conventional sorting
applications, with a fixed focus, auto white balance, and auto-exposure control. The
captured images are then sent to the NVidia Jetson Nano for image processing and
Neural networking process.

4.2 Software System

The software technology involved in the system is neural networking and image
processing techniques.

Prior to this result about the quality of grains, the captured images by the camera
from the black box, which are sent to the NVidia Jetson Nano must go through a series
of modifications. we perform in the sequence of following.

Image Acquisition - Initially, acquiring the image is the first stage in every image
processing technique.We captured images of a sample of rice grainswith an approximate
black background.
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Image Preprocessing - The obtained images may have an uneven background and
unwanted distortions. Image preprocessing is a critical step in removing these undesired
sources such as irregular background noise and blur. The acquired images are stored on
the hard disc of the PC.

Background Estimation - The obtained images may have an uneven background and
unwanted distortion. Gaussian method is used to reduce the undesired noise and dis-
tortion in the background, the estimated background is subtracted from the original
image.

RGB to Binary Conversion - 0, which indicates black and 1, which indicates White
are the two levels in the Binary image. After adjusting the contrast level, a binary version
of the image is formed.

Edge Detection - For edge detection in our proposed methodology, a Canny Edge
Detector is used (Asif et al. 2018). The detection of the edge is a major challenge since
the quality of the grains is strongly related to the edges. These edges can be used to
calculate the parameters of various objects in the image. The segmented images are then
fed into a canny edge detector which detects the edge of the grains. It lowers the error
rate and volume of data processed.

Segmentation - Binarized images are segmented. Segmentation breaks one image into
several segments that may be easily analyzed. Segmentation is the important phase in
calculating morphological characteristics.

Identifying the Objects - cv2.connectedcomponents() function in open CV that iden-
tifies all related objects in an image. It will display the image size, pixels, connectivity,
and number of objects in an image.

Feature Detection - cv2.connectedcomponents(label, columns) function in python is
used to measure the morphological features of the grains such as minor axis length,
Major axis length, Minor axis length, and Aspect ratio, Hue, Saturation, Intensity of
each kernel (Sanjaysdev 2021) (Fig. 5).

AspectRatio = Major Axis Length

Minor Axis Length
(1)

I = 1

3
(R+ G + B) (2)

H = Cos−1

{
1
2 [(R− G)+ (R− B)]

[(R− G)2 + (R− B)(G − B)]1/2
}

(3)

S = 1− 3

(R+ G + B)
[min(R,G,B)] (4)
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Fig. 5. Process chart of image processing

We then store these features of each kernel in a feature table (Table 1).

Table 1. Feature table for one kernel

Major axis
length

Minor axis
length

Length Width Area Hue Saturation Aspect ratio

150 115 20 7 105 0.031 0.3130 1.26

Variety Detection Using PCA (Principal Component Analysis) - Usingmorpholog-
ical features, mean and average values, Eigen values and vectors of the image are
calculated. The following are the stages of putting PCA into action:

• First of all, standardize the data in the matrix form.
• Calculate the mean of data in the form of Column matrix.
• Subtract the calculated mean from each point of database.
• Calculate the variance and co-variance matrix.
• Calculate the Eigen value and Eigen vectors of the covariance matrix.

Images are then compared with images fed in database, if the samples match the
database images, the grain varieties are verified and the image is subsequently entered
into database for training.
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The features extracted for each kernel are from an image of sample grains which are
initially released onto the belt, we input these features to all the neural network models
trained on a specific grain type. Otherwise, we simply extract the features and store them
in a feature table (Asif et al. 2018).

In this example, only the neural network model which was specially trained on rice
grain samples would produce high mean activation value.

4.3 How Does Our Neural Network Work?

The neural networking model is composed of several nodes and layers of nodes. A node
is a computing unit that accepts input signals from the nodes of the layer above it. The
input signal levels are multiplied by weighing factors and added together (Mohan and
Raj 2020). The signal is then summed and fed through an activation function, which
functions as a filter and modulates it (Fig. 6).

Training Phase Testing Phase

Input grain image Input grain image

Pre-process the input 
image

Pre-process the input 
image

Image segmentation, Crop the 
ROI

Image segmentation, Crop the 
ROI

Feature Extraction Feature Extraction

Probabilistic Neural Networking

Recognition 

Result

Fig. 6. Flowchart of neural network strategy

There are numerous activation functions that differ from one another based on filter
functions, threshold, and shape. We adopted the multiclass classification using the Soft-
Max activation function for the study. Softmax is an activation function that outputs the
probability for each class (Fig. 7).

The single modified signal from the activation function is then sent to every node
in the following layer. Using an Optimizer, the weighting parameters for each node are
tuned throughout the training operation to reduce the prediction error. The optimizer
validates our function and performs gradient descent for efficiency. Utilizing the process
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Forward propagation

Backward propagation

Fig. 7. Neural networking

of forwarding and backpropagation of each unit results in the efficient hypothesis of the
output layer (Fig. 8).

Fig. 8. Neural networking with activation values of different grains

Based on the activation values of different grains, the values are classified and stored
in the knowledge base table which is the feature collection of purest samples. So, we
collect the purest samples of all the grains and split them into training samples for
training our neural network and testing samples for testing the efficiency of our model,
where the input sample is 80% into training and 20% into testing (Wijaya 2019).

We then capture the pictures of all of these training samples of each grain type.
The knowledge base table is the collection of pure samples from the library database

(Shetty 2021; Jafari et al. 2018; Karababa and Coskuner 2007) (Table 2).
Secondly, in the testing phase, the process is carried out by the same methodology

and after the feature extraction and processing, the values are compared to the purest
samples from the library database table to determine the quality check.
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Table 2. Knowledge base table of pure samples from the library data base

Variants Major axis
length

Minor axis
length

Length Width Area Hue Saturation Aspect
ratio

Rice
(long
grain)

150 115 20 7 105 0.031 0.3130 1.26

Rice
(medium
grain)

120 95 5.3 2.5 101.5 0.031 0.3130 0.015

Sun
flower

110.8 53 10.7 5.2 127.6 0.34 0.3124 2.05

Corn 103.09 93 12.6 8.3 166.3 0.75 0.863 1.51

Wheat 35 16.5 5.9 2.8 110 0.39 0.26 2.12

For better understanding, we consider training our model with rice grains and we
capture the images of pure rice grains, pre-process them and then extract the features
of each kernel, and finally store the mean of all these features along with the standard
deviation from each image into our knowledge base table. We then train our neural
network with these pure features by backpropagation and adjusting the weights and
biases of the model. Proper Hyperparameter tuning in this phase will definitely result
in efficient models. We compare all these testing sample features with the features of
the purest rice samples stored in our knowledge base table. Then, we transform these
comparisons into a percentage, determining the mean quality of all the grain kernels. We
perform the same analysis and find the quality of grains in all the images captured and
finally, we display the mean of all these percentage values as the quality of rice grains.

5 Results

We compare and analyze the difference between the feature collection of pure sample
grains from the knowledge base table and the mean of all the feature tables in one image
that gives the output of quality in percentage. We then test our model with those testing
samples and measure the accuracy of the model.

If the accuracy is more than 95%, we deploy them.

Model accuracy = Number of images correctly predicted

Total number of images passed
(5)

In our Testing and Training process of neural networking, we considered analyzing
a sample of rice grains and predicted the values shown below. The mean of all the
individual quality values gives us the total quality of the grain being analyzed.

In this case, the total quality of analyzed rice grains is 89% (Fig. 9).

Note: This Technology isn’t just for evaluating rice grains; it can also be used to analyze
wheat, barley, peas, corn, and a variety of other grains for feeding animals by adopting
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Fig. 9. Individual analysis of sample grains.

the same procedure. It can also be optimized to cover a wide range of types of grains
within the same group.

6 Conclusion

In conclusion, this technological system is a simple, fast hardware machinery setup with
a scalable capacity for analyzing the quality and filtering large amounts of grains.We uti-
lized Neural networking with pattern recognition to achieve accurate and precise results
by pre-processing, training, and testing the grains by considering the library database in
the context of recovering knowledge on pure samples of wheat, rice, maize, corn, and
many other cereals ranging from ancient to modern varieties. Grains are detected and
analyzed using computer vision, which has 90% accuracy rate. The method described
in this paper is for analyzing food quality for animals, and it introduces a strong grain
analysis methodology. In addition, by offering a more accurate quality evaluation by
means of automating processes and artificial intelligence in scanning grains, the out-
comes of this approach can assist food quality of animals, farmers, industrialists and
quality assessment experts.

7 Future Work

In Future, the varietal characteristics of each grain are considered, and working on the
strategies to implement and analyze the quality of different varieties of the same grains.
Involved in analyzing different pure samples from the library database and improving
pattern recognition for optimal resolution of grains condition.
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Abstract. We describe a practically evaluated approach for training visual cat-
tle ID systems for a whole farm requiring only ten minutes of labelling effort. In
particular, for the task of automatic identification of individual Holstein-Friesians
in real-world farm CCTV, we show that self-supervision, metric learning, cluster
analysis, and active learning can complement each other to significantly reduce
the annotation requirements usually needed to train cattle identification frame-
works. Evaluating the approach on the test portion of the publicly available
Cows2021 dataset, for training we use 23,350 frames across 435 single indi-
vidual tracklets generated by automated oriented cattle detection and tracking
in operational farm footage. Self-supervised metric learning is first employed to
initialise a candidate identity space where each tracklet is considered a distinct
entity. Grouping entities into equivalence classes representing cattle identities is
then performed by automated merging via cluster analysis and active learning.
Critically, we identify the inflection point at which automated choices cannot
replicate improvements based on human intervention to reduce annotation to a
minimum. Experimental results show that cluster analysis and a few minutes
of labelling after automated self-supervision can improve the test identification
accuracy of 153 identities to 92.44% (ARI = 0.93) from the 74.9% (ARI = 0.754)
obtained by self-supervision only. These promising results indicate that a tailored
combination of human and machine reasoning in visual cattle ID pipelines can
be highly effective whilst requiring only minimal labelling effort. We provide all
key source code and network weights with this paper for easy result reproduction.

Keywords: Precision farming · Self-supervision · Active and metric learning

1 Introduction

Background. Individual animal identification is mandatory [21] in dairy farming
and critical for managing aspects such as disease outbreaks and animal welfare. To
date, invasive identification methods [5] such as ear tags, tattoos, radio-frequency
tags or branding are most often deployed. However, ethical considerations aside,
these techniques cannot provide continuous location and ID information which still
requires specialist tracking systems. For Holstein-Friesians, which constitute the most
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numerous and also highest milk-yielding [31] cattle breed, contactless visual biomet-
ric (re)identification methods [16,28] using their characteristic black-and-white skin
markings [1–4,12,17] have become viable due to advances in deep learning. These
approaches produce continuous coverage as long as cameras cover the whole farming
area of interest. Similarly, face [36], muzzle [5], retina [5], or rear [23] biometrics may
also be used in specific settings. However, modern biometric deep learning approaches
that underpin systems for larger herds require significant amounts of identity-annotated
visual data, demanding weeks of human annotation efforts [2].

Conceptual Approach. To address this problem and reduce labelling requirements,
the literature has recently fielded self-supervision methods [9], which learn by exploit-
ing the internal structure of data. However, although superior to traditional unsuper-
vised approaches [37] the accuracy achieved with such systems still lags significantly
behind benchmarks using supervised deep learning [2]. In response, here we advocate
combining self-supervision, the analysis of the constructed identity space, and mini-
mal active learning [29] to improve performance whilst limiting annotation require-
ments. Noting that research into visual cattle ID systems with reduced labelling is in its
infancy [2,9,32], we propose a hybrid training approach [26,33–35] for learning cattle
IDs from RGB videos. To isolate the impact of different sources of training information,
we follow a three-phase strategy:

– PHASE #1: Exploit data-internal structure (via self-supervised metric learning).
– PHASE #2: Exploit latent identity space structure (via cluster analysis).
– PHASE #3: Utilise limited and targeted user input (via active learning).

We will show that each of these phases can contribute to improving learning iteratively
and together lead to benchmarks closer to fully supervised learning performance – yet
at a fraction of the labelling effort. Figure 1 illustrates the proposed approach visually.

Paper Contribution. Overall, this paper makes three key contributions to the field
of visual learning in precision farming:

1. A principled and practical three-phase hybrid deep learning framework with reduced
labelling requirements for training coat-based biometric cattle ID systems.

2. Integration of deep learning with a fast labelling approach (one-click same or dif-
ferent ID selection at 30 queries per min) avoiding specific identity annotation, cold
start issues [14], or seed labelling requirements.

3. A detailed system evaluation and comparative analysis on real-world farming videos
across the public Cows2021 dataset including the identification of inflection points
in the learning where human intervention becomes vital.

We proceed by providing details on the dataset, implementation, experiments, and
results. Finally, we discuss how these methods and insights can be utilised for more
rapid ID system roll out in precision farming.
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Fig. 1. Conceptual Overview. Using the public Cows2021 dataset (purple) we put for-
ward a 3-phase identity learning process (blue-green-orange) using Holstein-Friesian detec-
tion sequences (yellow) in RGB videos from an operating farm. Our approach combines self-
supervised metric learning (blue), cluster analysis (green), and active learning (orange) to itera-
tively improve performance (middle plot) under a minimal labelling regime. First, single animal
tracklets are formed via automated oriented object recognition and tracking (yellow). All frames
from the tracklets are then mapped into a 128-dimensional identity space via metric learning
and self-supervision (blue). On this space we perform cluster analysis and merge tracklets to
form growing clusters of individual cattle (green) used for fine-tuning. We identify the inflection
point at which machine merging cannot compete with user input and thus determine when active
labelling (orange) is needed. We track the evolving identity space via t-SNE and show significant
improvements beyond self-supervision, reducing annotation requirements to around ten minutes.
(Color figure online)

2 Dataset

The Cows2021 dataset [6] contains 720 p HD digital RGB video data from a working
dairy farm in the United Kingdom. It was captured by a single-view top-down camera
placed 4m above the ground between milking parlour and holding pens and operating
25Hz (see Fig. 2 (top)). Excluding three particular animal identities (IDs: 155, 169,
182) with too little data for effective verification options or poor quality images, we
utilise the remaining herd covering 179 individual cattle (see Fig. 2 (bottom)) in our
study. The dataset is first automatically processed into 435 tracklets from 301 videos
produced by a deep object detection (see Fig. 2 (top)) and tracking framework for cattle
detailed in [9]. This ID-agnostic extraction performs rotational normalisation resulting
in tracklets (see Fig. 2 (middle)) that contain exactly one individual with an average
number of 1.45 tracklets per video. Further statistics and data splits are given in Fig. 2.
Note that four totally black cows (IDs: 54, 69, 73, 173) were treated as one individual
during training and were excluded in the validation and test sets to avoid systematic
errors arising by mixing this particular physical anomaly with other aspects of perfor-
mance. Finally, for open-set testing we withheld 24 individual cattle from training and
regular testing altogether. Since each tracklet contains data of only a single individual,
self-supervision can be used to associate images to identity classes.
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Fig. 2. Dataset. Our training data contains 23,350 frames (4670 frames and their four aug-
mentations) from 301 RGB videos resolved at 1280 × 720 pixels. Automated oriented object
detection and tracking [9] of these frames (top) yields 435 normalised tracklets (middle). (bot-
tom) The tracklets cover 155 individuals, all of which feature in the training set. 153 individuals
are used in the test set (5344 extra images), and 149 in the validation set (2480 extra images). The
four all-black cattle are represented here by a single image. Red boundaries denote individuals
not included in the test set, both red and blue boundaries are not included in the validation set,
and the last 24 individuals (654 images) after the blank area are unseen cattle during training used
for open-set evaluation only. (Color figure online)

3 Implementation

3.1 PHASE #1: Self-supervision

Metric Deep Learning and Identity Space Construction. As our base architecture
we use a ResNet50 [10] backbone pre-trained on ImageNet [7] modified to have a fully-
connected final layer mapping to a latent 128-dimensional vector from triplet image
inputs detailed in [9]. To initialise this space for identity information without any super-
vision we treat each tracklet as a unique class representing the same, unknown indi-
vidual forming a set of ‘positive’ image samples. One video may contain one or more
tracklets. We pair these sets against ‘negative’ samples from cattle shown in other track-
lets from different videos, i.e. we use a video-aware sampling strategy. Statistically, the
fact that the same ‘positive’ individual may – with a small chance – appear in some
‘negative’ sample in a different video is accepted as training noise during this initial-
isation stage. For self-supervised learning we use reciprocal triplet loss (LRTL) [20]
leading to an initial version of the identity space that optimises:

LRTL = d(xa, xp) + d(xa, xn)−1 (1)

where d denotes the Euclidean distance, xa and xp are sampled from the ‘positive’
set and xn is a ‘negative’ sample. We utilise online batch hard mining [11] expanded
to a search that exploits both anchor and negative samples (see code base for imple-
mentation details). Training of this stage took approx. 7 h on an RTX2080 node using
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(a) START: Identity Space
(ImageNet-Initialised)

(b) PHASE #1: Self-Super-
vised Metric Learning

(c) PHASE #2: Automatic
Cluster Merging

(d) PHASE #3: 2 Minutes
Merging (Human Annota-
tion)

(e) PHASE #3: 10 Minutes
Merging (Human Annota-
tion)

(f) Ideal Partitioning

Fig. 3. Identity Space Evolution. 2D t-SNE visualisations of the training data projected into
the generated 128D latent identity space through the different phases of learning where colours
relate to ground truth identities. Note that after (a) ImageNet initialisation, (b) self-supervision
yields a tracklet-structured space where around three times more clusters are present than individ-
ual identities. (c)-(e) Merging of these groupings and subsequent fine-tuning based on this leads
to the step-wise discovery of actual identities and fewer and fewer overall clusters, first conducted
via automatic cluster analysis in Phase #2 and finally via active learning in Phase #3.

SGD [27] over 50 epochs with batch size 16, learning rate 1 × 10−3, margin α = 2,
and weight decay 1 × 10−4. The pocket algorithm [30] against the validation set was
used to address network overfitting according to the Adjusted Rand Index (ARI). Using
t-distributed Stochastic Neighbour Embedding (t-SNE) [19] for visualisation, Fig. 3(a))
depicts the initial identity space after ImageNet pre-training and before self-supervision.
As described above, the self-supervised metric learning then initialises this identity
space as given in Fig. 3(b) leading to distinct local groupings of data points that relate
to tracklets (i.e. image groups) of single cattle identities.

3.2 PHASE #2: Cluster Analysis

Clustering the Identity Space. Our aim is that the identity space should be par-
titioned such that all tracklets are grouped to relate to individual cattle identities.
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Algorithm 1: Find candidates of tracklet pairs to merge based on GMM fit
Input: ..Data Points T in Identity Space;
...............Data Points Tθ ⊂ T with tracklet ID θ;
Output: Candidate List R of tracklet ID pairs;

1 T m ← GMMg=450(T ), T is partitioned into clusters T m with labels m;
2 T m

θ = Tθ

⋂
T m, Data Points with tracklet ID θ in cluster T m;

3 for k ← 1 to 4 do
4 if k = 1 then
5 τm ← Mode (T m

θ );
6 else
7 lmk ← Select (k, GMM, T m, T );

8 τlm
k

← Mode (T
lmk
θ );

9 R ← list.append (τm, τlm
k
);

10 end
11 end

However, we start by discovering clusters as given by the data in the space so far. We
achieve such a partitioning by fitting a Gaussian Mixture Model (GMM) [22,25] with
g = 450 components (this parameter is non-critical, provided that is is set to a number
a little over the total number of tracklets) over 150 iterations to the tracklet-initialised
identity space (see Fig. 4(left)). Our approach is to utilise the discovered clusters to
merge tracklets automatically into groups that represent the same individuals.

Associating GMM Clusters with Tracklets. We hypothesise that different GMM
clusters which cover tracklets of the same individual should be near to each other
in identity space and that the similarity between tracklets can be evaluated based on
Euclidean tracklet-to-tracklet distances. Therefore, we avoid calculating the distance of
all the combinations of tracklet pairs and instead work with the top-k matches to each
tracklet utilising the GMM for calculation. The pseudocode is presented in Algorithm 1.
First, all data points t ∈ T in the 128-dimensional embedding space are partitioned via
the fitted GMM yielding g = 450 data point clusters (i.e. GMM components) Tm ⊂ T
where m ∈ [1, g] denotes the cluster label. Next, the dominant tracklet ID marked as
τm is assigned to each cluster label m. Let Tθ ⊂ T be the set of datapoints associated
with the input tracklet ID θ. The intersection set Tθ

⋂
Tm denoted as Tm

θ is then used
to find the most frequent tracklet ID θ therein denoted τm and derived via a function
‘Mode’ (line 8 of the Algorithm).

Selecting Candidates for Merging. Next, we find candidate tracklet pairs for merging
based on the associated GMM information. We use the fact that the GMM can return
probabilities that an input t belongs to any particular cluster m. Across all data points in
any GMM cluster Tm we collect the kth(k ∈ [2, 4])most likely cluster labels, that is for
each cluster Tm and k we find the most frequent cluster label lmk via a function ‘Select’,
which effectively identifies the kth nearest cluster to Tm. Each cluster identified by lmk
has itself a dominant tracklet ID τlmk

. With this information in hand, we finally compile
the listR of candidate tracklet ID pairs by pairing the dominant tracklet ID τm with τlmk

.



390 J. Gao et al.

Fig. 4. GMM Clustering and Tracklet Ranking. (left) Training data of identities
(colours) assigned to the ground truth correctly and (black) mismatched projected into the iden-
tity space after self-supervision with GMM. (right) Four examples (rows) of sample images from
(leftmost) anchor tracklets (with ID τm) and the top three similar tracklets with IDs τlm2

, τlm3
and

τlm4
forming candidate tracklet ID pairs (τm, τlm

k
) ∈ R to be merged as described in Algorithm 1.

(Color figure online)

Candidate Ranking and Cluster Merging. We now rank the generated candi-
date tracklet pairs (Tθ, Tη) associated to the list of tracklet ID pairs in R based on
the tracklet-to-tracklet distance between each two tracklets as suggested in previous
work [34]. The distance between two tracklets is calculated as the mean Euclidean dis-
tance between all point pairs that exist between the tracklets. Candidates ranked towards
the top are considered closest in identity space and have indeed a high chance of rep-
resenting the same individual. The dotted brown curve in Fig. 5 (left) confirms this
hypothesis against the ground truth by tracking the rate of correct merging. The graph
shows a clear downwards trend of this rate when moving lower down the ranking. The
rate first declines slowly, but then drops rapidly.

Identity Space Update via Fine-Tuning. After merging, we fine-tune the network for
a further 5h of training as described in Sect. 3.1 in order to incorporate the new infor-
mation derived from cluster merging. This yields an updated network which defines
a new embedding function for the identity space. By measuring the validation perfor-
mance of this network against the number of tracklet mergers (or queries) we identify
the point at which automatic merging cannot improve network performance (measured
via ARI) anymore. This occurs after 173 queries as shown as the peak of the green curve
in Fig. 5 (left). Automatic merging after this point is thus too noisy to further improve
performance. Consequently, user interaction via active learning should start at this point
if further performance improvements are required.

3.3 PHASE #3: Active Learning

User-guided Fine-Tuning. Active learning [24,29] aims to interactively annotate the
most informative samples from the training model, followed by a model update. A
domain-relevant sample selection is absolutely critical [8,18,33]. For our case, having
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constructed a domain-informed ranked list R of potential tracklet ID mergers already,
we will further utilise this information to guide active learning. Essentially, we will con-
tinue the tracklet merging strategy as before, but exploit user input to verify the merging
instead of blindly accepting it. Thus, the final phase refines the identity space with a
query sequence of one-click user inputs and utilises the new candidate ranking after
another round of self-supervision retrained with the automatically merged tracklets. For
manual annotation, a human is shown the next highest ranking potential merger tracklet
pair from R presented as a single image from each of two tracklets. By confirming the
identity to be the same or different only (one click), the human annotator throughput
with this approach is extremely high at approximately 30 answers per min. The app-
roach avoids specific identity annotations (i.e. selection from a catalogue) and it has no
cold start issues [14]. Practically, whenever two tracklets sharing the same identity are
identified by an annotator, they are merged into a single tracklet and the number of track-
lets is reduced as before during automatic merging. Note that it is possible that – across
various mergers – more than two tracklets may merge into a single tracklet due to the
transitive nature of the process. As before: after merging, fine-tuning for 5 h, is used to
incorporate new information derived from cluster merging into the deep network. The
resulting networks are benchmarked as orange curves (marked ‘Active’) in Fig. 5.

4 Experimental Results

Closed Set Testing. The proposed pipeline is first evaluated on the 5,344 unseen test
images across 153 individuals. This is closed-set testing since all these individuals have

Fig. 5. Individual Identification Performance. System performance (closed-set) across
the three learning phases shaded as blue, green, and orange. Benchmarks provide (left) ARI mea-
surements and (right) Top-1 ID accuracy along evolving system training. Evaluation is conducted
on 5k+ unseen test images. Phase #1 in blue depicts results of self-supervised metric learning over
the last 50 epochs leading up to the 0 mark of the abscissa indicating the start of tracklet merging.
Phases #2 and #3 show results of fine-tuning after automated and manual merging, respectively.
The abscissa tracks the number of mergers (or queries). Note, that at 173 queries, automatic
merging (green curve) peaks and further mergers are too noisy to improve performance without
manual correctness checking via active learning (orange curve). Note further that performance
after 10min of labelling at accuracy 92.44% is close to the performance of perfectly merging
all clusters exhaustively (95.17%) based on ground truth. The dotted brown curve on the left
quantifies the proportion of correct merger suggestions ). (Color figure online)



392 J. Gao et al.

been seen (in different videos) during training. A projection of the closed testset into
the learned identity space is visualised via t-SNE in Fig. 7(a)). In order to evaluate the
clustering performance in identity space, we use two measures: the Top-N ID prediction
accuracy and also the Adjusted Rand Index (ARI) [13] for assessing structural cluster-
ing similarity.

Structural Clustering Benchmarks. We evaluate the structural similarity of the testset
clustering produced by the trained network against the ground truth. We quantify the
similarity via the ARI measure which operates on two data partitions and does not
require any knowledge of ID labels. In particular, the testset clustering is derived by
fitting a GMM (with the component cardinality of the testset) to the test data in the fine-
tuned identity space. Figure 5 (left) shows the evolution of ARI across the three learning
phases. Self-supervision of Phase #1 as described in Sect. 3.1 leads to an initial ARI
value of 0.751 (see blue curve). In Phase #2, automatic tracklet merging and subsequent
fine-tuning as described in Sect. 3.2 steadily improves the ARI further to a peak value
of 0.86 at query 173 (see green curve). At this point, we find that any further automatic
merging is not beneficial as depicted by the dotted green curve. In Phase #3, user input is
now utilised. The ARI can be increased further to 0.88 after 3.5 min of human labelling,
0.91 after 8 min, and 0.93 after 10min. Perfectly merging all clusters exhaustively only
leads to a small increase of ARI at 0.95.

Accuracy Stipulation. Next, we evaluate identification accuracy against ground truth
ID labels of the testset. In order to obtain IDs for our network output, each fitted GMM
cluster used for structural benchmarking is assigned to the one individual ID having the
highest overlap ratio with the ground truth, defined as:

Ol = C/L (2)

where C is the number of images in a GMM cluster that belongs to an individual, and L
is the total number of images of that individual. This produces the (GMM Cluster)-(ID
Label) pairs required for accuracy evaluation against the ground truth.

Top-1 Accuracy Benchmarks. The resulting Top-1 test accuracy for individual iden-
tification over the three training phases is given in Fig. 5 (right). Generally, the plot
structure is consistent with our ARI analysis in Fig. 5 (left) showing the effectiveness of
all three phases of our approach across the two different performance measures. Phase
#1 leads to an accuracy of 76.12% already on the test set, emphasising the strength
of a tracklet-driven self-supervision signal during metric learning. In Phase #2, auto-
matic tracklet merging can further improve accuracy to a peak value of 85.95% (see
green curve). Note that automatic merging is imperfect and accuracy is not optimised
directly by fine-tuning, thus a temporary decrease of accuracy is possible. In Phase #3,
human labelling allows a further increase in accuracy to 86.28% after 3.5 min of human
labelling, 90.62% after 8 min, and finally 92.44% after 10min.
1 Note that this performance improves on the self-supervision state-of-the-art [9] in the domain
by using the same network yet with our extended hard mining regime. Testing our Phase #1
method on their testset improves ARI from their published ARI of 0.53 to 0.65.
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Fig. 6.Top-N and Open-Set Performance. Depicted is the Top-N identification accuracy
of 153 individuals across the final two learning phases shaded green and orange, respectively.
Benchmarks provide accuracy curves for Top-N closed-set (24 individuals) accuracy (detailed
also as values on the (right)) and Top-1 open-set accuracy in yellow. Note that open-set perfor-
mance benefits strongly from the proposed Phase #2 and #3, leading to near closed-set perfor-
mance. (Color figure online)

Top-N Accuracy Benchmarks. For each GMM cluster assigned to an ID as per Eq. 2,
one can alternatively rank all identities according toOlwhere identities that have aOl =
0 form the tail of the ranking sequence with randomly assigned, remaining IDs. This
process allows the creation of a Top-N [15] accuracy benchmark as shown in Fig. 6.
In this statistic, a prediction is considered correct if and only if the ground truth ID
is found amongst the top N ranked IDs. As expected, for N = 1 this equates to the
traditional definition of accuracy. Figure 6 emphasises that across Phases #2 and #3
improve accuracy across all N. This setting is particularly interesting if semi-automatic
identification is used to present a system user with a set of N candidate identities for a
query. For N = 16 this setting leads to a near-perfect accuracy benchmark of 96.59%
using only 10min of labelling.

Open-Set Accuracy Benchmarks. The proposed pipeline is secondly evaluated on
the 654 unseen test images of 24 never seen individuals. A projection of this open
testset into the learned identity space is visualised via t-SNE in Fig. 7 (c). This ‘Open-
Set’ testing is critical for stipulating how far performance can translate across herds or
farms in a zero-shot identification paradigm. Figure 6 depicts Top-1 open-set test perfor-
mance across the final two phases of training. It can be seen that open-set performance
generally lags behind closed-set performance. However, the margin (gap between blue
and yellow curves) is only 1.53% after 10min of manual labelling. This is promising,
showing that the identity space created generalises well across the domain of Holstein-
Friesians and not just the training herd.
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(a) CLOSED TESTSET,
153 animals. (10min Anno-
tation)

(b) CLOSED TESTSET,
153 animals. (Fully Super-
vised)

(c) OPEN TESTSET, 24
animals. (10min Annota-
tion)

Fig. 7. t-SNETestset Embeddings. 2D t-SNE visualisation of the closed and open test sets
when projected into the identity space. (a) shows the result for the proposed method at accu-
racy 92.44% after all three stages of training and 10 min of manual annotation. (b) For compari-
son, we show the same testset projected into an identity space built from fully manual annotation
at the Top-1 accuracy 96.05% using weeks of frame-by-frame identity labelling. (c) When pro-
jecting unseen images of unseen animals into the space used in (a) identities still cluster well
(accuracy 90.81%) confirming generalisation to a domain wider than the herd trained on.

5 Conclusion

We have put forward a practical, three-phase deep learning approach for training an ID
system for Holstein-Friesians on a farm, requiring only ten minutes of labelling. We
showed that automatic identification of individual cattle in real-world farm CCTV can
be achieved effectively by combining self-supervision, metric learning, cluster analysis,
and active learning. We provided detailed explanations and key source code2 for full
result reproduction and evaluated the approach using the publicly available Cows2021
dataset. Self-supervised metric learning was first leveraged to initialise an identity space
where tracklets are considered a distinct entity. Grouping entities is then performed by
automated merging via cluster analysis and active learning feeding into fine-tuning.
Experimental results showed that cluster analysis and a few minutes of labelling after
automated self-supervision can indeed improve the identification accuracy of closed and
open test sets compared to self-supervision only. Despite superior performance of fully
supervised systems which required weeks of frame-by-frame labelling in the past, our
10min labelling approach shows promising results indicating that human and machine
reasoning in tandem can be integrated into visual cattle ID pipelines in a highly effective
fashion requiring only minimal labelling effort.
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Abstract. Drone detection is a challenging object detection task where
visibility conditions and quality of the images may be unfavorable, and
detections might become difficult due to complex backgrounds, small visi-
ble objects, and hard to distinguish objects. Both provide high confidence
for drone detections, and eliminating false detections requires efficient
algorithms and approaches. Our previous work, which uses YOLOv5,
uses both real and synthetic data and a Kalman-based tracker to track
the detections and increase their confidence using temporal information.
Our current work improves on the previous approach by combining sev-
eral improvements. We used a more diverse dataset combining multiple
sources and combined with synthetic samples chosen from a large syn-
thetic dataset based on the error analysis of the base model. Also, to
obtain more resilient confidence scores for objects, we introduced a clas-
sification component that discriminates whether the object is a drone or
not. Finally, we developed a more advanced scoring algorithm for object
tracking that we use to adjust localization confidence. Furthermore, the
proposed technique won 1st Place in the Drone vs. Bird Challenge (Work-
shop on Small-Drone Surveillance, Detection and Counteraction Tech-
niques at ICIAP 2021).

Keywords: Drone detection · Deep learning · Object tracking ·
Object detection · Synthetic data

1 Introduction

Unmanned Aerial Vehicles (UAVs) have been used for some time, and the recent
technological and industrial developments have reduced the costs, making them
more accessible and abundant in the commercial markets. After a few success-
ful commercial use cases, the demand for drones has boomed. The use cases
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include surveillance & security [15], photography, delivery [5], warehouse opera-
tions [23], environmental monitoring [9], etc. With the increase in market capac-
ity, drones can be easily purchased on the Internet at low prices in the present
era. Another perspective of drone technology is that they got smaller and bet-
ter at the assigned tasks as time passed. Consequently, high reachability brings
plenty of opportunities for commercial industry and individuals along with the
defense market. On the other hand, as a side-effect of the ease of reachability
raises issues about safety, privacy, and security. Thus, misuse of UAVs for illegal
activities, invasion of privacy, and violation of regulations need to be addressed.

To address the problems that emerged due to the misuse of drones and to
gather the potential solutions under a roof, Drone-vs-Bird Challenge was orga-
nized starting from 2017 at the International Workshop on Small-Drone Surveil-
lance, Detection and Counteraction Techniques (WOSDETC) [7]. The challenge
aims to assess discrimination between a drone and other (flying) objects at far
distances, including similar objects (e.g., birds) from a video dataset. Another
challenge apart from detecting drones is that it is not straightforward to make
additions to the provided dataset as flying drones often require permission and
are restricted in several areas.

Drone detection, a sub-field of object detection, has been studied especially
within the past few years with the challenge’s launch. The solutions proposed for
drone detection and tracking were various in terms of methodology but mostly
based on deep learning in the present era. Some works also include approaches
that are not based on deep learning, such as SVMs [21], AdaBoost [10].

In this paper, we propose an approach composed of drone detection and
object tracking components. We have taken the methodology of our previous
work [3] as a baseline and further improved both the detection and tracking
components. Firstly, we use a more diverse and balanced dataset that combines
several sources. Secondly, we use false negative predictions from synthetically
generated drone image data to improve detection performance. We also included
various background images with no drones as negative samples to training data
where our model created false predictions. We combined real data with these
samples to improve cases where base model fails. Thirdly, we used a binary clas-
sification algorithm trained on bounding box crops of drone images from training
datasets and our YOLOv5 models’ false positive predictions on the training data.
Model confidence is calculated by the geometric average of YOLOv5 confidence
and binary classification confidence. Lastly, we used a specialized scoring algo-
rithm to determine the confidence for the track and adjust the bounding box
prediction confidences using this information.

2 Related Work

Deep learning-based detection approaches have produced good results for various
applications in recent years, including drone detection.

A two-staged detection strategy has been proposed in [20]. First, the authors
examined the suitability of different conventional image processing-based object
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detection techniques, i.e., frame differencing and background subtraction tech-
niques, locally adaptive change detection, and object proposal techniques [16],
to extract region candidates in video data from static and moving cameras. In
the second stage, a shallow CNN classification network is used to classify each
candidate region into drone and clutter categories.

In [6], Gagné and Mercier (referred to as the Alexis team) proposed a drone
detection approach based on YOLOv3 [19] and taking a single RGB frame as
input. By integrating an image tiling strategy, this approach can successfully
detect small drones in high-resolution images. Alexis Team leveraged the public
PyTorch implementation of YOLOv3 with Spatial Pyramid Pooling (YOLOv3-
SPP) made available by Ultralytics [13]. In Spatial Pyramid Pooling [11], the
input features are processed by pooling layers of varying sizes in parallel and
then concatenated to yield fixed-length feature vectors.

Moreover, in [6] EagleDrone Team proposed a YOLOv5 [14] based drone
detection modality with a linear sampling-based data sub-sampling method.
They propose using computed loss per image to select the sampling probability.
Furthermore, they detect small and low-resolution drones using an ESRGAN-
based super-resolution approach.

Recently, authors of [3] and CARG-UOTTAWA team [6] proposed YOLOv5
[14] based drone detection modalities utilizing extra training data. Different from
the CARG-UOTTAWA team, [3] proposed a novel track boosting technique to
update the confidence scores of the predictions based on a Kalman-based tracker
[4]. Moreover, [3] proposes a synthetic data augmentation technique to increase
the detection performance further.

3 Proposed Technique

The proposed technique is based on our previous work in [3] which utilizes a
YOLOv5 [14] detector and Kalman-based object tracker. Further modifications
have been done by improving the synthetic data generation and track boosting
stages. Moreover, an extra classification stage is added on top of the detector,
and a new scoring algorithm is proposed to increase the tracker performance.

3.1 Detection Model

Like in our previous work [3], we use YOLOv5 [14] as our object detection
algorithm. It has been shown that more computationally intensive detection
methods can yield success and, in many cases, better than YOLOv5 [6]. YOLOv5
is preferred over other algorithms because it yields a good performance as a
detector and computational efficiency makes it a better choice for our solution
considering the use in real world applications allowing us to achieve real-time
performance and advantages in rapid experimentation allowing us to perform
more trainings and experiments in any given time (Fig. 1).
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Fig. 1. Generated synthetic data similar to examples where the real model performs
poorly. Synthetic data similar to FP predictions above (a), synthetic data similar to
FN predictions below (b).

3.2 Synthetic Data

The use of synthetic data in machine learning training is an increasingly common
method for problems where data is difficult to access. The problem of drone
detection is one of the areas where it is difficult to obtain data with a large
number and variety. In our previous work, we developed a method that produces
synthetic data by placing 3D objects on 2D backgrounds and performed some
experiments using synthetic and real data. As a result of the experiments, it was
seen that the synthetic data alone showed an average performance, and when
used with real data, it provided an increase in performance. In this study, various
improvements were made to our previous method to overcome the difference
between real and synthetic domains, also known as the “domain gap” [22].

The use of real-time rendering in synthetic data generation is causing var-
ious artifacts around the rendered object. It was observed that these artifacts
increased as the object got smaller. Especially when rendered 3D objects on the
backgrounds consisting of 2D real images are placed, these artifacts become more
evident and negatively affect model performance [17]. For this reason, we devel-
oped a method to generate synthetic data using offline rendering techniques.

To increase the performance of the real model, we first identified the cases
where the model gave false positive (FP) and false negative (FN) predictions on
the test dataset. Then we found similar examples in environments that create
FP predictions (such as city and nature environments) and placed 3D models of
objects that could be confused with drone objects (such as bicycles and street
lamps) on these backgrounds. As a second method, 3D drone objects were placed
on backgrounds similar to backgrounds where drones could not be detected, and
data similar to FN samples were generated. Also, post-processing effects such as
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motion blur, filmic noise, and depth of field were applied to generate synthetic
data for blending 3D objects with background images.

Synthetic data that we generate according to the cases where the real model
makes wrong predictions improves model performance and helps to eliminate
FP and FN predictions successfully.

3.3 Binary Classifier Boosting

YOLOv5 detectors output category confidence scores in a coupled fashion,
together with box regression prediction, from the detection head. Since box
regression and classification outputs are trained in a coupled way, it occasionally
results in incorrect classification bias, resulting in false positives (FP) having
large confidence scores and true positives (TP) having low confidence scores. To
overcome this issue, we add a second classification step after YOLOv5 object
detector and train a separate image classifier for this purpose. We train this
binary image classifier with the cropped TP and FP box predictions from the
training set.

For each image in the training set, we perform prediction using the fine-tuned
YOLOv5 object detector and acquire tth box prediction Bt and corresponding
confidence score Ct. Then we calculate intersection over union (IOU) over each
predicted box Bt and ground truth box Bg

t with a match threshold of 0.3 and
assign each prediction as TP or FP. After labeling each box prediction Bt, we
crop these boxes with a constant margin and create a binary image classification
dataset. Ultimately we fine-tune a Vision Transformer (ViT) [8] on this dataset
to have a model that predicts whether a given image contains a drone or not. At
inference time, we crop the predicted box Bt coming from the object detector
and feed into the fine-tuned image classifier to get a classification score Clt and
calculate the updated confidence score Cu

t as:

Cu
t =

√
Ct × Clt (1)

Regularizing the detector confidence score with an additional image classifi-
cation stage decreases the number of FPs and increases the TP scores.

3.4 Improved Track Boosting and Scoring

In our previous work [3], we had implemented a Kalman-based tracking algo-
rithm to put the images related to a certain drone on the same track. This
allowed us to use the temporal information found in images. We had developed
a track-boosting algorithm that increased the prediction scores for tracks that
are consistent over time. We propose an advanced and more nuanced version of
the track-boosting algorithm based on a scoring mechanism. We use the scoring
mechanism along with other temporal information to put drones in certainty
categories.

The scoring algorithm simply keeps a record of a score for each track. With
each new image in the track, the score of the track is modified. As described in
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Eq. 2, we update the score (Si) with an amount equal to the difference between
a confidence threshold (Tconf ) and confidence of the current prediction (Ci). We
used 0.3 as the threshold in our experiments.

Si = Si−1 + Tconf − Ci (2)

This scoring allows us to keep the negative effect from a low confidence predic-
tion but still allows the system to recover from it if it can provide high confidence
predictions in other frames. This performs better than just removing predictions
below a certain threshold because low confidence scores do not necessarily mean
incorrect predictions, difficult/rare examples may also result in lower confidence
scores which can possibly be recovered later with the scoring approach.

As consecutive frames are accumulated in the system, the score usually con-
verges to a positive or a negative value. The longer the track is, the more informa-
tion is used in scoring, thus allowing better convergence. This allows us to define
different categories of certainty for each track. This further improves our previ-
ous strategy of averaging the confidence of each frame with maximum confidence
in the track by increasing or decreasing confidence values in a more controlled
manner.

The calculation of scores for each confidence category is given below. Here
S′
i,j is the confidence for prediction on i’th track and j’th position in the track

and si is the score vector for track i.

– For tracks that were able to collect higher than a certain score (>25 in our
experiments) the tracks are considered highly likely to be a drone. The con-
fidence is S′

i,j = Si,j ∗ 0.3 + max(si) ∗ 0.7
– For tracks with a negative score, we considered them unlikely to be drones.

Instead of removing the predictions, we leave them as is since confidence is
considerably low: S′

i,j = Si,j

– For tracks that have a relatively low score (<5 in our experiments), if the
object has a median velocity below a threshold (0.3 in our experiments),
they are considered as stationary objects. The velocity is calculated by the
tracker and smoothed out in a window. Confidence for stationary objects are
penalized so confidence becomes S′

i,j = Si,j ∗ 0.3
– Remaining tracks are considered possible drones and confidences are boosted

by averaging with the max confidence. S′
i,j = Si,j ∗ 0.5 + max(si) ∗ 0.5

This algorithm can improve its decisions as more information is collected, and
it also makes it possible to make decisions on-the-fly without waiting for the end
of the track if need be. In this case, the first predictions would be closer to the
confidence levels of the detection algorithm but would improve over time. The
main advantage of the explained algorithm is that it can make more accurate
insights into the predictions by using temporal information. Not only it is helpful
to increase the mAP score overall it can also provide some explainability better
than using simple threshold values. Expanding the algorithm makes it possible
to inject insight gathered from human experience to improve the results without
requiring any training.
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4 Experiments

4.1 Datasets

Different from our previous work [3], for training, we have used three real-world
datasets in addition to the challenge dataset. Additional real-world datasets are:

– Real World Object Detection Dataset For Quadcopter Unmanned Aerial
Vehicle [18] (named as Real World UAV Dataset for the rest of the paper)

– Det-Fly Dataset [24]
– Multirotor Aerial Vehicle VID (MAV-VID) Dataset [12]

The Real World UAV Dataset is created from public UAV videos gathered
from popular video services. This dataset consists of 51446 images with differ-
ent image resolutions, ranging from 640 × 480 to 4k. The dataset contains drone
objects from different types, sizes, positions, environments, and lighting condi-
tions.

The Det-Fly Dataset consists of approximately 13271 images. Image resolu-
tions in the dataset range from 1080p to 4k. The dataset has four environmental
backgrounds: sky, urban, field, and mountain. Also, these backgrounds are dis-
tributed equally across the dataset. Moreover, drone objects in the images are
tiny and challenging.

The MAV-VID Dataset contains 29500 images for training and 10732 images
for validation. Videos in this dataset are captured from other drones, surveillance
cameras, and mobile devices.

Table 1. Details of datasets used in the experiments. * The value within brackets ‘()’
represents the number of video samples.

Dataset Type Split Total samples Used samples

Drone-vs-Bird Video* Train 76818 (63) 38409

Val 28182 (13) 1875

Real-world UAV Image Train 46299 46299

Val 5145 1875

Det-Fly Image Train 13271 11280

Val 1991 1875

MAV-VID Image Train 29500 9834

Val 10732 1875

Synthetic & Negative Image Train 100000 5000

Val – –

A large amount of data is produced as a result of the synthetic data gen-
eration infrastructure mentioned in Sect. 3.2. In order to find examples that
will improve the real model from these data, 3616 false negative samples were
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extracted from 100k synthetic data. In addition, 1392 false positive samples were
extracted from the negative sample pool generated in the same way. Thus, a set
of nearly 5000 data consisting of synthetic and negative samples was created.

By combining four real-world datasets, we have increased diversity across
drone types, drone sizes, background environments, and lighting conditions. In
addition, synthetic and negative image samples are composed to build a synthetic
dataset. With the combination of real-world and synthetic datasets, we further
increased the diversity of data. The details of the datasets are shown in Table 1.

4.2 Training Details

In our experiments, we have used a popular object detection model, YOLOv5.
There are lots of available architectures in YOLOv5. We have used YOLOv5m6
model architecture in experiments. We have conducted experiments using only
real-world datasets and a combination of real-world datasets and synthetic data.
In total four real-world datasets were used for training (Drone vs. Bird, Real
World UAV, Det-Fly and MAV-VID). Moreover, we have created a validation
dataset that contains 7500 images. The validation dataset is created by compos-
ing four real-world datasets.

In all experiments, the YOLOv5m6 model is fine-tuned for 10 epochs, with 4
batch size and 1920 image size. COCO pre-trained model weights are used in the
fine-tuning stage. Also, the best model is chosen using the mAP score computed
on the validation dataset.

4.3 Results

To evaluate our proposed methods, we randomly chose 13 videos from Drone
vs. Bird dataset. For data sampling, inference and evaluation, our open-source
vision framework SAHI [1,2] is utilized.

YOLOv5 models used in experiments:

– Real Data Model: YOLOv5 model trained on real-world datasets.
– Real+Synthetic Data Model: YOLOv5 model trained on combination of

synthetic dataset and real-world datasets.

As seen in Table 2, Real+Synthetic Data Model outperforms Real Data
Model, always increasing performance by up to 1.2 mAP. Moreover, the classifier
boosting technique improves mAP scores by 1.8 and 1.0 for Real Data Model
and the Real+Synthetic Data Model, respectively. Finally, applying the track
boosting method with classifier boosting achieves 86.3 mAP for Real+Synthetic
Data Model. Thus, we marginally increased mAP by 3.3 by combining all of our
proposed techniques.
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Table 2. Fine-tuning results for synthetic data augmentation, classifier boosting, and
track boosting technique. In the ‘Technique’ column, ‘YOLOv5’ means YOLOv5m6
model is used as a detector, ‘CB’ means model detection confidence scores boosted
by using a drone classifier, and ‘TB’ means the proposed track boosting algorithm is
applied. ‘mAP’ corresponds to mean average precision at 0.50 intersection over union
threshold.

Model Technique mAP

Real+Synthetic Data Model YOLOv5 + CB + TB 86.6

Real Data Model YOLOv5 + CB + TB 86.3

Real+Synthetic Data Model YOLOv5 + CB 85.5

Real Data Model YOLOv5 + CB 85.4

Real+Synthetic Data Model YOLOv5 84.5

Real Data Model YOLOv5 83.2

5 Conclusion and Discussion

Here, we have presented three main approaches that result in improvement of
object detection performance:

– Adding synthetic drone image samples and negative background images
– Additional binary classification model
– Boosting confidence values using temporal information with a scoring algo-

rithm

We observed that using synthetically generated data does not automatically
increase detection performance by itself. Adding synthetic data to the model
blindly would often perform worse than not including at all. This might result
from a domain gap between real data and synthetic data. On the other hand,
real-world drone datasets by themselves might fail to provide the necessary gen-
eralizability due to the lack in variety of backgrounds and objects. To decrease
false negative rate of the model, it was essential to generate synthetic data with
complex backgrounds that normally the model performs poorly on. Also, there
are various complex objects and backgrounds that can be false positive pre-
dictions. Adding various complex objects and backgrounds also provides more
generalizability to the model and decrease false positive rates. Using synthetic
data with moderate amounts and based on the error analysis of the models
outweighs the negative effects of the domain gap.

Objects detection models find objects anywhere on an image, and this
requires operating in a very large variety of images and large sample space.
However, the predictions of the detection model (whether TP or FP) is a more
confined space of images that are drones or at least have drone like features.
A binary classification model is shown to be more effective at operating in this
confined space, thus separating false predictions from real drone predictions a
little better, improving our results.
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Using temporal information can improve drone detection performance by
boosting the predictions found in the same track [3]. We showed that it is pos-
sible to go further and discriminate confident predictions from non-confident
ones based on a scoring algorithm that accumulates confidence scores over time.
This can both be used to increase the overall mAP score and introduce more
explainability to prediction based on tracks.
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Abstract. This paper reports the results of the 5th edition of the “Drone-vs-Bird”
detection challenge, organized within the 21st International Conference on Image
Analysis and Processing (ICIAP). By taking as input video samples recorded by
common cameras, the aim of the challenge is to devise advanced approaches
aimed at spotlighting the presence of drones flying in the monitored area, while
limiting the number of wrong alarms raised when similar flying entities such as
birds suddenly appear in the scene. To this end, a number of important issues such
as the dynamic variations in the scene and the background/foreground motion
effects should be carefully considered, so as to allow the proposed solutions to
correctly identify drones only when they are actually present. The paper summa-
rizes the novel algorithms proposed by the four participating teams that succeeded
in providing satisfactory detection performance on the 2022 challenge dataset.
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1 Introduction

Unmanned aerial vehicles (UAVs) are fast becoming more capable featuring improved
autonomy, sensor payload, and processing capabilities. On the other hand, they are
increasingly accessible to the public either off-the-shelf or custom-made from their
parts. This combination of increased capability and availability opens a new world of
opportunities [12], but it also unveils considerable risks for misuse of UAVs for illegal
activities. The use of UAVs for smuggling goods, industrial espionage, unlawful surveil-
lance, privacy violations, interference with aircraft operations and terrorist attacks are
just some of the events that have been already identified.

While currently there are numerous unimodal [10,20,23] and multi-modal [11,19,
21,24] UAV detection systems under investigation in literature, detection based on
video analysis presents a good trade-off between cost and performance, offering signif-
icant detection range. However, there are still challenges related to the visual similarity
of UAVs and other small flying objects such as birds that can have a similar appear-
ance, especially at long distances or environments with reduced visibility. The agility
and speed of a UAV that can surpass 100 km/h [5] can further stress a vision-based
detection system.

Aiming at promoting research on UAV detection based on video-analytics, in 2017
the first edition of the International Workshop on Small-Drone Surveillance, Detection
and Counteraction Techniques (WOSDETC) [9] was organized as part of IEEE Inter-
national Conference on Advanced Video and Signal based Surveillance (AVSS), held in
Lecce, Italy. In conjunction with the workshop, a grand challenge called drone-vs-bird
detection challenge was launched, supported by the SafeShore project1. In 2019, a sec-
ond edition of the challenge was organized, again as part of WOSDETC and co-located
with the 16th edition of AVSS held in Taipei, Taiwan [8]. A third edition of the Drone-
vs-Bird challenge was organized in 2020, initially planned as part of the 17th edition
of AVSS in Washington DC, USA, but then run as virtual event due to the COVID-19
pandemic [7]. The fourth edition of the challenge was organized in conjunction with
the 17th AVSS in 2021 as a virtual event [6].

Since its first edition, the challenge has attracted interest from hundreds of research
groups, spread all over the world. The main goal is to correctly identify the presence
of drones suddenly appearing in a video sequence, without being confused by birds
or additional disturbing objects in the scene. The 2022 challenge dataset comprises
different video sequences covering both maritime and land scenarios, acquired under
different cameras and background conditions. All the participants submitted a set of
score files containing the detection results, together with a companion paper describing
the proposed methodology. More than 50 different research groups requested access to
the dataset for participation in this edition of the challenge.

2 Challenge Dataset and Evaluation Protocol

The Drone-vs-Bird Detection Challenge dataset consists of a pool of 77 different video
sequences, released to all the participating teams as additional training data. The videos

1 The project “SafeShore” has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 700643.
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have been recorded using MPEG4-coded cameras, in part during the experimental cam-
paigns conducted within the ALADDIN2 and SafeShore projects, and in part provided
under courtesy of the Fraunhofer IOSB research institute. More specifically, the dataset
contains sequences acquired with both static and moving cameras, with different reso-
lutions ranging between 720× 576 and 3840× 2160 pixels.

The average number of frames in each sequence is about 1,384, with each frame
containing on average 1.12 annotated drones. As shown in Fig. 1, the dataset includes
8 different types of commercial drones, namely Parrot Disco, DJI Inspire, DJI Phan-
tom, DJI Mavic, DJI Matrice, 3DR Solo Robotics, and two additional custom fixed-
wing drones. Overall, 3 types have fixed wings while the other 5 have rotary wings.
Each video sequence is associated with a separated annotation file, which reports
the number of frames in which drones enter the scenes, together with their exact
location expressed in terms of bounding boxes surrounding the drones (specified as
[topx topy width height]).

Fig. 1. Examples of drone types present in the training set, i.e., Parrot Disco, 2 custom fixed-wing
drones, DJI Inspire, DJI Phantom, DJI Mavic, DJI Matrice and 3DR Solo Robotics.

The dataset has been conceived with the idea of providing a rather large variability
of scenes, resulting in different levels of difficulty for the detection algorithms. In partic-
ular, the sequences include scenes with rather different backgrounds, from clear sky to
dense vegetation, as well as different weather conditions ranging from sunny to cloudy.
To further challenge the detection task, some sequences also include direct sun glares
and possible variations in the camera characteristics, as reported in Fig. 2. In addition,
drones may appear at different distances from the camera, leading to strong size and
appearance variations among the collected frames. A large number of scenes include
drones that are significantly distant from cameras, making the detection task extremely
challenging [7]. Differently from drones, birds are not annotated and suddenly appear
at some point in several scenes as disturbing objects.

The dataset released to test the proposed approaches consists of an additional set
of 20 video sequences, provided without annotations. About fourteen video sequences

2 The project “ALADDIN” has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 740859.
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Fig. 2. Sample frames extracted from the training videos exhibit the large variability of the
dataset.

share similar characteristics compared to the videos included in the training set, being
them collected during the same acquisition campaigns, at almost the same physical loca-
tions, though with some notable differences. In the past 2021 edition of the challenge,
the test set was extended with seven additional video sequences featuring completely
new scenes, backgrounds, and including two new types of rotating drones. In addition,
they also include novel disturbing objects such as airplanes. The test set consists of five
different sequences captured with a moving camera. In order to make the performance
evaluation fair, all videos were shortened to a total duration of 1 min. The dataset is
freely available for download upon signing a Data Usage Agreement (DUA), related to
the usage of the dataset for research purposes only, while the corresponding annotations
are available at https://github.com/wosdetc/challenge.

The rules of the Drone-vs-Bird Detection Challenge 2022 require that each sub-
mission from participating teams include a set of result files, one for each video
sequence, with each file explicitly stating the frame numbers in which drones were
detected, along with the corresponding predicted position given in terms bounding
boxes ([topx topy width height]). Moreover, result files should also contain the con-
fidence scores for each frame. If a frame is not reported in the file, it is assumed that
no detection has been raised for that frame. The Average Precision (AP) is adopted as
main performance metric to rank the proposed approaches. For this purpose, the rules

https://github.com/wosdetc/challenge
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of the challenge provide that a detection is counted as a true positive detection only if
the Intersection over Union (IoU) criterion with a ground truth annotation exceeds 0.5.
Conversely, detections for which the IoU is less than 0.5 are counted as false positive
detections, while ground truth annotations without an assigned detection are counted as
false negative detections. Test sequences were made publicly available to participants
one week before the submission deadline.

3 Participation and Best Proposed Algorithms

We briefly summarize the algorithms adopted by the four best performing approaches.
OBSS AI team proposed a drone detection framework called DroBoost, that uti-

lizes drone detection and object tracking approaches. They extended the previous work
[3] which utilizes synthetic data and tracking methods to use temporal information by
improving both detection and tracking components. As in the previous approach, they
have used the YOLOv5 [14] object detection model. To increase generalization of the
drone detection model, they have combined four different real-world drone detection
datasets. Moreover, they generated synthetic data to overcome poor drone detection
performance on complex backgrounds. Also, they have integrated synthetically gener-
ated negative images containing negative samples with commonly confused objects to
training to reduce false positive predictions. They used a binary classifier trained on
bounding box crops of the detection model predictions to improve accuracy further.
A confidence value of a predicted bounding box is computed as the geometric mean
of binary classifier’s confidence score and object detector’s confidence score. Further-
more, they proposed an intelligent scoring algorithm to determine the confidence of a
track. With the scoring method, they can eliminate false positive tracks and also increase
confidence values for trusted tracks prediction. Lastly, they open-sourced some of the
operations used in their proposed method [1,2].

Daitao et al. from RISC-NYUAD lab proposed a long-term drone surveillance sys-
tem, named DroneNet, by fusing object detection, tracking and classification methods.
The system takes RGB images as input and feed them into YOLOv5 [14] based detec-
tor to find drone candidates. A high efficient object tracker is integrated to update status
for those objects from detector. In this way, the system improves the computational
efficiency by avoiding running complex detection module on each frame. Moreover, a
drone classification model is applied on the outputs of the detection and tracking mod-
ules to further distinguish drones from other background distractors (airplanes, birds).
By leveraging inference optimization with TensorRT and ONNX, the system achieves
extremely high efficiency on NVIDIA GPUs. The proposed method is validated on
both Drone-vs-Bird competition and real-world field tests. The results demonstrates its
effectiveness and robustness in drone detection and tracking applications.

Nayak et al. from the NII team investigated the Fully Convolutional One-Stage
(FCOS) object detector [22] and selected it for drone detection because it claims bet-
ter performance for small-scale object detection. FCOS is an anchor-box free single-
stage object detector with high inference speed and good performance at the same time.
The FCOS architecture includes input, backbone network, feature pyramid network and
classification-regression network for detection. The backbone network is responsible
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for creating different feature maps, and the feature pyramid network generates different
scales of feature maps. Finally, a classification-regression network computes the classi-
fication loss, centerness loss and regression loss for final detection. By observing early
experimentation, the authors carefully noted the samples that generated false-positives,
and augmented their training dataset with such images including flying objects, leaves
and objects with sharp edges.

A YOLOv4 approach for optical-based recognition is proposed by the UMT team.
The solution is part of a data fusion system, which also includes radar-based detec-
tion, recognition and tracking of drones. In particular, a generic dataset refine process
for YOLO-based approaches is proposed. As the authors argue, a dataset improvement
life-cycle should follow a well-defined methodology in order to avoid image and anno-
tation errors, and consequently improve model predictions. Thus, each dataset sequence
should pass through the stages of extracting, reducing and selecting images. The gener-
ated dataset integrates various open source datasets classifying drones (multi-rotor and
fixed-wing types) and birds. Furthermore, the authors indicate that the fusion of radar-
based decisions with optical ones, will improve the system performance, especially on
the sequences showing a drone appearing on complex backgrounds or with small size.

4 Results

The results for each team in the Drone-vs-Bird Detection Challenge 2022 are reported
in Table 1. In addition to the AP computed over all sequences, which is used as criterion
for the final ranking, the AP is given for every sequence of the test set. The results are
further compared to the winning entry of the Drone-vs-Bird Detection Challenge 2021
[3] and two baseline detection methods, i.e. Faster R-CNN [18] with Feature Pyramid
Network (FPN) [15] and RetinaNet [16]. The winner of the Drone-vs-Bird Detection
Challenge 2021 applied YOLOv5 [14] in combination with Kalman-based object track-
ing. To train the YOLOv5 model, real data and synthetically generated drone images
were used. The applied tracker was used to remove short-lived predictions and boost the
confidence of a detection in a particular track. To train the two baselines, we employed
the object detection toolbox MMDetection [4]. ResNet-50 [13] was used as backbone
and weights pre-trained on MS COCO [17] for initialization. All input images are scaled
to 1920× 1080 pixels during training and evaluation.

The best AP computed over all sequences is obtained by DroBoost, ranking first in
the Drone-vs-Bird Detection Challenge 2022. DroBoost clearly outperforms the other
proposed methods as well as the baselines in case of fixed-wing drones (i.e. parrot dis-
co long session 2 1m) and on sequenceswith drones in front of structured background
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Table 1. Detailed comparison for each team in the Drone-vs-Bird Detection Challenge 2022, the
winning entry of the Drone-vs-Bird Detection Challenge 2021 and two baselines. The AP is given
for every sequence of the test set. While the first block gives the results for sequences originating
from the previous installment of the challenge, the second block reports the results for the novel
sequences. The overall averaged result is given at the bottom.

Sequence AP

DroBoost DroneNet NII UMT Winner 2021 FRCNN RetinaNet

GOPR5843 004 0.982 0.640 0.890 0.128 0.953 1.000 0.989

GOPR5847 001 0.676 0.551 0.676 0.226 0.663 0.693 0.736

GOPR5853 002 0.883 0.778 0.488 0.200 0.618 0.606 0.470

GOPR5868 001 0.999 1.000 0.818 0.788 0.823 0.989 0.919

dji mavick mountain cross 0.890 0.743 0.651 0.439 0.877 0.892 0.903

dji phantom mountain 0.764 0.762 0.769 0.261 0.666 0.640 0.731

parrot disco long session. 0.738 0.222 0.215 0.131 0.546 0.133 0.086

2019 08 19 C0001 27 46. 0.494 0.806 0.306 0.555 0.810 0.855 0.737

2019 08 19 C0001 57 00. 0.731 0.891 0.830 0.751 0.873 0.898 0.887

2019 10 16 C0003 52 30. 0.792 0.796 0.433 0.726 0.519 0.697 0.699

2019 11 14 C0001 11 23. 0.529 0.073 0.591 0.418 0.100 0.779 0.788

4k 2020-06-22 C0006 split. 0.932 0.933 0.000 0.000 0.000 0.014 0.080

4k 2020-07-29 C0020 01 1.000 0.872 0.009 0.009 0.541 0.522 0.812

VID 20210606 141851 01 0.907 0.733 0.002 0.013 0.117 0.054 0.039

VID 20210606 143947 04 0.473 0.438 0.002 0.001 0.212 0.168 0.000

GOPR5856 001 0.993 0.980 0.982 0.575 – 0.990 0.986

GOPR5862 001 0.998 0.996 0.785 0.777 – 1.000 0.981

VID 20210417 143930 02 0.899 0.858 0.355 0.460 – 0.606 0.630

VID 20211010 143610 01 1.000 1.000 0.979 0.951 – 0.964 0.994

VID 20211012 175158 02 0.987 1.000 0.118 0.159 – 0.905 0.680

Overall 0.796 0.761 0.459 0.378 – 0.663 0.622

(e.g. VID 20210606 141851 01). Compared to the results of the winning entry of the
previous edition, DroBoost achieves clearly higher AP values on most sequences. While
the winning entry of the previous edition exhibits poor detection results on sequences
recorded at twilight (e.g. 2019 11 14 C0001 11 23 inspire 1m) and on sequences with
complex background (e.g. 4k 2020-06-22 C0006 split 01 01 that contains a drone in
front of a streetlamp) due to a high number of missed detections, DroBoost is more
robust in such scenarios. DroBoost and DroneNet outperform the other teams in case of
disturbing objects, e.g. airplanes in sequences GOPR5862 001 and GOPR5868 001, as
less false positive detections with high confidence scores are caused.
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The recall rates for each sequence and the overall recall are given in Table 2. For
this, all submitted predictions are considered. DroBoost exhibits the best recall rates
on almost all sequences and the best overall recall. Even for sequences with drones
in front of complex backgrounds (e.g. VID 20210417 143930 02), DroBoost achieves
recall values close to 1. Reason for this is the high number of submitted predictions, i.e.
more than 200k, whereas the other submissions comprise clearly less submissions. In
particular, the submitted results of UMT only comprises about 12k predictions, which
yields poor recall rates on several sequences.

Table 2. Resulting recall for each team in the Drone-vs-Bird Detection Challenge 2022, the win-
ning entry of the Drone-vs-Bird Detection Challenge 2021 and two baselines. The recall is given
for every sequence of the test set and the overall recall is given at the bottom.

DroBoost DroneNet NII UMT Winner 2021 FRCNN RetinaNet

GOPR5843 004 0.989 0.721 0.902 0.155 0.968 1.000 0.995

GOPR5847 001 0.686 0.585 0.682 0.226 0.667 0.695 0.748

GOPR5853 002 0.913 0.804 0.529 0.200 0.677 0.612 0.557

GOPR5868 001 1.000 1.000 1.000 0.992 0.998 1.000 1.000

dji mavick mountain cross 0.943 0.843 0.772 0.537 0.896 0.914 0.931

dji phantom mountain 0.895 0.640 0.830 0.278 0.725 0.669 0.779

parrot disco long session. 0.910 0.368 0.383 0.307 0.897 0.242 0.266

2019 08 19 C0001 27 46. 0.616 0.836 0.624 0.650 0.843 0.889 0.873

2019 08 19 C0001 57 00. 0.826 0.905 0.854 0.787 0.884 0.902 0.896

2019 10 16 C0003 52 30. 0.866 0.855 0.546 0.799 0.645 0.783 0.813

2019 11 14 C0001 11 23. 0.672 0.313 0.697 0.484 0.111 0.779 0.792

4k 2020-06-22 C0006 split. 0.995 0.965 0.000 0.017 0.000 0.248 0.531

4k 2020-07-29 C0020 01 1.000 0.901 0.089 0.067 0.733 0.874 0.914

VID 20210606 141851 01 0.933 0.760 0.037 0.095 0.188 0.181 0.256

VID 20210606 143947 04 0.967 0.445 0.094 0.011 0.673 0.394 0.029

GOPR5856 001 0.998 0.985 0.997 0.607 – 0.992 0.995

GOPR5862 001 1.000 0.997 1.000 0.825 – 1.000 1.000

VID 20210417 143930 02 0.972 0.858 0.444 0.472 – 0.658 0.736

VID 20211010 143610 01 1.000 1.000 1.000 0.952 – 0.992 1.000

VID 20211012 175158 02 0.995 1.000 0.375 0.276 – 0.933 0.821

Overall 0.910 0.821 0.611 0.451 – 0.757 0.777

To analyze the detection results with respect to the IoU criterion used to accept
detections as true positive detections or not, we vary the applied IoU threshold value
in the range between 0.1 and 0.6. The corresponding AP values are given in Table 3.
Decreasing the IoU threshold value improves the overall AP for all methods, as more
predictions are considered as true positives. The largest gain in AP is observed for NII,
which indicates that the predictions are less accurately located.

Qualitative detection results for all teams and the corresponding ground truth are
given in Figs. 3 and 4. Note that only detections with a confidence score above 0.5 are
considered. All teams achieve good results for different drone types in case of back-
grounds without complex structures (see Fig. 3). However, drones in front of structured
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Table 3. Average Precision for various IoU threshold values used to accept detections as true
positives.

IoU AP

DroBoost DroneNet NII UMT

0.1 0.900 0.864 0.652 0.519

0.2 0.897 0.864 0.649 0.518

0.3 0.891 0.852 0.619 0.492

0.4 0.863 0.833 0.542 0.449

0.5 0.796 0.761 0.459 0.378

0.6 0.652 0.454 0.330 0.263

background such as buildings may yield missed detection (see Fig. 4 top row). While
DroBoost and DroneNet detect several drones in such scenarios, NII and UMT exhibit
more missed detections. False positive detections due to disturbing objects such as air-
planes often cause false positive detections in case of NII and UMT (see Fig. 4 bottom
left). Further challenges are distant drones, as small drones are often inaccurately local-
ized (see Fig. 4 bottom right).

Fig. 3. Image crops showing qualitative detection results for DroBoost (cyan), DroneNet (red),
NII (blue) and UMT (yellow) as well as the corresponding GT (green). All methods achieve good
detection results for different drone types in case of backgrounds without complex structures.
(Color figure online)
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Fig. 4. Image crops showing qualitative detection results for DroBoost (cyan), DroneNet (red),
NII (blue) and UMT (yellow) as well as the corresponding GT (green). Drones in front of struc-
tured background such as buildings may yield missed detections, while disturbing objects such
as airplanes often cause false positive detections in case of NII and UMT. Further challenges are
distant drones, as small drones are often inaccurately localized. (Color figure online)

5 Conclusions

This paper presented the results of the 5th edition of the Drone-vs-Bird Detection Chal-
lenge 2022, launched in conjunction with the 21st International Conference on Image
Analysis and Processing (ICIAP). The challenge stimulated a rich participation from
several teams worldwide. The four succeeding solutions achieved interesting detection
performance, and have been compared also with the winner of the past 2021 edition.
The common characteristics of the proposed methods are the use of convolutional neu-
ral networks coupled with additional advanced processing steps used in moving object
detection tasks. Some of the approaches have been also empowered with augmented
training sets obtained via both synthetic generation or addition from existing open
repositories.
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Abstract. Means of air attack are pervasive in all modern armed conflict or ter-
rorist action. We present the results of a NATO-SPS project that aims to fuse data
from a network of optical sensors and low-probability-of-intercept mini radars.
The requirements of the image-based module aim to differentiate between birds
and drones, then between different kind of drones: copters, fixedwings, and finally
the presence or not of payload. In this paper, we outline the experimental results
of the deep learning model for differentiating drones from birds. Based on the
trade-off between speed and accuracy, the YOLO v4 was chosen. A dataset refine
process for YOLO-based approaches is proposed. The experimental results verify
that such an approach provide a reliable source for situational awareness in a data
fusion platform. However, the analysis indicates the necessity of enriching the
dataset with more images with complex backgrounds as well as different target
sizes.

Keywords: Anti-drone system · Deep learning · YOLO · Data fusion

1 Introduction

The human’s multisensory system has been extensively studied in order to provide more
accurate andmore efficientmachinedecisions.This process includes integrationofmulti-
source data and is called data fusion. In processing perspective, data fusion represents
an area which includes a combination of batch and stream processing features. Namely,
in data fusion systems, data is collected over time from continuous data streams and
followswith continuous processing of a bunch of data. Thus, the system requires fast and
lengthy performance. In situational awareness perspective, a data fusion system achieves
refined position, identifies estimates and complete and timely assessments of situations,
threats and their significance [1]. The final goal of using data fusion in multisensory
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environments is to obtain a lower detection error probability and higher reliability by
using data from multiple distributed sources [2]. The same goal applies also for the
deep learning (DL) approaches, which utilize convolutional neural networks (CNNs)
for object detection and recognition. CNNs tend to look for meaningful features that
can help to classify the images or, in the case of object detection, to draw the boundary
boxes enclosing the target of interest [3].

Data fusion systems are especially important for the domain of Means of Air Attack
(MoAA).One of themost developingMoAAcategory are theUnmannedAerial Vehicles
(UAVs) i.e., “drones”. Killer drones represent a real threat to people’s life and health. For
example, just recently a drone of unknown origin crashed near Zagreb (Croatia) by flying
undetected on a number of states. Fortunately no-one was injured. In order to facilitate
the neutralization of killer-drones and minimize the risk for people and assets, a NATO
SPS Anti-Drones project1 has been focalized on the development of a new concept of an
anti-drone system able to detect, recognize and track killer-drones. The project scope is
to progress the state of the art exploiting mini-radar technology and signal processing,
as well as data processing and fusion subsystem, for improving the performance and
eliminating the environmental impact (e.g., ECM pollution) in an urban environment.

The system infrastructure includes a network of LPI (Low-probability-of-intercept)
mini-radar with FMCW or noise-like waveform, and on-demand, fully digital, optical
camera-integrated imaging capability, capable ofworking in all weather conditions, to be
deployed and appropriately placed on the ground in the area of the asset to be protected.
Although being less conventional compared to visual-based approaches, the adoption
of FMCW radars enables complementary analyses in the joint time-frequency domain
using, e.g., spectrograms and related signal processing tools [4]. The optical part is
essential to support correct classification and therefore identification of the threat and
thus to eliminate false alarms. To the best of our knowledge, this is the first attempt that
proved data fusion by integrating image data with radar ones for differentiating drones
from birds.

This paper covers the optical subsystem and automatic recognition, in particular the
ability to distinguish drones from birds and is organized as follows. Section 2 gives
an overview of the system design. Section 3 describe details for the dataset generation
methodology of the proposed approach. Section 4 examines the experimental results.
In Sect. 5, relevant related work from the literature is presented. Finally, the paper is
concluded in Sect. 6, with directions for future work.

2 System Design

One of the main challenges of our system is establishing an efficient data fusion algo-
rithm. Data fusion takes action in different levels of our system. In a higher-level per-
spective, as depicted in Fig. 1, the system should fuse together radar and camera data.
We follow a similar approach to Liu et al. [5]. However, instead of integrating camera
and acoustic data, our solution will combine Support Vector Machine (SVM) radar data
(direction of arrival, range, angular coordinates, elevation and radar cross section) with

1 https://antidrones-project.org/, last access 24.03.2022.

https://antidrones-project.org/
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You Only Look Once (YOLO) camera-based images. In lower levels, the data fusion
takes place only within the modules of the corresponding data source. As per the optical
part, the images provided by the camera are processed by DL methods to support the
data fusion algorithm with additional confidence score for radar-detected targets.

Fig. 1. Processing flow of drone detection

During the phase of literature review for object recognition approaches, a number
of different DL approaches were considered. Namely, state-of-the-art ML frameworks,
including: YOLO, TensorFlow and PyTorch, were examined. YOLO framework was
chosen based on the project objectives, high accuracy and ability to detect objects in
real-time by processing 67 FPS [6]. Moreover, it’s power efficient compared to other
DL detectors [7], open source, flexible network architecture, low hardware require-
ments i.e., minimum 4 GB memory and is able to detect relatively small objects. The
YOLO architecture model is mainly based on Darknet [8], which typically consists of
19 convolutional layers and 5 pooling layers.

3 Dataset Generation Methodology

Although measurement campaigns to verify the quality of the mini-radar have provided
some static and dynamic optical images of drones also equippedwith synthetic payloads,
unfortunately, to date there is a lack of existing drones’ dataset [2, 9]. It’s even harder to
have sufficient number of images of drones with payload. Furthermore, a very sensitive
issue represents the quality of the images in terms of drone or bird size and positions, as
well as the background characteristics. For this purpose, the researchers have considered
different drone dataset generation techniques, e.g., the randomization method described
in [10] or combining background-subtracted real images as described in [9]. Our focus
was rather on building a methodology for more qualitative dataset.

The number of classes to be recognized by the model should also be considered,
because it reflects on the performance of the model. Thus, in line with radar-based
recognition fusion, we plan to consider five classes on the optical side, including: drone,
bird, fixed-wing, copter and drone with payload. Following the lack of images and the
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purposes of the challenge, we have decided to firstly enrich the dataset for the first two
classes (drone and bird), then to follow up with the next two classes (fixed-wing and
copter) and finally detect and classify drones with payload.

To ensure better recognition results, the following criteria were considered during
dataset selection:

• different types of drones: copters and fixed wing ones, as well as different models
including: DJI Phantom, Inspire, Mavic, RTK 300, and Matrice,

• multiple drones shown in different positions and distances,
• different backgrounds and sizes of drones, and
• a number of fixed wing drones, which are currently classified as drones.

As per our dataset a number of open-source datasets were considered, including
DroneNet2, Drone vs Bird [3], Skagen and Klim [15] and other free web images. From
DroneNet and Skagen and Klim datasets, 2395 and 1709 images are used, respectively.
The annotations on these datasets are already in YOLO format. Around 200 of images
found on the web were manually annotated using LabelImg3, a graphical image anno-
tation tool. The largest dataset that was used for our approach is Drone vs Bird [3]
one.

In summary, the dataset contains a total of 14 549 images, consisting of 12 370
images with drones only (including 3 261 with only fixed-wings), 1 857 only birds and
322 images with annotated drones and birds. Regarding the size of the targets, they
mainly fall between the sizes of 162 and 482, and over 962 (see Fig. 2).
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Fig. 2. Distribution of target sizes based on the annotations in the train and test data

As previously mentioned, a well-defined process of building the dataset was itera-
tively performed by the team. Namely, in order to match the YOLO format, a number of
pre-processing steps were iteratively performed on each dataset, as depicted in Fig. 3.
Each step is described in detail in the following subsections.

2 https://github.com/chuanenlin/drone-net, last access 19.03.2022.
3 https://github.com/tzutalin/labelImg, last access 19.03.2022.

https://github.com/chuanenlin/drone-net
https://github.com/tzutalin/labelImg
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Image Extraction and Selection. If the dataset contained video, then the step of image
extraction per framewas performed. For this purpose,FreeVideo to JPGConverter appli-
cation4 was utilized. The tool supports customized extraction of images per frame and
per second. The images were extracted frame-by-frame. The image filename was con-
structed in the following format “<video_filename> <frame_number>”. The
image selectionwas done by human interventionmanually i.e., by removing unimportant
images, which were selected based on the following criteria:

• images without drone or bird, or
• the target being so small that it causes confusion to the prediction model, or
• the body of the target object being mostly behind another visible object.

The image selection step was also performed for image-based datasets.

Fig. 3. The dataset refine process for using on YOLO-based models

Annotation Adaptation and Normalization. As YOLO framework requires, for each
image, a single annotation file, in the next step the annotation adaptation task took place.
Specifically, for this task a simple desktop application was developed. The application
supports the following steps in order:

1. Load the folder images. Browse for the folder containing images (extracted from
videos in the previous step).

2. Set annotated text file. Browse and open the annotation file containing the annotation
list for every frame of the video. The general format and an example annotation of
the Drone vs Bird dataset format consists like in Table 1.

4 https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm, last access
19.03.2022.

https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm
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Table 1. Input annotation’s format.

Format framenum num_objs_in_frame obj1_x obj1_y obj1_w obj1_h
obj1_class

Example 34 1 1 241 55 43 drone

The annotation adaptation task outputs a text file for each image with a filename the
same as the picture with the format described in Table 2. For multiple objects present in
a single frame multiple rows were appended to the text file.

Table 2. YOLO annotation format.

Format obj1_classnumber obj1_x obj1_y obj1_w obj1_h

Example 0 1 241 55 43

Since we are dealing with a huge number of files a validation function is needed to
check for valid pairs of image files with corresponding annotation files. For this purpose,
the output folder files generated from the last step, consisting of a list of couples (photo
and text files), are firstly loaded and then get checked for invalid couples.

Furthermore, YOLO expects object annotations to be in the normalized format. For
this purpose, a simple conversion tool was also developed to check and normalize the
annotations.

Image Reduction. Since the images on successive frames are very similar and as such
add little information to the model, we decided to reduce the dataset by removing every
third image of each video file. This task was performed manually by using Windows
Explorer feature to arrange files three per each row followed up by selecting the third
column and removing files.

Train and Test Images Distribution. Finally, as per our solution the dataset should be
organized into train and test folder, based on the specified 75–25% ratio. A Power Shell
(PS) script was utilized to support this feature.

Fix Object Class, Annotations and Images. In different versions of our dataset the
class of drone and bird was interchangeably set as 1 and 0. To ensure class consistency
a PS script was executed on the dataset folders.

Furthermore, a simple toolwas developed to also fix some conversion inconsistencies
within annotation lines. In fact, double spaces and commas were replaced with single
space.

Since our dataset was uploaded on open repositories, such as Google Drive, a small
number of images got damaged after the process of distributing them into train and test
folder. For this reason, before each training process, all the images were scanned for
defects with the open-source tool Bad Peggy5.

5 https://github.com/coderslagoon/BadPeggy, last access 19.03.2022.

https://github.com/coderslagoon/BadPeggy
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The final step before a training sessionwas the backup of files. Namely, both train and
test folder were occasionally backed up. Sometimes, the backup of files was performed
before distribution of files into train and test folders.

As per the experimental set up, the default configurations of YOLOv4 model, based
on Darknet [8], were utilized. Some Darknet code was modified and compiled to support
the correct output format of the Challenge. The Google Colab Pro6 platform was used
for the training and validation of the model. It supports faster GPUs, more memory and
longer runtimes as specified in the free version. With Colab one can import the image
dataset, train the image classifier and evaluate the model.

Following the iterative process of improving the dataset, our model was trained with
its different versions. During the last training around 6000 iterations were made and the
whole training process lasted about 8 h. As can be observed from Fig. 4, the training
resulted with 68% mAP.

Fig. 4. mAP of the training performance of the dataset

6 https://colab.research.google.com/, last access 20.03.2022.

https://colab.research.google.com/
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4 Experimental Results

As the challenge goal is to detect a drone, experimental results are evaluated only for
drone detections and classification by discarding those of birds. In order to describe
more correctly the prediction accuracy of our model, the Precisionmetrics are analyzed.
Additionally, to better describe the detections of the proposed approach, the Recall
metrics are utilized.

In order to get a broader perception of the performance of the described approach,
a number of test sequences were selected to include the following characteristics: many
static objects, complex backgrounds, different target sizes, moving camera and near/far
targets. The videos were chosen from the Drone vs. Bird Challenge dataset as they best
address these constraints, and also provide ground truth annotations of drone objects.
Table 3 lists the selected test sequences with corresponding characteristics, the number
of present ground truth objects (#GT) as compared to the number of submitted detections
(#Det), resulting recall (#Rec) and precision (#Prec).

Table 3. Description of the test video sequence set with comparison of detection results in terms
of number of submitted detections and resulting recall.

Sequence Characteristics #GT #Det #Rec #Prec

dji_matrice_210_sky moving cam;
multi-rotor
drone; clear
sky view; short
length;

1318 1470 99.77 92.41

dji_mavick_close_buildings moving cam;
multi-rotor
drone; non-sky
view; long
length;

1501 1034 66.60 100.00

dji_phantom_landing_custom_fixed_takeoff moving cam;
multi-rotor
drone; cloudy
sky; short
length;

2613 2606 92.10 99.63

parrot_disco_zoomin_zoomout moving cam;
fixed-wing
drone; clear
sky view; short
length;

665 252 50.89 81.43

The first test and third sequence (dji_matrice_210_sky and dji_
phantom_landing_custom_fixed_takeoff) are not very challenging for the proposed
model, because they have a sky view and thus the retrieved results are near ideal. Based
on the trained model, which contains a high number of images with clear and cloudy
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sky view, the high score of recall and precision has turned out as expected. Namely, a
static street light has generated a number of false alarms in the first sequence, which has
reduced the precision to 92.41%. Unlike this, the performance of the third sequence has
resulted with better FPs and thus 99.63% precision, but with greater FNs i.e., recall of
92.10%.

The view of the second sequence (dji_mavick_close_buildings) represents a drone
moving on land background. The duration of the sequence is lengthy and the drone
appears in every frame, which has resulted with more FNs. Thus, the recall has dropped
to 66.60%, which means 1/3 of GTs are missed. However, the precision has remained
perfect, because there were no FPs.

A fixed-wing drone is demonstrated in the fourth sequence (par-rot_
disco_zoomin_zoomout). Following the clear sky, the resulting precision is perfect. Sim-
ilar to the second sequence, the recall is again decreased bymissing a half of theGTs.

5 Related Work

For getting a better insight about anti-drone YOLO-based approaches, a number of
state-of-the-art ones were analyzed. Namely, the following approaches were analyzed:

• Aker et al. [9] describe an end-to-end object detection method to predict the location
of the drone in the video frames. The scarce data problem for training the network
has been solved by an algorithm for creating an extensive artificial dataset.

• In [11], authors describe an autonomous UAV detection and tracking platform.
Namely, a Tiny YOLO detector is integrated into a hunter drone for detecting and
chasing another drone.

• Wu et al. [2] propose a video-based detection of drones. To support their approach,
they have developed a dataset consisting of 49 videos.

• A combined multi-frame DL detection technique, where the frame coming from the
zoomed camera on the turret is overlaid on the wide-angle static camera’s frame, is
described in [12].

• Lai and Huang [7] have proposed a solution for detecting fixed-wing intruders with
YOLOv3.

Each implementation has its own pros and cons. In general, none of the described
approaches consider fusing optical data with radar ones. Moreover, even though we
currently recognize birds and drones, our dataset next versions will further recognize
drones with payload, which is not the case in the approaches. In particular, the solution
presented in [9], detects the only drone in the scene and problems occurwhen the network
mixes up a bird with the drone. The rest of the approaches are limited to a single drone
class, except [12] who include other classes like: airplane, bird and background. But it
does not provide further details about the dataset. The approaches were analyzed on the
following different aspects of particular interest.

Network Architecture. The YOLO architecture model is mainly based on Darknet [8],
which typically consists of 19 convolutional layers and 5 pooling layers. In general, each
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approach has applied specific fine-tuning techniques for achieving better performance.
For example, the classifier model used in [12] uses 64 × 64 size of the input layer,
while vector classification is performed by 2 consecutive fully connected layer with 512
neurons with 0.5 dropout between them [12]. To raise the performance of our approach,
we are considering the network modifications in future works.

Dataset. Thedataset quantity and quality differ in the approaches, aswell as image sizes.
In particular, Aker et al. dataset, consisting of 676 534 images with 850× 480 resolution,
combines real drone and bird images with different background videos. Wyder et al.
use a synthetically generated dataset7 of 10,000 images from autonomous drone flying
sequences,manually annotated. The samenumber of images has been generated and used
by Lei and Huang for their solution. Our dataset consists of lesser number of images, as
we strive to build a high-quality dataset. The proportion of the training versus validation
dataset typically ranges between 70–80% and 30%–20%, respectively.

An artificial dataset generation algorithm is described in Aker et al. It describes the
process of generation and reduction of the images. However, it does not include the
process of image annotation extraction and conversion, as well as image checking for
errors.

Annotations. The annotations typically include information about coordinates of the
center of the boxes with respect to the grid cell, the width and height in proportion to
the whole image, and a confidence score of the detected object within the bounding
box. In general, the approaches utilize the existing dataset annotations, or as in our case
utilizing several parts from different datasets, and enriching them with new manually
labeled and annotated images. Wu et al. have used Kernelized Correlation Filters (KCF)
tracker [13] to auto label detected objects. A study about different types of annotation
errors examined in a YOLO-based detector is described in [14]. In our approach we have
used manual annotation as well as converting to YOLO-based format.

Classes. For better performance results the approaches have mainly considered a single
class, i.e., drone, as specified in their model. However, Aker et al. use two classes drones
and birds, while Unlu et al. have used four classes in their solution. As previously men-
tioned, for this paper we have used two classes and will use other ones for differentiating
between drone models and carrying or not a payload.

Accuracy. The precision and recall of the approaches are satisfactory, with more than
89% and 85%, respectively. Our approach has resulted with more than 92% and 50%
precision and recall, respectively. The autonomous Tiny YOLO-based approach [11] has
performed with 77% accuracy in cluttered environments in eight frames per second.

6 Conclusion

Fast and robust detection and recognition is required for the anti-drone domain, because
drones have ability to fly with high speed and for a short time can cause huge damage

7 https://osf.io/jqmk2/, last access 18.03.2021.

https://osf.io/jqmk2/
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to human lives. A lot of research efforts has been dedicated by the image processing
community. In particular, the findings of this paper suggest that a methodological app-
roach should be well-defined for the dataset improvement lifecycle. The iterative process
includes continuous check, validation and image variety of the dataset. Instead of infus-
ing vast number of images into the dataset, which can cause model confusion, the dataset
improvement process should ensure high quality images, which on the other side can
lead to a reduced number of false alarms and missed detections.

To date, there is not enough evidence of approaches for detecting killer drones in far
distances by combining different data sources. Namely, as can be observed by the results
of this paper and based on the described related works, we can conclude that the image
processing algorithms do not perform well enough in cases when the background of the
view is complex and the distance of the drone is far. For this aim, as per future work of
our approach, we propose that the drone detection and recognition should include other
technology (i.e., radar RF) and data fusion techniques complemented with optical-based
recognition. This will support higher system accuracy and reliability by eliminating the
identified obstacles.
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Abstract. In this paper, we present our approach for drone detec-
tion which we submitted for the Drone-Vs-Bird Detection Challenge.
In our work, we used the Fully Convolutional One-Stage Object Detec-
tion (FCOS) approach tuned to detect drones. Throughout our experi-
ments, we opted for a simple data augmentation technique to reduce the
amount of False Positives (FPs). Upon observing the results of our early
experiments, our technique for data augmentation incorporates adding
extra samples to the training sets including the object which generated
the most number of FPs, namely other flying objects, leaves and objects
with sharp edges. With the newly introduced data to the training set, our
results for drone detection on the validation set are as follows: AP scores
of 0.16, 0.34 and 0.65 for small-sized, medium-sized and large drones
respectively.

Keywords: Object detection · Drone detection · Deep learning ·
Drone-vs-Bird detection

1 Introduction

With recent technological advancements in the field of Unmanned Aerial vehi-
cles (UAVs), their operational capabilities are ever increasing accompanied by
similar decreases in the cost of acquisition. UAVs have been extensively used for
surveillance, transportation or content creation. Notwithstanding these appli-
cations, there may be many instances where the growing usage of UAVs pose
significant security threats to public gatherings, residential buildings, working
infrastructure, or classified areas. Additionally, UAVs may also be used for ille-
gal activities such as smuggling, privacy violation, terrorist attacks to name a
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few. Therefore, it becomes imperative to be able to detect flying objects such
as drones and UAVs from afar. At the same time, we need a robust mechanism
to distinguish between these objects and birds flying in the sky, which may be
collected as false positives by the system. The detection capabilities of the sys-
tem are traded-off with respect to other parameters such as the object distance,
object size or detection complexities, for instance.

In order to circumvent the aforementioned challenges, a low-cost solution could
be the surveillance and early detection of drones in video footage. This video-based
drone detection may not perfectly work for distant drones, but such a low-cost
solution is an optimum choice for detecting drones at low-altitude close range tar-
gets. Video-based drone detection may come across certain difficulties, considering
the following three different scenarios, i) Drone detection in areas with a high like-
lihood of false positive detections due to flying birds, ii) very low-altitude drones
may come across occlusion due to poles and towers in a cityscape, iii) low contrast
between the drone and its background may create difficult scenarios. In order to
address these challenges, the research community is actively engaged in devising
video-based drone detection methods and techniques.

In contrast to the earlier methods for drone detection by means of single
shot detectors such as YOLO and SSD, or by the use of region-based networks
such as Faster-RCNN, our method mainly investigates the use of Fully Convolu-
tional One-Stage Object Detection (FCOS) [16], which was originally devised as
anchor-free single-stage technique for object detection. One of the main advan-
tages of the anchor-free object detector is its reduced computational complexity.
This enables faster detection of drones and ensures the use of the system in a
real-time environment. Another motivation to incorporate the FCOS method is
its remarkable performance for a diverse spectrum of object sizes, which is highly
likely in the case of drone detection depending on the distance of the drone from
the camera plane.

The main contribution of our paper is that i) we devise a methodology for
drone detection using FCOS algorithm and ii) additionally, we investigate vari-
ous domain adaption techniques (such as transfer learning, data augmentation)
which help in robustification of the output of our system. This helps in greatly
reducing the number of false positive detections as a result of flying birds or
falling leaves, which were earlier detected as drones with a high score.

The remainder of this paper is structured as follows: In Sect. 2, we describe
some of the work related to the task of object detection and UAV detection. In
Sect. 3, we describe our proposed approach, and give the details of our imple-
mentation. In Sect. 4, we present our experimental results, discuss the obtained
results and show directions for future work to improve the detection. In the
same section, we also address the main issues encountered during the experi-
ments. Finally, in Sect. 5, we conclude our work.

2 Related Work

The competition at hand (Drone-vs-Bird Challenge) has seen multiple inter-
esting submissions in its previous versions [3]. Aker et al. [1] implemented an
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end-to-end object detection using YOLOv2 [8]. Moreover, the authors used var-
ious other data sets to augment the training data. The augmentations included
freely available drone data sets, in addition to images of flying birds with vary-
ing backgrounds. The inclusion of these data sets improved the diversity of the
training data and at the same time, helped provide features that differentiate
drone objects from ones that are not. Nalamati et al. [7] proposed a two-stage
Faster R-CNN [9] with ResNet-101 [4] as the backbone architecture. This con-
figuration outperformed the Faster R-CNN approach with the Inception-v2 [15]
as backbone. Schumann et al. [12] proposed an image processing pipeline for
tracking small targets using a wide-view overview camera, and then a mounted
zoom camera which focused on the location of interest in order to classify it
either as UAV or a distracting class. The authors used Single Shot multi-box
Detector (SSD) as the underlying technique for object detection and trained the
model on a data set containing actual UAVs and birds as well. [14] introduced
a two-stage technique for UAV recognition, where, in the first stage the flying
object is detected and in the second stage, the detected object is recognized
as a drone, birds or background motion of clouds etc. The authors investigated
convolutional neural networks (CNN) in both stages of detection and recogni-
tion. [11] used a similar idea as that of [14], where in the first stage background
subtraction was exercised to find potential areas of interest, then in the second
stage CNN-classifiers were employed to classify the object as either a drone or
a different object.

Saqib et al. [10] carried out the task of drone detection by making some
adaptations in CNN architectures such as (VGG-16 [13], or Zeiler-Fergus (ZF)
[19], etc.). For this work, the authors addressed the data scarcity problem by
transfer learning of the model on ImageNet and then fine-tuning. During this
research, it was realized that VGG-16 with Region Based Convolutional Neural
Networks (R-CNN) out-performs other architectures in consideration. A very
unique idea of Super-Resolution (SR) technique for UAV detection was intro-
duced by [6], where in the first stage a deep DCSCN model [18] is applied to
zoom into the input image by two-times and then subsequently object detec-
tion is applied in the second stage. This method works in an end-to-end manner
with joint optimization which resulted in an increased performance. Coluccia
et al. [2] document the best methodologies adopted for the 4th edition of the
Drone-vs-Bird Detection Challenge, held in 2021.

Most of the recent object detection methods depend upon anchor boxes,
however, Tian et al. [16] proposed an idea of anchor-box free Fully Convo-
lutional One-Stage object detector (FCOS). This proposed method is consid-
ered to be efficient because it avoids complicated computations for training and
hyper-parameter selection due to anchor boxes. FCOS can be implemented by
using different backbone architectures, such as ResNet-101-FPN, HRNet-W32-
51, ResNeXt-101-FPN etc.
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3 Proposed Approach

In this section, we describe the details of our proposal for drone detection, the
different challenges encountered and how they have been tackled. As previously
stated, in our work, we used FCOS [16], an anchor box free one-stage object
detection approach that has proven to be very effective in detecting objects
with small size in particular. Nonetheless, being a one-stage object detection
method, FCOS allows for a high inference speed, while providing good perfor-
mance, allowing it to be a good candidate to run on computationally-limited
devices. Therefore, we start by summarizing the concept of this approach, how
it works and its main key strength points.

3.1 FCOS Description

FCOS is a fully convolutional neural network. In Fig. 1, we show the network
architecture as provided in [16]. In brief, the network architecture of FCOS is
composed of an input, a backbone, a feature pyramid (proper to FCOS) and
a classification + centerness + regression sub-networks. Here, C3, C4 and C5
refer to the feature maps of the backbone network, whereas F4 ∼ F7 refer
to the feature levels used for the final predictions. H × W correspond to the
height and width of the feature maps at each level, and /s refers to the sampling
ratio of the feature maps. For instance, for input images of size 800×1024, these
numbers correspond to the ones shown in Fig. 1. In the following, we summarize
the different sub-networks main key concepts.

Backbone

Head

Head

Head

Head

HeadC3

C4

C5

P7

P6

P5

P4

P3

Feature Pyramid Classification + Centerness + Regression

7×7  /128

13×16  /64

25×32  /32

50×64  /16

100×128  /8

800×1024

H×W  /s

H×W×256 H×W×256

×4

H×W×256 H×W×256

×4

Classification

Centerness

Regression

Shared Heads between Feature Levels

H×W×C

H×W×1

H×W×4

Fig. 1. Architecture of FCOS network.

The Input: This is basically the input to the neural network. As is the case
for all other neural network architectures for object detection, the input image
is expected to have a certain size H × W × C, where H and W are the width
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and height of the image respectively, and C is the number of channels, which,
conventionally is set to 3 for RGB.

The Backbone: For it to be compatible with the feature pyramid network
(FPN), multi-scale features are to be extracted using an encoder such as ResNet
[4], ResNext [17], DenseNet [5] or others. As previously stated, C1 ∼ C5 corre-
spond to the feature maps extraction at stages 1 ∼ 5.

The Feature Pyramid Network (FPN): The FPN benefits from the scale-
invariance of the feature pyramids to detect possible objects at different scales.
Generally speaking, early layers have a richer resolution but lower semantic
features, whereas later ones are richer semantically, but have lower resolutions.
The lateral connections between layers allow the feature fusion between them,
making the detection, in particular for smaller objects, much better.

The Detection Heads: FCOS works on a per pixel prediction. A key concept
in this context is the detection heads. A prediction is output for 3 heads having
a similar architecture: a 2D convolution ← a group normalization ← a Rectified
Linear Unit (ReLU). These heads’ outputs are as follows:

– The centerness head: Centerness is a measure of the deviation between the
center of an object from the location. In their work, the authors observed that
for poorly detected bounding boxes tend to have their centers further away
from the ground truth. Thus, they suggested that using this measure, it is
possible to improve the performance by learning this centerness scale factor.
However, despite its being used or not for training, it is a good measure
for evaluation nonetheless. The centerness head outputs the per feature level
normalized distance from the center of the object it is in charge of. This
translates into the following: the closer the prediction is to a center, the
higher the normalized value.

– The class prediction head: As its name suggests, this head outputs the
per-pixel class probability weighted by the centerness score.

– The box regression head: Again, as its name suggests, this head outputs
the coordinates of the bounding box, through a regression process.

In summary, FCOS outputs 3 main results: the centerness, the class and the
coordinates and dimensions of the bounding box.

3.2 FCOS Parameters

Throughout our work, we used the different values of FCOS parameters shown
in Table 1. As can be seen, we used both ResNet-50 [4] and ResNeXt-101 [17].
However, our early experiments show a faster learning with less false positives
detected using ResNet-50, leading us to focus on this architecture and run the
different folds using it. Later, when we show our experimental results, we will



Evaluation of Fully Convolutional One-Stage Object Detection 439

compare both backbones for reference. Other than the base learning rate and the
weight decay (as well as the number of classes obviously), we used the default
parameters of FCOS.

4 Data Set, Results and Discussion

4.1 Data Set

The data set present for the current version of the Drone-vs-Bird Detection
Challenge is composed of 77 short clips of flying drones. The videos include other
flying objects such as birds, leaves, etc. In Fig. 2, we show examples of frames
captured from different flights containing drones as well as other flying objects.
Hereafter, we will use the following words interchangeably: videos, scenarios, and
sequences. In Table 2, we present the main statistics of the data set, including
the total number of frames, the total number of objects (i.e., drones) as well as
their minimum and maximum sizes. In Fig. 3, we show the distribution of sizes
of the objects in the training set.

Our early experiments showed that, despite being good at detecting flying
objects in general, the approach generates a large number of False Positives
(FP), confusing birds and falling leaves, and sharp-edged objects for drones
in a considerable number of scenarios. That being the case, we introduced to
our training data set a manually selected set of videos publicly available and
downloaded from YouTube, containing for the most part enough samples of the
objects being confused with the drones. This could help feed the network with
more samples of such objects with no annotation to let the network learn that
they should belong to the class “background” rather than the class “drone”.
Examples of images from the downloaded videos used for data augmentation are
shown in Fig. 4.

In the remainder of this section, all the results reported are ones with the
new data introduced exclusively to the training set.

4.2 Results

Cross-Validation Folds: Throughout our experiments, we split the data set
in our hands into 3 sub-sets, and perform a 5-fold cross-validation. Note that,

Table 1. FCOS parameters used for training.

Parameter Value

Backbone ResNet-50/ResNeXt-101

Number of workers 4/8

Base learning rate 10−2

Weight decay 10−4

Number of iterations 100,000
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Fig. 2. Samples of frames from the data set with the drone objects bounded by boxes
in red. (Color figure online)

Fig. 3. Count of drone objects as present in the data set with respect to their size (in
log10 scale).

during the training of the different folds, the newly added videos are included
exclusively in the training set. None of them is used in the validation, as this
could wrongly enhance the results.
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Fig. 4. Examples of images from the videos used for augmentation: The first row shows
images from a video of flying birds. The second row shows images captured showing
sharp edges, poles and other objects which were confused with drones during our early
experiments. The third row shows examples of moving leaves which also led to missing
detection in our early experiments.

In Figs. 5a and 5b, we show the loss and the centerness loss, respectively, per
iteration for the different folds for the validation set. Here, Folds 1 to 3 refer
to the 3 folds trained using Resnet-50 as a backbone, whereas Fold X refers to
the single fold (same training and validation split as Fold 1) which was trained
using ResNeXt-101. As we can observe, the results obtained with the ResNet-50
folds are much better than those obtained with ResNeXt-101. What we noticed
was a huge number of FPs in the ResNext results. The number of bounding box
detections using ResNet-50 were in the vicinity of about 60,000 detections across
all probabilities, while the number from ResNext was around 450,000 detections.
Both the loss and the centerness loss show very similar behaviors for the 3 folds
trained with ResNet-50 as a backbone. However, the model trained in fold 1
shows slightly lower losses, making it the main candidate for our submission.
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(a) Validation loss for the different
folds trained

(b) Validation centerness loss for the
different folds trained

Fig. 5. Loss and Centerness loss over the training iterations on the different folds for
ResNet-50 and ResNeXt-101. Here, Folds 1 – 3 refer to different folds trained using
ResNet-50, whereas Fold X refers to the fold trained using ResNeXt-101.

Table 2. Data set specifications.

Total number of images 106,485

Number of images with drones 97,389 (91%)

Number drone objects 119,243

Minimum size 15 pixels

Maximum size 1,394,556 pixels

In Table 3, we give a summary of the detection performance for the different
folds at the end of the training, each for its respective validation set. Here, small
refers to objects whose size is smaller than 32 × 32 pixels, medium refers to
objects whose size is between 32 × 32 and 96 × 96 pixels, and large refers to
objects whose size is larger than 96×96 pixels. As can be seen, the performance
on Fold 1 and Fold X is very similar. However, the model trained at Fold X
generates a huge number of FPs. This led us to exclude this model, as precision
is one of the main Key Performance Indicators (KPIs) and was poorly reported
with this model.

Table 3. Average precision on small, medium and large objects

Fold Small objects Medium objects Large objects

Fold 1 0.16 0.34 0.65

Fold 2 0.24 0.38 0.48

Fold 3 0.13 0.41 0.54

Fold X 0.21 0.32 0.71
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4.3 Discussion

During our experiments, we have observed that the proposed method had trouble
identifying drones and generated a large number of FPs as well as a fairly big
number of missing identifications (i.e., False Negatives - FNs) in a certain number
of flight videos. These include mainly the following cases:

– Low quality videos with very small drones: This is by far the biggest reason
of FNs. When the drone object is very small and blends with its background
due to the poor quality and the blurriness in the images, our approach tends
not to identify the drone.

– Presence of other flying or flying-like objects: Such objects include birds, tree
leaves, etc. The presence of such objects led to generating the large number
of FPs. Throughout our work, we tried to use data augmentation to give the
network more examples of flying objects that are not drones. This technique
is limited in the sense where these objects are part of the class “background,”
which has way more samples than the class “drone.” A better option would
be to have (a) dedicated class(es) for these objects so that the neural network
learns their patterns and manifestations rather than treating them as part
of the background. However, this requires acquiring a labeled data set, or
labeling the ones we added.

– The poor diversity of the scenarios in the training set: In the data set in
hand, a large number of the videos are taken under very similar conditions.
This leads to some sort of overfitting, as the networks learns the patterns
of drones with reference to their backgrounds in the training samples. Data
augmentation by means of adjusting the contrast in the images, for example,
could help partially address this issue and improve the performance. However,
ultimately, using more diverse videos is a much better option.

Due to time constraints, we were not able to experiment more with the
ResNeXt-101 model as well as other ones. In other words, we were not able to
exploit the potentials and strong points of each of the backbone architectures,
nor did we have the time to evaluate them properly and optimize them for the
detection of drones. In a future participation, we would run several rounds of
experiments, the first of which aims to identify good candidates. Once good
backbone candidates are identified, we would like to experiment with them in
more details in later rounds.

5 Conclusions

In this paper, we summarized our proposal for drone detection submitted for the
Drone-Vs-Bird Detection Challenge. In our work, we used FCOS which we tuned
to detect drones. Upon observing the results of our early experiments, we decided
to use a data augmentation technique to reduce the amount of False Positives
(FPs). Our technique for data augmentation incorporates adding extra samples
to the training sets including the object which generated the most number of
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FPs, namely other flying objects, leaves and objects with sharp edges. With the
newly introduced data to the training set, our results for drone detection on the
validation set were as follows: AP scores of 0.16, 0.34 and 0.65 for small drones,
medium-sized drones and large drones respectively.
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Abstract. In this work, we explore the process of designing a long-term
drone surveillance system by fusing object detection, tracking and classi-
fication methods. Given a video stream from an RGB-camera, a detection
module based on YOLOV5 is trained for finding drones within its field
of view. Although in drone detection, high accuracy and robustness is
achieved with the underlying complex architecture, the detection speed
is hindered on ultra HD-streams. To solve this problem, we integrate a
high efficient object tracker to update target status while avoiding run-
ning the detection at each frame. Benefited from lightweight backbone
networks with powerful Transformer design, the object tracker achieves
real-time speed on standalone CPU devices. Moreover, a drone classi-
fication model is applied on the output of the detection and tracking
mechanisms to further distinguish drones from other background dis-
tractors (birds, balloons). By leveraging inference optimization with Ten-
sorRT and ONNX, our system achieves extremely high inference speed
on NVIDIA GPUs. A ROS package is designed to integrate the afore-
mentioned components together and provide a flexible, end-to-end drone
surveillance tool for real-time applications. Comprehensive experiments
on both standard benchmarks and field tests demonstrate the effective-
ness and stability of proposed system.

Keywords: Drone detection and classification · Object tracking ·
Super resolution

1 Introduction

The area of Unmanned aerial vehicles (UAVs) has drawn increasing attention in
recent years due to its applications cross diverse fields such as aerial photogra-
phy [10], mapping and surveying [28], search, rescue and emergency response [1].
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The advent of low-cost small commercial drones led to their deployment into
real world, while raising safety, privacy concerns and other types of challenges to
the aviation industry [29], border security [8], and critical infrastructures [14].
Therefore, the demand of developing surveillance systems, especially for small
drones has risen in the past few years to prevent intentionally or unintention-
ally misused of drones in urban environments, coastal border, airports and other
safety-sensitive areas.

In recent years, there have been a lot of efforts in designing drone surveil-
lance systems [6,26] by adopting effective detection and countermeasure tech-
niques including LiDAR, radio detectors, visual camera and passive acoustic sen-
sors. Among those techniques, visual detection based on Deep Learning methods
achieves remarkable progress on both effectiveness and accuracy. With the devel-
opment of deep learning theory and optimization of hardware, modern object
detectors obtain human-level compatible accuracy and operate in real-time speed
even on mobile devices. However, drone detection is still a challenging problem
due to its small size and fast maneuvers. Other factors caused by illumination
change, heavy occlusion and target disappearance from the camera view further
hinders drone detection.

To deal with the small object detection problem, recent works [5,19,27] utilize
larger and deeper networks with more complex architecture to improve the model
discriminative ability. However, constrained by the input size of neural networks,
small drones only take less than 100 pixels in HD-frames, providing insufficient
information for feature extraction and detection. On the other hand, blurred
imaging of small objects from a long distance makes it harder to distinguish
drones from other similar distractors like birds and airplanes. The only efficient
solution is enlarging their input size to provide more useful information. However,
this causes the exponential increment of computational complexity and will use
most of the computational power, resulting in the processing delay and detection
discontinuity in real applications.

In this work, we build a drone detection module based on YOLOV5. Due to
the trade-off between complexity and precision, we choose YOLOV5-m as the
base model and restrict the maximum input size to 1280 pixels. To avoid the
computational overload caused by the drone detection, the used module only
operates in a very low frequency (<1 Hz). Considering the sparsity of drones
occurrence in the field of view as well as the flying trajectory continuity, it is
not necessary to run the detector on each frame and we use it as an indicator of
the first appearance and disappearance of drones in camera view. Once a drone
is captured by detection module, a more efficient object tracker running in real-
time speed using low-resources will be initialized to update the drone status in
the following frames.

Unlike object detection in which the model runs through the whole frame,
object tracking, instead, identifies the target object from a local patch, resulting
in efficient and accurate schemes. Moreover, modern trackers are optimized for
dealing with varying challenging scenarios like fast motion, low-resolution, fre-
quent occlusion, etc. Recent years have witnessed many successful deep learning
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based object trackers, especially the family of Siamese Network based track-
ers [2,4,7], which play an important role in the visual tracking community. In
this work, we employ a recent Transformer based object tracker, SiamTPN [32],
which achieves a desired trade-off between tracking efficiency and accuracy for
dealing with varying computational demand. Specifically, the SiamTPN obtains
State-Of-The-Art performance while running at real-time speed on both CPU
and GPU ends. The outputs from the drone detection modules initializes the
tracker module. The trackers after initialization will track the detected objects
as they move around frames. Once the target is lost or out of field view, the
tracker will be removed from trackers’ list. Thanks to the computational effi-
ciency design, the trackers can be easily deployed to track multiple objects in
parallel way on single GPU.

However, both detector and trackers may produce false negative predictions.
The detector may takes airplanes or birds from a long distance as drones. Mean-
while, the object tracker fails when the object is out of view, occupied or distrac-
tors occur. In either case, it demands a robust classifier with strong discrimina-
tive ability to determine the final classes for outputs from detector and trackers.
Only the objects with a higher confidential score will be kept. To this end, we
employ a pre-trained Resnet-50 [12] model and fine tune the final layers with
custom classification datasets for drones. To deal with the tiny drones with very
low resolution, we deploy a light-weight super resolution method, SRGAN [18],
to generate high-resolution patches before feeding them into classifier, which fur-
ther improve the stability of classification model [24]. In practice, we only apply
SRGAN [18] model on small patches with size less than 50 × 50 pixels.

By integrating the aforementioned components, we propose an efficient, end-
to-end drone surveillance system, which can be easily deployed into embedding
devices with low computational resources. We further boost the effectiveness by
leveraging inference optimization techniques such as TensorRT and ONNX.

2 Related Work

2.1 Object Detection

The deep learning based object detection methods include two branches, like the
two-stage methods, including Faster RCNN [25], and single-stage methods using
SSD [21], YOLO [15,16] and FCOS [27]. Two-stage methods divide the detection
procedure into a coarse classification problem followed by a fine-tuning step, lead-
ing to a higher accuracy. Single stage methods, instead, aim to a desired trade-off
between efficiency and precision, which is preferred in the systems with limited
computational power. To balance the computing resource allocation between
object detector and trackers, we employ the single stage YOLOV5 as our detec-
tor.

2.2 Object Tracking

The tracking methods can be divided into: a) Discriminative Correlation Fil-
ter (DCF) based trackers and b) deep learning-based trackers. DCF based
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trackers [3,13,23] could run with real-time speed on CPU, but their performance
is constrained by the feature representation ability of handcrafted features. In
contrast, deep learning based trackers, like the Siamese-based trackers [2,4,7,32]
achieve remarkable enhancements in both accuracy and speed by utilizing a
high-end GPU device.

2.3 Classification and Super Resolution

Early classification methods like AlexNet [17], and Resnet [12] get higher accu-
racy in using deeper and wider networks. Among those classifiers, the Resnet
family is the most popular framework and is adopted in many computer vision
tasks as backbone network. In this work, we use Resnet-50 as our classifier, due
to its balance between efficiency and accuracy. We further boost the perfor-
mance by applying a lightweight super-resolution model, SRGAN, to deal with
the small drones with low resolution.

2.4 Inference Optimization

TensorRT is a C++ library that facilities high-performance inference on NVIDIA
graphics processing units (GPUs). TensorRT applies graph optimizations, layer
fusion, among other optimizations, while also finding the fastest implementation
of that model leveraging a diverse collection of highly optimized kernels.

3 Drone Surveillance System

This section presents the drone surveillance system design and the implementa-
tion details of each component.

3.1 System Overview

Given the frame f at time t, we first resize the image without crop and maintain
the aspect ratio before feeding them into detector D. For images of size 1920 ×
1080 or less, we resize images so that the longer edge equals to 1280 pixels. The
object detector returns a new set of recognized drones as d = {d1,d2, · · · ,dn},
where di is represented as the concatenation of the bounding box coordinates
{x, y, w, h} and confidential score sD. For images with higher resolution, we
follow the image tilling strategy [30] in which the image is divided into multiple
tiles of a fixed size. The tiled images are processed with same detector in a batch
manner. The final prediction is the aggregation of outputs from each tile. The
detector is set to run at low frequency (<1 Hz) for inference efficiency.

Each tracker T is responsible for a specific object and returns the updated
status as ti = {x, y, w, h, sT } where sT is its confidential score. Together, we
have a set of drone candidates {d1,d2, · · · ,dn t1, t2, · · · , tm} from the detector
and trackers outputs. We crop patches according to those candidates and feed
them into the drone classifier C for further discrimination. A confidential score sC
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Fig. 1. Drone surveillance system overview. During tracking process, drone 3 is removed
during score matching and drone 4 is new drone which will be tracked in the following
frames.

is provided for each candidate. Overall, the final confidential score is calculate as
s = sC × sD,T ; only candidates with this score s higher than a threshold will be
kept for further processing, while for those candidates whose confidential score
falls below the threshold, the corresponding tracker will be removed from tracker
list.

A matcher, based on the criterion of maximum Intersection Over Union
(IOU), is designed to match the candidates from d to t. As shown in Fig. 1,
the process is similar to non maximum suppression (NMS). Specifically, if a can-
didate di is matched to tj , or vice versa, the two instances will be merged and
use the one with higher confidential score as final output. If no matches found for
instances from d, a new tracker T will be initialized and added into the tracker
list. We should mention that the matcher only works when both detector and
trackers are active.

3.2 Detection Module

We select the single-stage object detector YOLOv5 [16] for its efficiency
and speed on object detection tasks. Specifically, the COCO [20] pre-trained
YOLOv5-m model with input size of 1280 is adopted. In all experiments, the
networks were trained using 40 epochs on 4-GPUs with 16 images per batch.
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We use the ADAM [22] optimizer with the initial learning rate of 10−4. For
the training dataset, we consider the image sequences from Drone vs. Bird
Competition [26] and USC drone detection and tracking dataset [31]. We uni-
formly sampled frames with a fixed rate (5 fps) from each sequence and extracted
32067 images in total for training. We select 4 videos from Drone vs. Bird train-
ing dataset for detection and tracking validation purpose.

3.3 Tracking Module

For object tracking, we employ a real-time Siamese Network based deep learn-
ing tracker, SiamTPN [32], for its robust performance and real-time speed. As
shown in Fig. 2, the SiamTPN utilizes a lightweight backbone and optimized
transformer based pyramid network to learn discriminative features from both
template and search images. The final prediction is returned after the cross cor-
relation layer. The template image is cropped from image when the detector
recognizes a new drone which is not tracked yet. The search image is cropped
from the following frames and resized into 256 × 256. Benefited from the small
input size and optimized architecture, the tracker runs at 50 FpS on CPU and
over 100 FpS on GPU, where more details can be found in [32]. We compare the
performance between the SiamTPN with default trackers provided by OpenCV
in Sect. 4. For inference, we directly use the pre-trained model from SiamTPN
without further finetuning since the tracker is designed to track any generic
objects specified by the template.

Fig. 2. SiamTPN: Architecture overview

3.4 Classification Module

The drone classification module is fine-tuned on a pre-trained Resnet-50 [12]
model. We cropped drones patches and resize them into 224 × 224, yielding
33733 positive samples. For negative images, we randomly select images from the
ImageNet [9] dataset. We found that the negative images are easy to be classified
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due to the low similarity to drones. Therefore, we run the drone detector on the
training dataset from the object detection part and select the false positive
predictions as false samples for classification, resulting in a robust performance.
During training, we freeze the whole network except the final fully-connected
layers for fine-tuning. The network is trained for 50 epochs with 128 images per
batch.

4 Experimental Studies

This section first presents the effects of proposed components in the aspects
of accuracy and speed. We further apply the system in the field test videos to
validate its performance in real-world applications.

4.1 Overall Performance

In order to compare the effect of each proposed component regarding accuracy
and speed, we choose 4 videos from the Drone vs. Bird training dataset as valida-
tion dataset. We adopt the Average Precision (AP) metric which is extensively
used in an object detection task. The prediction outputs are counted as correct
when its IOU score with a ground truth bounding box is higher than a thresh-
old. In this study, we test the AP score under varies criterion, including AP
under different threshold value (AP, AP50, AP75) and AP for drones with dif-
ferent sizes (APS , APM , APL). All AP scores are calculated with COCO API.
Table 1 shows the overall performance on validate set when different compo-
nents are active. YOLOv5 detector alone shows relative poor performance on
video detection, having an AP of 43.4. We notice that the YOLOv5 detector
is sensitive to the complex scenarios like object deformation, illumination and
object occupation. Since object detector treats videos as independent frames, the
predictions shows inconsistency even in adjacent frames. The tracker boosts the
performance by 50% by guaranteeing the prediction continuity between frames.
The AP50 achieves 89 on the validated dataset. The classification module brings
relative small performance changes, but it provides an additional check which is
useful when the trackers lost the target and return false positive outputs.

Table 1. Overall performance on Validation dataset. Average Precision (AP) scores
are calculated with the COCO API. AP50, AP75 represent AP with IOU above 0.5,
0.75 respectively. APS , APM , APL represent AP for small, medium, large objects
respectively.

AP AP50 AP75 APS APM APL

YOLOv5 43.4 62.3 52.4 30.5 48.1 64.7

YOLOv5 + SiamTPN 63.1 89.0 77.8 45.9 69.3 91.2

YOLOv5 + SiamTPN + Classification 63.5 89.9 77.9 47.2 69.1 91.5

To further investigate the tracker’s performance, we compare the SiamTPN
with 3 default trackers from OpenCV, which are: a) CSRT tracker [23], b) KCF
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tracker [13], and c) MIL tracker [11]. We perform an One-Pass Evaluation (OPE)
and measure the precision and success of different tracking algorithms on validat-
ing videos. Different from Average Precision, in OPE, the precision is computed
by comparing the distance between tracking result and ground truth bound-
ing box in pixels. The success is computed as the IOU scores between tracking
result and ground truth bounding box at different threshold levels. Finally, we
rank the tracking methods using the Area Under the Curve (AUC). As shown in
Fig. 3, the KCF performs poorly on both precision and accuracy. CSRT provides
compatible results on precision scores but still have a large gap on success rate
compared with SiamTPN. Table 2 shows the speed comparison between those
trackers, in which, MIL, KCF and CRST only support CPU while SiamTPN
support both CPU and GPU. Overall, SiamTPN achieves best performance in
the aspects of speed, accuracy and robustness.

Fig. 3. Tracking performance comparison with OpenCV trackers

Table 2. Speed comparison between trackers

MIL KCF CSRT SiamTPN SiamTPN(GPU)

FpS 6 240 45 52 102

4.2 Speed Analysis

In Table 3, we compare the inference speed of each modules and their combina-
tion performance. Due to the large input size (1280), YOLOv5m only operates
at around 12 FpS on GPU after inference optimization, which is not suitable
for applications with real-time requirements. Instead, the optimized SiamTPN
achieves 100+ FpS on GPU. Benefiting from small network size and smaller input
size, the classification module and super resolution model, SRGAN, require much
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less computation resources compared with other detection and tracking models.
By combining the YOLOv5 and SiamTPN and constraining the detector oper-
ation frequency, the inference achieves a real-time speed of 37 FpS. The speed
decline comes from the heavy detection module and multiple trackers running
in parallel. Nevertheless, the combination of detector and trackers obtains a
desired trade-off between accuracy and speed. The classification module and
SRGAN introduces a slight computational burden to the system.

Table 3. Speed comparison between individual modules and difference configurations.
All models are accelerated with GPU and TensorRT.

# YOLOv5 SiamTPN Classification SRGAN FpS

1 � 12

2 � 102

3 � 178

4 � 205

5 � � 37

6 � � � 32

7 � � � � 29

Fig. 4. Visualization of drone surveillance system in field test. The drones are captured
by a still camera on the ground (first row) or a camera mounted on a flying drone
(second row)

4.3 Field Test Analysis

To validate the reliability of the proposed drone surveillance system in real-
world scenarios, we set up several field tests with challenging factors including
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Fig. 5. Drone surveillance performance in real world test.

scale variance, out-of-view, object deformation and partial occlusion. Figure 4
shows the flight status and detection results in difference scenarios. To verify
the advantage of proposed system over single detection modules, we compare
the drone trajectories coverage percentages based on their prediction results. As
shown in Fig. 5, for better visualization, we recorded GPS data and plot the
trajectory in 3D as red dots. The dots are labeled as blue only if the drone in
this position is correctly recognized. The configuration with YOLOv5, SiamTPN
and Classification obtains more consistent predictions than detector alone.

5 Conclusions

In this work, we propose a long-term drone surveillance system which consists
of a YOLOv5 based drone detector, real-time object tracker, drone classifier and
other auxiliary modules. Those modules are integrated in an efficient way and
are optimized with inference acceleration techniques (TensorRT and ONNX)
to achieve best performance. Our method ranked second in the 2022 Drone vs.
Bird detection challenge. We have also verified our system in real-world test with
the preliminary results from both field tests and competition demonstrating the
effectiveness of the proposed system.
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Abstract. Since the appearance of Covid-19 pandemic, in the end of
2019, Medical Imaging has been widely used to analysis this disease.
In fact, CT-scans of the Lung can help to diagnosis, detect and quan-
tify Covid-19 infection. In this paper, we address the segmentation of
Covid-19 infection from CT-scans. In more details, we propose a CNN-
based segmentation architecture named ILC-Unet++. The proposed
ILC-Unet++ architecture, which is trained for both Covid-19 Infection
and Lung Segmentation. The proposed architecture were tested using
three datasets with two scenarios (intra and cross datasets). The exper-
imental results showed that the proposed architecture performs bet-
ter than three baseline segmentation architectures (Unet, Unet++ and
Attention-Unet) and two Covid-19 infection segmentation architectures
(SCOATNet and nCoVSegNet).

Keywords: Covid-19 · Segmentation · Deep learning

1 Introduction

Since the appearance of Covid-19 pandemic (at the end of 2019, Wuhan, China),
the world has been facing global crisis. The first step in fighting against this dis-
ease is to recognize and evaluate the evolution of the infected persons. In fact,
the RT-PCR test is considered as the gold standard to recognize the infected per-
sons. However, it has a considerable false-negative rate, especially in early stages
of infection [7]. Since, Covid-19 virus mainly affects the respiratory tract, medi-
cal imaging are widely used for detecting the infections. These medical imaging
modalities include X-ray scans and the CT-scans [3]. Despite that these scanners
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are available in most hospitals even in the less developed countries, there is a
need of an expert radiologist to recognize the infection. To solve this issue, many
machine learning approaches have been proposed to automatically recognize the
infection without the need of an expert radiologist [4,15]. In addition to the
ability of the CT-scans to show the infection even in the early stages, it can be
used for more purposes. CT-scans were used to segment the infected parts and
can be used directly to estimate the infection severity and percentage [5].

Because the infection has high variability in shape, size, and position, segmen-
tation of Covid-19 infection is a very challenging task. Segmentation of Covid-19
infection from CT scans using artificial intelligence has additional challenges.
One of the most difficult challenges is the low intensity contrast between the
infection and normal tissue, especially in the early days of infection when the
infection appears as ground glass opacity (GGO). However, as the infection
spreads, it appears as a mixture of GGO and consolidation or consolidation. In
this case, it is difficult to distinguish between consolidation and non-lung tissue,
especially when the infection adheres to the lung walls. To overcome this chal-
lenge, we proposed the ILC-Unet++ segmentation architecture. Our proposed
ILC-Unet++ trains the segmentation of infection and lung simultaneously. The
main contributions of this work are:

– We propose an ILC-Unet++ segmentation architecture. Our proposed ILC-
Unet++ is designed to segment Covid-19 infection and lung simultaneously.
The two segmentation tasks infection and lung of ILC-Unet++ share the
encoder and intermediate blocks of Unet++. On the other hand, each task
has its own decoder.

– To evaluate the performance of our proposed approach, we used both intra
and cross-datasets evaluation scenarios of three datasets where we used all
slices of CT scans for training and testing.

– To compare the performance of our approach, we used three baseline archi-
tectures (Unet, Att-Unet, Unet++) and two state-of-the-art architectures for
Covid-19 segmentation (SCOATNet [17] and nCoVSegNet [8]). The experi-
mental results show the superiority of our proposed architecture compared
to the basic segmentation architectures as well as the two state-of-the-art
architectures in both intra-database and inter-database evaluation scenarios.

2 Related Work

In the recent decade, Deep learning architectures have become dominant in many
computer vision tasks [2] including many medical Imaging tasks [4,5,15]. Since
the appearance of Covid-19 pandemic, a lot of works have been proposed to
segment the Covid-19 infection.

In [18], Xiangyu Zhao et al. proposed dilated dual attention U-Net (D2A U-
Net) framework to automatically segment the lung infection in COVID-19 CT
slices. To evaluate the performance of their approach, they took just the infected
slices from Segmentation dataset nr. 2 [1] and COVID-19-CT-Seg dataset [10],
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then they used them as training data. As testing data, they used the 100 slices
of COVID-19 CT segmentation [1].

Jiannan Liu et al. proposed two-stage cross-domain transfer learning frame-
work [9]. Their framework consists of two main components. First, they proposed
nCoVSegNet, which is a deep learning based approach that exploits attention-
aware feature fusion and large receptive fields. Second, they trained nCoVSegNet
using cross-domain transfer learning strategy, which makes full use of the knowl-
edge from natural images (i.e., ImageNet) and medical images (i.e., LIDC-IDRI)
to boost the final training on CT images with COVID-19 infections. They eval-
uated their approach using MosMedData dataset [11], which used for the last
stage transfer learning (40 slices for training and 10 slices testing), then this
model tested on [10] dataset.

In [16], Ruxin Wang et al. proposed encoder-decoder CNN-based framework
to segment Covid-19 infection from the CT-scans. Their approach is based on
aggregating the peer- and cross-level context-aware learning. To capture the com-
plex structure, they used autofocus module to mine and incorporate multiscale
contextual information of peer level. Moreover, they proposed panorama module
to capture complementary fine details and semantic information. To evaluate the
performance of their approach, Ruxin Wang et al. combined different datasets,
MosMedData dataset [10,11], COVID-19 CT segmentation [1] and Segmentation
dataset nr. 2 [1], where the slice that do not have infection were removed. Then,
the obtained dataset was randomly splitted into training and testing splits (it is
not clear if patient independent protocol was respected or not).

Deng-Ping Fan et al. proposed Deep Network (Inf-Net) for COVID-19 Lung
Infection segmentation [6]. Their Inf-Net approach uses parallel partial decoder
to aggregate the high-level features and generate a global map. Moreover,
implicit reverse attention and explicit edge-attention are utilized to model the
boundaries and enhance the representations. In addition to Inf-Net, Deng-Ping
Fan et al. investigated semi-supervised segmentation strategy which exploits
random selected propagation framework. The experimental results showed that
using the semi-supervised framework can improve the learning ability and
achieve better performance.

3 The Proposed Approach

To segment Covid-19 infection, we proposed ILC-Unet++ architecture. Our ILC-
Unet++ is designed to segment both infection and lung areas simultaneously.
The goal is to guide the training process to look inside the lung regions and
distinguish between the infection tissues (especially in the case of consolidation)
and the lung walls. Figure 1 shows the difference between our proposed ILC-
Unet++ and Unet++ architecture. As shown in Fig. 1(b), ILC-Unet++ has the
same encoder and intermediate layer for Infection and Lung Segmentation tasks,
while each task has its own decoder. The goal is to learn high-level features for
both task using the encoder. Then the decoders exploit these features to seg-
ment the infection and the lung regions independently. To make ILC-Unet++
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architecture giving more attention to the infection Segmentation than Lung Seg-
mentation, we used compound loss function which gives 0.7 weight for Infection
segmentation loss and 0.3 weight for Lung segmentation loss.

Fig. 1. Comparison of Unet++ (a) and our proposed ILC-Unet++ (b).

In the encoder, we used five Two Convolutional Blocks, extending the number
of channels from 3 to 32, 64, 128, 256, and 512, respectively. Similarly, we used
five Two Convolutional Blocks that reduce the number of channels in the decoder
from 512 to 256, 128, 64, 32, and 1, respectively. The Two Convolutional Blocks
consists of two 3 × 3 convolution kernels, each followed by batch normalization
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and Relu activation function. To compare the performance of the proposed ILC-
Unet++ with the baseline architectures, we used the same number of blocks and
the number of channels of each block.

4 Performance Evaluation

4.1 Datasets

To evaluate the performance of our proposed approach, we used three pub-
licly available datasets which are COVID-19 CT segmentation [1], Segmentation
dataset nr. 2 [1] and COVID-19-CT-Seg dataset [10].

COVID-19 CT segmentation dataset [1] consists of 100 axial CT images
(slices) from more than 40 patients with COVID-19 infection. These images
were segmented by a radiologist using 3 labels: ground-glass (mask value = 1),
consolidation (=2) and pleural effusion (=3). In addition to Covid-19 infection
masks, the lung masks were provided.

Segmentation dataset nr. 2 [1] consists of 9 3D CT-scans. Since this dataset
was constructed from whole volumes, it contains both positive and negative
slices. In total, 829 slices from which 373 slices have been evaluated by a radi-
ologist as positive, then they were segmented. In addition to Covid-19 infection
masks, the lung masks were provided.

COVID-19-CT-Seg dataset [10] consists of 20 COVID-19 CT scans. All the
cases contain COVID-19 infections. The proportion of infections in the lungs
ranges from 0.01% to 59%. This dataset was labelled by different radiologists.
Firstly left lung, right lung, and infection were delineated by junior annotators
with 1–5 yr experience, then refined by two radiologists with 5–10 yr experience,
and finally all the annotations were verified and refined by a senior radiologist
with more than 10 yr experience in chest radiology. The whole lung mask includes
both normal and pathological regions were labelled. All the annotations were
manually performed by ITK-SNAP in a slice-by-slice manner on axial images.
In total, there are more than 300 infected slices from more than 1800 slices.

In our experiments, we evaluated both intra-dataset and cross-datasets
scenarios. For intra-dataset experiments, we randomly splitted Segmentation
dataset nr. 2 [1] and COVID-19-CT-Seg dataset [10] into 70%−30% as training
and testing splits, where Patient-Independent is respected in splitting. For the
cross-datasets evaluation scenario, we used the trained models on Segmentation
dataset nr. 2 (trained on the training data 70%) and test it on COVID-19 CT
segmentation [1] and COVID-19-CT-Seg dataset [10], respectively. Similarly, we
used the trained models on COVID-19-CT-Seg dataset [10] (trained on the train-
ing data 70%) and test it on COVID-19 CT segmentation [1] and COVID-19 CT
segmentation dataset [1], respectively.

4.2 Evaluation Metrics

To evaluate the performance of different approaches, we used five evaluation
metrics which are: F1-score, Dice-score, Intersection over Union (IoU), sensitivity
(Sens), specificity (Spec) and precision (Prec).
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F1-score, Intersection over Union (IoU), sensitivity (Sens), specificity (Spec)
and precision (Prec) are defined as following.

F1-score = 2 · TP

2 · TP + FP + FN
(1)

IoU =
TP

(TP + FP + FN)
(2)

Sens = Recall =
TP

TP + FN
(3)

Spec =
TN

FP + TN
(4)

Prec =
TP

TP + FP
(5)

where TP is the True Positives, TN is the True Negatives, FP is the False
Positives and FN is the False Negative.

The above metrics are micro metrics, i.e.: TP , TN , FP and FN were cal-
culated for all testing images then these metrics were calculated using them.
However, Dice-score is the macro version of F1− score. For N testing images it
is defined by:

Dice-score =
1
N

N∑

i=1

2 · TPi

2 · TPi + FPi + FNi
(6)

where TPi, TNi, FPi and FNi are True Positives, True Negatives, False Positives
and False Negative for the ith image, respectively. In the experimental results,
it is normal to have low dice-score average since in the three datasets there is a
large number of uninfected slices, where totally correct prediction of the masks
(black mask) will give 0 dice score for these slices which will be included in
calculating the average.

4.3 Experimental Setup

For deep learning training and testing, we used the Pytorch [13] library with
NVIDIA GPU Device GeForce TITAN RTX 24 GB. The batch size used con-
sists of 6 images, and as a loss function, we used BCE loss function for lung
and infection segmentation. We trained the networks for 60 epochs. The initial
learning rate is 0.01, which decays by 0.1 after 30 epochs, followed by another
decay of 0.1 after 50 epochs. Furthermore, we used active data augmentation
techniques which are: rotation using random angle between −35◦ to 35◦, and
random horizontal and vertical flipping.
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4.4 Experimental Results on Intra-dataset Scenario

In this section, we evaluate the performance of the proposed ILC-Unet++ and
compare it with Unet [14], Att-Unet [12], Unet++ [19], SCOATNet [17] and
nCoVSegNet [8]. Tables 1 and 2 show the experimental results using Segmen-
tation dataset nr. 2 [1] and COVID-19-CT-Seg dataset [10], respectively. The
results show that the proposed approach achieve better performance than the
baseline segmentation architecture, as well as the two proposed architectures
for Covid-19 segmentation (SCOATNet [17] and nCoVSegNet [8]). In more
details, compared with the original Unet++, the proposed ILC-Unet++ app-
roach improves the micro F1-score results by 12.4 and 14.33 for Segmentation
dataset nr. 2 [1] and COVID-19-CT-Seg dataset [10], respectively. On the other
hand, we notice that Att-Unet architecture achieved the second best performance
on Segmentation dataset nr. 2 [1]. While COVID-19-CT-Seg dataset [10], the pro-
posed architecture in [17] (SCOATNet) achieved the second best performance.
Our proposed approach achieved better performance than these architectures by
good margin (7.75% and 3.69% for F1-score metric for Segmentation dataset nr.
2 [1] and COVID-19-CT-Seg dataset [10], respectively).

In order to show the effectiveness of the proposed ILC-Unet++, we visu-
alized the segmented masks using Unet [14], Att-Unet [12], Unet++ [19] and
ILC-Unet++ as shown in Fig. 2. From the first column, we notice that the pro-
posed approach has the ability to segment the infection in both lungs better
than the baseline architectures. However, it is not capable to segment the tiny
infections in the upper right lung. From the second column, we can notice that
both Unet and Unet++ can wrongly classify the lung boundary tissues as infec-
tion, due to low contrast in the boundaries, especially in the consolidation case.
Att-Unet also suffers from the same issue, but its mis-segmented boundaries are
smaller than the case of using Unet and Unet++. In contrast, our proposed
ILC-Unet++ can cope with this issue. From the third example (slice in the bot-
tom of lung scan), we notice that Unet, Att-Unet and Unet++ failed to identify
the infection probably because these models are not aware about the lung and
non-lung tissues since small part of lung appears in this case. In contrast, our
approach is able to distinguish between the lung and non-lung tissues, which
lead to accurate Covid-19 infection segmentation. The fourth example shows an
example where most of lung regions are infected. In this example, we notice that
only our proposed approach has the ability to identify accurately the Covid-19
infection. In contrast, the baseline architectures failed.

4.5 Experimental Results on Cross-Datasets Scenario

In order to compare between different segmentation architectures, it is important
to study their generalization ability in cross-datasets scenario. In fact, cross-
datasets experiment plays a crucial role to evaluate the effectiveness of each
architecture in real scenarios. Tables 3 and 4 show the results of the cross-datasets
evaluations by using the best trained model on Segmentation dataset nr. 2 [1]
and tested on COVID-19 CT segmentation dataset [1] and COVID-19-CT-Seg
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Fig. 2. Visual comparison of a segmentation model trained with different segmentation
architectures. The first two column show visualization examples from the validation
data of Segmentation dataset nr. 2 [1] and the third and fourth columns show visual-
ization examples from the validation data of COVID-19-CT-Seg dataset [10]
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Table 1. Experimental Results of Segmentation dataset nr. 2 [1] for Intra-dataset
Scenario.

Model F1-S D-S IoU Sens Spec Prec

SCOATNet [17] 0.660301 0.31233 0.492872 0.622754 0.993232 0.702665

nCoVSegNet [8] 0.663013 0.265537 0.495901 0.617847 0.993685 0.715303

Unet 0.615244 0.303388 0.444298 0.532386 0.994908 0.728646

Att-Unet 0.670075 0.293276 0.503844 0.592339 0.995489 0.771296

UNet++ 0.623506 0.333576 0.452967 0.653102 0.986952 0.573475

ILC-Unet++ 0.747501 0.381538 0.596807 0.662101 0.997190 0.858194

Table 2. Experimental Results of COVID-19-CT-Seg dataset [10] for Intra-dataset
Scenario.

Model F1-S D-S IoU Sens Spec Prec

SCOATNet [17] 0.665088 0.335648 0.498226 0.529936 0.999135 0.892779

nCoVSegNet [8] 0.620931 0.338758 0.450253 0.549374 0.997010 0.713921

Unet 0.618174 0.336321 0.447361 0.485517 0.998842 0.850579

Att-Unet 0.637974 0.354807 0.468401 0.507855 0.998856 0.857737

UNet++ 0.558685 0.332053 0.387622 0.409186 0.999244 0.880318

ILC-Unet++ 0.701932 0.369856 0.540751 0.627334 0.997825 0.796665

dataset [10], respectively. From the results of these two tables, we notice that our
approach achieved the best cross-datasets results in both experiments. Compared
with Unet++, our approach improved the performance by 10.5%, and 2.3%
respectively. On the other hand, we notice that the second best performance
was achieved by different architectures (Att-Unet from Table 3 and Unet++
from Table 4), which means that the other architectures performance changes
from set of conditions to another. On the other hand, our proposed approach
performs consistently in different conditions.

Table 3. Cross Datasets trained using Segmentation dataset nr. 2 [1] and tested using
COVID-19 CT segmentation dataset [1]

Model F1-S D-S IoU Sens Spec Prec

SCOATNet [17] 0.400144 0.354214 0.250113 0.434511 0.945004 0.370816

nCoVSegNet [8] 0.440295 0.339626 0.282294 0.392158 0.970969 0.501905

Unet 0.446756 0.349138 0.287628 0.484711 0.948887 0.414314

Att-Unet 0.545928 0.389001 0.374423 0.496468 0.983022 0.685669

UNet++ 0.451955 0.358118 0.291952 0.610437 0.918626 0.358803

ILC-Unet++ 0.557752 0.395666 0.386724 0.449845 0.987824 0.733762
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Table 4. Cross Datasets results by using the trained model of Segmentation dataset
nr. 2 [1] and tested using COVID-19-CT-Seg dataset [10]

Model F1-S D-S IoU Sens Spec Prec

SCOATNet [17] 0.375091 0.275490 0.450838 0.493187 0.998321 0.858192

nCoVSegNet [8] 0.564292 0.279693 0.393041 0.452141 0.997908 0.750435

Unet 0.607886 0.284599 0.436664 0.490115 0.998297 0.800159

Att-Unet 0.515841 0.277080 0.347565 0.406313 0.997649 0.706211

UNet++ 0.623017 0.277902 0.463858 0.490003 0.996591 0.706500

ILC-Unet++ 0.646257 0.290068 0.477385 0.510575 0.999033 0.880153

Tables 5 and 6 show the cross-datasets results by using the best trained model
on COVID-19-CT-Seg dataset [10]and tested on COVID-19 CT segmentation
dataset [1] and Segmentation dataset nr. 2 [1] respectively. From the results of
these two tables, we notice that our approach achieved the best cross-datasets
results in both experiments. Compared with Unet++, our approach improved
the performance by 22%, and 8% respectively. On the other hand, we notice
that the second best performance achieved by different architectures (Unet from
Table 5 and Att-Unet from Table 6), which means that the other architectures
performance changes from set of conditions to another.

Table 5. Cross Datasets results by using the trained model of COVID-19-CT-Seg
dataset [10] and tested using COVID-19 CT segmentation dataset [1])

Model F1-S D-S IoU Sens Spec Prec

SCOATNet [17] 0.436403 0.430322 0.279102 0.305240 0.993014 0.765222

nCoVSegNet [8] 0.619926 0.543358 0.449198 0.506747 0.541144 0.725555

Unet 0.625757 0.507644 0.455347 0.516686 0.989951 0.793199

Att-Unet 0.512987 0.463873 0.344978 0.383059 0.991765 0.776296

UNet++ 0.477812 0.421865 0.313898 0.446254 0.968546 0.514173

ILC-Unet++ 0.695481 0.613179 0.533132 0.708385 0.975478 0.683039

Table 6. Cross Datasets trained using COVID-19-CT-Seg dataset [10]) and tested
usingSegmentation dataset nr. 2 [1]

Model F1-S D-S IoU Sens Spec Prec

SCOATNet [17] 0.448455 0.188137 0.289037 0.569311 0.991934 0.369925

nCoVSegNet [8] 0.557181 0.217178 0.386175 0.649974 0.994317 0.487573

Unet 0.598438 0.236242 0.426979 0.531154 0.997970 0.685240

Att-Unet 0.601942 0.243752 0.417384 0.633853 0.998127 0.537926

UNet++ 0.535670 0.250797 0.365812 0.510533 0.996709 0.563409

ILC-Unet++ 0.614716 0.255070 0.443747 0.866751 0.992070 0.476236
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5 Conclusion

In this paper, we proposed a Covid-19 infection segmentation approach from CT-
scans. Our proposed ILC-Unet++ is based on training both Covid-19 infection
and lungs regions segmentation, simultaneously. To prove the efficient of our app-
roach, we evaluated its performance in both within and cross-datasets scenarios.
In addition, we compared the performance of our approach with three baseline
architectures (Unet, Att-Unet, Unet++) and two state-of-the-art architectures
for Covid-19 Segmentation (SCOATNet and nCoVSegNet). The experimental
results show the superiority of our proposed architecture compared with the
baseline segmentation architectures as well as the two state of the art architec-
tures in both intra and cross-datasets evaluation scenarios.
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Abstract. In order to establish the correct protocol for COVID-19
treatment, estimating the percentage of COVID-19 specific infection
within the lung tissue can be an important tool. This article describes
the approach we used in order to estimate the COVID-19 infection per-
centage on lung CT scan slices within the Covid-19-Infection-Percentage-
Estimation-Challenge. Our method frames the regression problem as a
multi-tasking process and is based on modern training pipelines and
architectures that correspond to state of the art models on image clas-
sification tasks. It obtained the best score on the validation dataset and
ranked third in the testing phase within the competition.

Keywords: Deep regression · Multi-tasking · Covid-19 · Medical
image analysis

1 Introduction

The COVID-19 pandemic has become a healthcare crisis around the world since
its start in 2019 [1]. Quick discovery of the infected patients is key to positive
outcome. Methods like RT-PCR, X-Ray or CT-scans are the to go choice for
diagnosis of COVID-19 infection. The last two methods mentioned not only can
correctly diagnose a patient with the infection, but they can also give insights
into the stage the disease is progressing. The downside of these two methods is
the burden an expert radiologist might be put through in order to evaluate a
great amount of X-rays or CTs [2]. CT scans have a clear advantage in com-
parison with X-rays due to their more detailed structure. Signs of early or late
stage of infection can be easily detected in CT scans, thus making the decision
to follow a certain protocol an easier task for the doctors. Having this into con-
sideration, several AI solutions have been proposed in order to come to the aid
of radiologists. The Covid-19 Infection Percentage Estimation competition [3,4]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 473–482, 2022.
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establishes a new benchmark that may offer real help into depicting the evolu-
tion stage of COVID-19 infection. The organizers have publicly released a dataset
which consists of several CT scan slices and the corresponding Covid-19 infection
percentage. In the following, we present our solution to the challenge which, on
the validation set beats the second place by a large margin and improves with
more than 1 the MAE score of the baseline solution provided by the organizers
of the competition in [3]. We make the code and models publicly available1.

2 Related Work

Regression analysis taking as input image data is much less reported in the
literature compared to classification, object detection or segmentation tasks,
especially when it comes to the medical domain; nevertheless, it can greatly
benefit from pre-trained deep models developed to solve the most popular tasks
in computer vision. Such methods, that use deep learning (mostly convolutional
networks) to build a model able to estimate a numerical response variable given
an input image, are generally called deep regression methods.

The latest advancements recorded in deep regression seem to be mostly
related to a few datasets that were published as part of some challenges or
for benchmarking purposes.

In this regard, Age Estimation or Attractiveness Estimation given as input
facial images, attracted a great deal of interest. The authors of [5] improve sev-
eral results on datasets like ChaLearn (2015/2016) [12], MORPH [13], FGNET
[17] or UTKFace [14] for age estimation and SCUT-FBP [15] or CFD [16] for face
attractiveness. They jointly learn to maximize the similarity between the target
distribution and the generated distribution at training stage and to regress a
real number in an end-to-end fashion. The output value for an input x is quan-
tized into a range of possible values instead of just one label. The authors also
mention that they pretrain their model on a large corpus of facial images before
training on the downstream tasks. The method proposed by these authors is
an extension of [6]. For attractiveness estimation no other model was found to
report performances on benchmarks. In [7], the authors propose again a multi-
tasking approach, but this time they use extra-training data and infer a posterior
distribution for the ages of images given the results of multiple observed events
of an annotation process. They use ordinal hyperplane [18] methods which are
furthered mapped into posterior distribution using a linear layer with softmax
activation. In [8], the authors extend the regression task into binary tasks used
for rank prediction, where each task indicates whether the predicted output lies
in a certain range or not. For robust results, the authors use for the binary
tasks the same weight parameters, but different bias ones. They use weighted
cross-entropy to optimize the learning process. In [9] the authors give a two
point representation to the age, and consider it as an approximation of adjacent
ends of certain bins which split equally the entire domain of ages. Instead of
learning directly the age, the model learns the distribution of probability of the
1 https://github.com/SENTICLABresearch/Covid-19 Percentage Estimation.

https://github.com/SENTICLABresearch/Covid-19_Percentage_Estimation
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input to be in a certain bin. They also use multi-tasking in an end-to-end fash-
ion, regressing from the learnt distribution the age through a linear layer and a
softmax activation function. In [10], the authors use a GAN-like architecture to
reconstruct facial images with certain ages. They use the sum of 4 losses in order
to finally regress the age from an image. In [11], the authors use an approach
similar to Regression via Classification, but instead of projecting the continuous
target values into one discrete representation through bins, they do it in multiple
ways.

A systematic evaluation and statistical analysis of vanilla deep regression,
(i.e. convolutional neural networks with a linear regression top layer) is presented
in [30]. The authors use as base architectures VGG-16 [32] and ResNet-50 in
the context of three distinct problems: head-pose estimation, facial land- mark
detection and human-body pose estimation. They analyze the impact of different
network optimizers, batch sizes, batch normalization, dropout and they compare
three distinct loss functions: Mean Squared Error, Mean Absolut Error and the
Huber loss.

Related to the medical domain, the most popular regression task is estimat-
ing bone age from pediatric hand xRays, which was framed as a challenge in
2017, releasing a dataset developed by Stanford University and the University
of Colorado that was annotated by multiple expert observers [29]. The best
approaches made use of well known pretrained architectures as Inception3 and
ResNet-50 along with data augmentation and ensembling.

3 Investigated Approaches

Motivated by the recent great results obtained for image classification which
are mainly due to new architectures and new training techniques, we try to
revitalize deep regression by resorting to these new state of the art methods in
classification.

We have experimented with several neural networks that are aimed at feature
extraction: ResNet [19], ResNeXt [20], SE-ResNet [21], EfficientNet [22], SK-
ResNeXt [23] and ResNeSt [24]. Jointly, we experimented with several methods
for adjusting the final layers of our models.

The first method just adds a linear layer on top of the feature extractor,
which outputs a single number, between 0 and 100 (the infection percentage).
For this approach we used the smooth L1 loss, with parameter β = 1.

The second method adds on top of the feature extractor a linear layer with
101 output cells, followed by a softmax activation layer, thus predicting the
probability distribution of each integer percentage. On top of the linear layer we
put another layer with 101 input features (the output of the previous step) and
1 output feature (the number we must regress from the input image). We use as
loss function the sum of two losses:

loss1 = L1smooth(
100∑

i=0

i · softmax(f1)(i), gt) (1)
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and
loss2 = L1smooth(f2(0), gt). (2)

The first loss is used in order to learn the expectancy of the number we must
regress, whereas the second loss is the loss used in the first method. gt stands
for ground truth for the current input image. softmax(f1)(i) represents the ith

element of the output of the first added layer on top of the feature extractor
after softmax application. f2(0) represents the output number of the second
added layer.

For a third method we add another trick, where instead of approximating
the probability expectation, we approximate the probability distribution itself
through the KL-divergence loss. If an input image has p% target, the distribution
will be

P (output = y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if y ≤ p − 3 or y ≥ p + 3
0.6 if y = p

0.15 if y = p − 1 or y = p + 1
0.05 if y = p − 2 or y = p + 2

(3)

Thus, other than the two losses presented in the previous method, we compute
the third loss by being the KL-divergence between the predicted probability
distribution and the target one. The final loss will be the sum of the three losses.
We also try to improve the power of the feature extractor, in accordance with
the idea presented in [5], and we replace its global average pooling with a hybrid
pooling mechanism.

Fig. 1. The first approach, with a simple linear layer with exactly one output cell

3.1 Training Procedure

We believe this step is very important, as we bring modern training techniques
used for image classification tasks into regression tasks.

As training procedure we use SAM + SGD [25] as optimizer and cosine
annealing with warm-up [26] as learning rate scheduler. The initial learning rate
is 1e-3. We train every model for 50 epochs. In order to avoid overfitting, we
use Random Augmentation [27] as a strong regularization with the following list
of augmentations: rotation between 0 and 30 ◦C, Color, Contrast, Brightness,
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Fig. 2. The second approach, with two linear layers, learning from two tasks

Fig. 3. The third approach, with two linear layers, learning from three tasks
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Sharpness, ShearX, ShearY, Cutout, TranslateX, TranslateY. We do not rescale
the input and keep the original size of 512 × 512.

Out of all the feature extractors we tried, we notice that SK-ResNeXt and
ResNeSt (both are based on branch attention [28]) give the best results, no
matter what last layer method we use. We stick with ResNeSt for the final
architecture. The final ensemble also contains a few ResNeXt models, as we
noticed it boosted the score a little bit more.

3.2 Inference Procedure

During inference, the output is always rounded to the closest integer. We only
consider the output of the regression task during inference. We use ensemble
models, gathering predictions from models trained on 5 folds we created from
the available training set. For each model trained, we use the checkpoints from
the last 5 epochs at inference time. We noticed the results are slightly better when
we use just two of our folds. When combining predictions from different models
into a single prediction, we simply compute the mean of the predictions and
round it to the closest integer. The decision to round the final result was made
upon small improvements of 0.02 across several submissions on the validation
dataset. We also notice that the results get a little bit better if we combine
ResNeSt models with one ResNeXt model.

4 Experimental Analysis

4.1 Dataset

The dataset provided in the competition consists of a selection of slices from 183
CT scans. The organizers split the data in 3 subsets as follows: the training set
contains 4355 images, the validation set contains 1301 images and the test set is
made of 4449 images.

The organizers of the competition stress the importance of COVID-19% esti-
mation in order to establish the severity of the case. Detailed description on how
the dataset was annotated are given in [3].

We split the training set into 5 folds, in a stratified manner taking into
consideration the distribution of the labels Normal, Minimal, Moderate, Extent,
Severe, and Critical, as described in [3]. This experimental setup, besides its
role in model tuning, is intended at building a stable ensemble for the inference
phase.

4.2 Ablation Study

Table 1 presents the results on the validation set obtained with the various setups
for individual models and training procedures that were described above. The
three different setups for addressing regression, which were illustrated in Figs. 1,
2 and 3 and correspond to the single-task method and to the multi-task methods
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Table 1. Results on validation dataset, standalone models

Model Method MAE

ResNeXt50 (1) 5 folds, 30 epochs, only the regression task 4.601076

ResNeXt50 (2) 2 folds, 30 epochs, only the regression task 4.521138

ResNeSt50 (3) 5 folds, 30 epochs, only the regression task 4.654881

ResNeSt50 (4) 2 folds, 30 epochs, only the regression task 4.516526

ResNeXt50 (5) 2 folds, 50 epochs, 2 tasks, without hybrid pooling 4.554189

ResNeSt50 (6) 2 folds, 50 epochs, 2 tasks, without hybrid pooling 4.343582

ResNeSt50 (7) 2 folds, 50 epochs, 2 tasks, with hybrid pooling 4.285934

EfficientNet-b4 (8) 2 folds, 50 epochs, 2 tasks, with hybrid pooling 4.8701

SE-ResNet50 (9) 2 folds, 50 epochs, 2 tasks, with hybrid pooling 4.797079

SK-ResNeXt50 (10) 2 folds, 50 epochs, 2 tasks, with hybrid pooling 4.405842

ResNeSt101 (11) 2 folds, 50 epochs, 2 tasks, with hybrid pooling 4.33359

ResNeSt50 (12) 2 folds, 50 epochs, 3 tasks, without hybrid pooling 4.408916

ResNeSt50 (13) 2 folds, 50 epochs, 3 tasks, with hybrid pooling 4.335127

with, respectively, 2 and 3 objectives, are dedicated three different regions in the
table, as demarcated by horizontal lines.

We can notice that ResNeSt and ResNeXt compete on par when designed
with the most simple method of training, that of adding only a linear layer
with one output cell (the model in Fig. 1). We can also conclude that using
only 2 folds (carefully selected) out of the 5 constructed, improves the results.
For the further experiments we only use the two folds that provided the best
results from the first 4 experiments. From model (5) we can see that adding
extra tasks for ResNeXt, does not bring any improvements, whereas for ResNeSt
(model (6)), the improvements are clear. Using hybrid pooling, instead of global
average pooling before the added linear layers, also adds some improvement to
the overall result (model 7 vs. model 6). Adding the third task to the training
procedure does not seem to bring benefits over the 2-task models, but brings
small improvements when used in an ensemble. Hybrid pooling, again, brings
benefits (model 13 over 12).

After deciding which were the best models, we started assembling models
to improve the overall result. The result obtained on the validation set, which
placed us on the first position in the competition in the validation phase, as
well as the constituents of the ensemble are reported in Table 2. This ensemble
was used in the test phase where it recorded a 4.61 MAE on the test set, being
ranked third in the competition.

Self-supervision can be further used to improve the results [31]. We applied
pseudo-labeling and extended the original training set with the inclusion of the
validation dataset for which we use instead of the ground truth (which is not
available) the percentages predicted by the best ensemble model. All models
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Table 2. Results on validation dataset, best ensemble

Model Method MAE

Models (5, 7, 11, 13) Each model
trained with
the configs
mentioned in
Table 1

4.171407

retrained on the extended dataset provided better results compared with their
counterpart trained just with the training set, as illustrated in Table 3.

Table 3. Results on validation dataset, best ensemble using self-supervision

Model Method MAE

ResNeSt50 2 folds, trained for 50 epochs, 2 tasks, with hybrid pooling 4.189854

ResNeSt50 2 folds, trained for 50 epochs, 3 tasks, with hybrid pooling 4.172175

ResNeSt101 2 folds, trained for 50 epochs, 2 tasks, with hybrid pooling 4.156034

ResNeSt200 2 folds, trained for 50 epochs, 2 tasks, with hybrid pooling 4.448885

ResNeSt101 Same configuration but rounding the percentage at inference 4.133743

We noticed during our trials to ensemble the new models that no ensemble
is able outperform the best single model trained on the extended training set
using pseudo-labeling (self-supervision). Since self-supervision was declared as
illegitimate in the competition (even when involving only the validation set) we
cannot report results on the test set for these experiments.

5 Conclusions

Deep regression methods, built on existing deep learning models pre-trained
for classification tasks in computer vision, may be important tools for assisting
medical diagnosis. In this context, re-framing the regression task as multi-task
learning proves once again to bring a significant increase in performance.

Acknowledgement. This paper is partially supported by the Competitiveness Oper-
ational Programme Romania under project number SMIS 124759 - RaaS-IS (Research
as a Service Iasi).
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Abstract. One of the most contentious areas of research in Medical
Image Preprocessing is 3D CT-scan. With the rapid spread of COVID-19,
the function of CT-scan in properly and swiftly diagnosing the disease has
become critical. It has a positive impact on infection prevention. There
are many tasks to diagnose the illness through CT-scan images, include
COVID-19. In this paper, we propose a method that using a Stacking
Deep Neural Network to detect the Covid 19 through the series of 3D
CT-scans images. In our method, we experiment with two backbones
are DenseNet 121 and ResNet 101. This method achieves a competitive
performance on some evaluation metrics.

1 Introduction

The SARS-COV-2 virus has spread over the world, with a major increase in
2019 and 2020. This global sickness cost nearly all governments in every coun-
try across the world a tremendous amount of money in 2020 and the first half
of 2021citecovid stat. Thousands of individuals are infected with this disease
every day, making it the most hazardous sickness on the planet. Almost all med-
ical photos and records are maintained in a computerized database nowadays.
Furthermore, the number of doctors available to diagnose these medical data is
restricted, particularly in the case of Covid-19.

With the increasing number of patients and a scarcity of doctors, practically
all photographs in the digital database may be used for pre-diagnosis, which
helps to speed up diagnosis and improves the doctor’s accuracy. This is why, in
order to avoid infection, a quick and reliable detection approach is required [13].

COVID-19 has a very severe on the respiratory system of the human. The
virus is harbored most commonly with little or no symptoms, but can also lead
to rapidly progressive and often fatal pneumonia. With the patients who have
COVID-19, the virus can lead negative the patients situation [13].

There are a variety of diagnostic procedures available, including CT scans,
chest X-rays, and PCR. They give us with a 3-D perspective of organ creation
using CT-scan recording. Due to the lack of overlapping tissues, convenient dis-
ease evaluation, and its location, CT scans also provide a more complete overview
of the internal structure of the lung parenchyma [4]. As an aspect, it provides a
window into pathophysiology that could shed light on several stages of disease
detection and evolution.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 483–495, 2022.
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Radiologists report COVID-19 patterns of infection with typical features
including ground glass opacities in the lung periphery, rounded opacities,
enlarged intra-infiltrate vessels, and later more consolidations that are a sign
of progressing critical illness [2].

Chest radiography’s medical imaging features are typically utilized to detect
abnormalities and disorders in tissue such as the brain or lungs. As a result, chest
x-ray images or CT-scan images are frequently utilized to detect abnormalities
in human tissues.

Patients capture multiple slices during CT-scan recording, but the number of
doctors available to diagnose these data is insufficient. These are the reasons why
Machine Learning and Deep Learning models must be used in order to facilitate
and shorten the diagnostic process. This is why the purpose of the 3D-CT scans
pictures classification challenge is to assess several strategies for reliably and
efficiently classifying 3D-CT scans images [2].

In this paper, we propose a method that uses Fine-tuning and ensemble Deep
Neural Network backbones to classify 3D CT-scan images. With the combination
of Deep Neural Network, the model can have higher performance on feature
extraction and classification task. In this experiment, we use two backbones,
DenseNet 121 and ResNet 101, for evaluating our method on the test dataset
with 4355 samples.

We also introduce the Res-Dense net architecture, the experiment, and the
assessment mechanism in this section of our proposal. Our strategy earns a
competitive score on the training and testing method in this experiment. Fur-
thermore, we suggest various improvements to our methods’ performance, and
the method can be used to tackle other difficulties in medical imaging, notably
in CT-scan images.

2 Related Work

2.1 CT-scan Images

The difference between the CT-Scan images and other medical images, CT-Scan
images are created by a series of X-ray images, which are forms of radiation on the
electromagnetic spectrum. In addition, as compared to X-ray images, CT scans
can provide information on multiple angles of the tissue and show the status of
the tissue in each frame of image sequences. Furthermore, the information of the
tissue can be clearly depicted through a sequence of photographs taken at the
same moment [23].

2.2 Image Classification

Image classification is a task that attempts to classify the image by a specific
label. In recent years, the development of computing resources leads to a variety
of methods in Image classification. Many deep architectures have been proposed
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and get competitive results. Moreover, from the classification task, the researcher
can use to localize the abnormal on the images, which is very important in the
medical diagnosis [21].

2.3 CT-Scan COVID-19 Image Classification

The use of imaging data is illustrated to be a helpful method to diagnose Covid-
19. However, computed tomography (CT-Scan) gets a variety of signs and creates
difficulty for the doctors. However, with the development of computing and com-
puter vision, there are several methods are proposed to deal with this problem.
The flourish of the Deep Learning and Transfer Learning methods are creating a
beneficial impact on image classification. By using CNN, Deep Neural Network
architectures to classify the Covid-19 CT-scan images, the accuracy of diagnos-
ing achieves competitively. Nowadays, there are many challenges in CT-Scan
classification to find the competitive approach and method to apply in a fast
and accurate diagnosis to prevent the societal infection [9].

3 Dataset

The dataset we use is from MIA-COVID 19 dataset, which contains the Covid
3D-CT Scan images series from patients that have COVID 19 and patients that
do not have COVID 19 [3]. The dataset is split into folders. Each of them is
a series of images when doing CT-Scan. All of the images are collected from
COVID19-CT-Database. The dataset include the input sequence is a 3-D signal,
consisting of a series of chest CT slices, i.e., 2-D images, the number of which
is varying, depending on the context of CT scanning. The context is defined in
terms of various requirements, such as the accuracy asked by the doctor who
ordered the scan, the characteristics of the CT scanner that is used, or the
specific subject’s features, e.g., weight and age [1].

The COVID19-CT-Database (COV19-CT-DB) consists of chest CT scans
that are annotated for the existence of COVID-19. Data collection was conducted
in the period from September 1, 2020, to March 31, 2021. Data were aggregated
from many hospitals, containing anonymized human lung CT scans with signs
of COVID-19 and without signs of COVID-19 [1].

The COV19-CT-DB database consist of about 5000 chest CT scan series,
which correspond to a high number of patients (>1000) and subjects (>2000).
Annotation of each CT slice has been performed by 4 very experienced (each
with over 20 years of experience) medical experts; two radiologists and two pul-
monologists. Labels provided by the 4 experts showed a high degree of agreement
(around 98%) [2] (Fig. 1).
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Fig. 1. Sample of dataset

3.1 Evaluation Methods

To evaluate a classification model, we have some basic methods such as Accuracy,
Precision, Recall, F1-score, etc. Regarding Precision, this measurement score
evaluates the numbers of true positive over the number of false-positive and true-
positive while Recall measure the number of positive over the true positive and
false negative. However, with the F1-score, which is described as the harmonic
mean of the two, the evaluation is similar to the average of Precision and Recall;
the measurement score gets sensitive to two inputs having a low value, which
helps to make the experiment fair [25].

Precision × Recall

Precision + Recall
(1)

To evaluate the methods, we use the Macro F1-Score with the following
formula [7]:

1
n

∗
n∑

i=0

F1 − scoresi (2)

where:
n: number of classes/labels
i : class/label

4 Method

Despite using CNN with RNN or LSTM to find features of the 3D CT-Scan series,
we propose a method that extracts all features of all images in all series. This
method can help efficiently reduce the time of training and achieve competitive
performance. In the testing phase, we propose to predict all images in the series
and calculate the mean score of the series to choose the label of that series.
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4.1 Densely Connected Convolutional Network

The demonstration of the recent work has shown that Convolutional Neural
Networks can be substantially deeper, more accurate, and more efficient to train
if they contain shorter connections between each layer close to the input and
those close to the output [19]. DenseNet connects each layer to every other
layer in a feed-forward chain. Whereas traditional Convolutional Neural Network
architecture with L layers has L connections - one between each layer and its
subsequent layer - our network has L(L+1)

2 direct connections. For each layer, the
feature maps of all preceding layers are used as inputs, and their feature maps
are used as inputs into all subsequent layers. DenseNet have several compelling
advantages: they alleviate the vanishing gradient problem, strengthens feature
propagation, encourages feature reuse, and substantially reduces the number of
parameters [6] (Fig. 2).

Fig. 2. Feature extraction of DenseNet 121

4.2 Deep Residual Network (ResNet)

Deeper neural networks are difficult to train. Therefore, Deep Residual Network
is created to ease the training of networks that are substantially deeper than
those used previously [11]. ResNet architecture can explicitly reformulate the
layers as learning residual functions regarding the layer inputs, instead of learn-
ing unreferenced functions. With this network, it is easier to optimize and can
gain accuracy from considerably increased depth. On the ImageNet dataset, the
evaluation of residual nets, with a depth of up to 152 layers and eight times
deeper than the VGG net, still has lower complexity. An ensemble of these
residual nets achieves 3.57 errors on the ImageNet test set. This result won the
first place on the ILSVRC 2015 classification task. The architecture also gains a
competitive performance on the other dataset such as Cifar, etc. [5] (Fig. 3).
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Fig. 3. Feature extraction of ResNet 101

4.3 Res-Dense Net

In our architecture, we propose to use ResNet 101 and DenseNet 121 backbones
for the first layers by stacking techniques to create a new layer. This technique
can use the merits of these two models to improve the strength and help reduce
the drawback of the feature extraction process of two backbones (Fig. 4).

Fig. 4. General network architecture

The input pass in two ways first is the Resnet 101 and a Convolution 2D
layer, second, go through the DenseNet 121, then the result is added to the Add
layer, then the result feature map then moves to the Global Average Pooling
layer and the vector result of this layer is fed to the prediction layer for the
output of the model. The figure below will illustrate obviously our work and the
model that we design (Fig. 5):
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Fig. 5. Full network architecture visualization

One of the merits of our method is when feature maps, which are results of
two previous extraction layers, are merged by adding layers to create the regular
feature map and coming to the Global Average Pooling layers before coming
to the Fully-Connected layer. By this technique, the importance of each area
in the images can be defined by projecting weights of the output layer on the
Convolution feature map that gain from the previous layer. Two Convolution
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Layers are added to make the output shape, and the number of filters of the two
outputs from two Deep Neural networks is equal. Moreover, with these layers,
we can control the quality of output features that are created by the architecture
(Fig. 6).

Fig. 6. Feature extraction of Res-Dense net

After that, features pass the Global Average Pooling layers and generate one
feature map for each corresponding category of the classification task in the last
MLP layer. With two backbones, new feature maps are created by two or more
backbones. We propose to use global average pooling to reduce the computation
cost.

The following is the Generalized Mean Pooling formula:

f (g) = [f (g)
1 ...f

(g)
k ...f

(g)
K ]T , f

(g)
K = (

1
|χk|

∑

x∈χk

xPk)
1

Pk (3)

In the formula (3), the f(g) is the output of Convolution layers, each feature
map from the output is calculated by the average and the result for each will be
an element in the vector f

(g)
i with i = [1, k]. From this formula, the number of

nodes for feeding to the multi-layer perceptron reduces.
Instead of adding Flatten layers to create vectors for fully connected layers

on top of the feature maps, this layer takes the average of each feature map.
Then, the resulting vector is fed directly into the sigmoid activation function.
The advantage of Global Average Pooling is there is no parameter to optimize in
the global average pooling thus overfitting is avoided at this layer. Furthermore,
global average pooling calculates the average out the spatial information, thus
it is more robust to spatial translations of the input.

This architecture is inspired by the inception block of GoogleNet, by merging
the convolutional layers and using Average pooling layers. This method helps
the architecture get deeper but efficiently the computation cost.
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4.4 Data Preprocessing

After loading data, we resize all the images to the size (256,256), then we split
the dataset into the training set and validation set in the ratio of 0.75:0.25. After
resizing and splitting the validation set, we rescale the data pixel down to be
in the range [−1, 1]. Then we use the application of ResNet to preprocess the
input. The Input after preprocess is rescaled to the same input of the ResNet
model.

4.5 Data Augmentation

Data Augmentation is vital in the data preparation process. Data Augmenta-
tion improves the number of data by adding slightly modified copies of already
existing data or newly created synthetic data from existing data to decrease
the probability of the Overfitting problem, we use augmentation to generate the
data randomly by random flip images and random rotation with an index of 0.2
(Fig. 7).

Fig. 7. Data Augmentation result

4.6 Training

Our models are initialized with pre-trained weight from Imagenet. We use a
batch size of 32 for training data with an image’s size of (256,256). Moreover,
we propose to use the RMSprop optimizer with a learning rate is 0.0001 for
optimizer and evaluate the training process by accuracy and F1-score. For the
loss function, we use Sparse Categorical Cross-entropy. The model is trained
with 20 epochs and get the checkpoint that achieves the highest performance
(Table 1).
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Table 1. The parameter setup for model before training

Parameter Value

Optimizer Adam

Learning rate 0.0001

Loss Binary crossentropy

Metrics F1-score, accuracy

With a low learning rate, we can ensure that we can find the weight with the
competitive results although it costs more time for training.

Firstly, we freeze all the complicated layers of DenseNet and ResNet. Then,
we start to train for the first time. Next, we freeze 100 layers before on each
backbone. Finally, we start the continuous training process (Fig. 8).

Fig. 8. Training evaluation

After Fine-tuning with 20 epochs, we get the result of a loss of approximately
0.4. The model performs positively on the training dataset. On the evaluation
of the Macro F1-score on the test set with 4355 folders of images that contain
covid and non-covid, we achieve the competitive score (Table 2):
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Table 2. Our result on test set

Score Value

F1 (COVID) 63.08

F1 (NON-COVID) 93.18

Macro F1 78.13

5 Conclusion

We demonstrated the proposal of using Res-Dense Net with Fine-tuning tech-
nique to classify endoscopic images. The result of our research is positive for the
F1 score. Moreover, our method can inspire a new approach on classification on
3D images instead of using 3D CNN or Convolution Neural Network with LSTM
or RNN. However, there are some drawbacks that we have to do to improve the
performance of the model, such as pre-processing data, reduce noise, change the
size of the image to train. Furthermore, we can apply ResNet101 V2 or DenseNet
169 backbone, or we can combine with LSTM or RNN modules to have better
feature extraction and better performance of the model.

6 Discussion

Our result get 78.13 in Macro F1-score, which gets a higher score than the
Traditional 3D CNN and 3D Regnet [17] architecture [16]. However, our model
gets the lower result with state of the art architecture [17]. Moreover, because of
not increasing the quantity of data, our method also does not get a higher score,
we can improve the accuracy of the model by improving data. The architecture
that we combine is between ResNet 101 and DenseNet 121. Below is the result
comparison between other methods with our method (Table 3).

Table 3. Comparison with other models

Method Macro F1-score

3D-CNN with Bert [17] 88.22

Res-Dense Net 78.13

3D RegNet [16] 71.83s

Shallow Convolution Neural-Network [18] 70.86

Vision transformer [15] 70.5

With the approach of detecting Covid symptoms in each frame of the video,
we get a higher result than others with the same approach but with the approach
of using the sequence of frames in the video because the architecture uses the
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power of feature extraction from two backbones are ResNet 101 and DenseNet
121 create the benefit for the prediction process. Nevertheless, our method gets
worse in this domain if compare with other methods using Bert or 3D CNN
because this method can not find the relation of the frame like approaching
sequences like 3D-CNN with Bert method or 3D RegNet method. However, our
model has a better score than the 3D RegNet method that uses sequences of
frames in the video.

7 Future Work

Although our method gets a competitive score, there are some drawbacks in our
methods: the training time gets long with 334 ms/step, we can custom layers in
the architecture to accelerate the computing cost. We can get more layers or
can ensemble more backbones to achieve higher results. Moreover, we can do a
segmentation process on the lung CT-scan to improve the accuracy of training
and get a better result for our architecture that is proposed [24].

References

1. Kollias, D., Arsenos, A., Soukissian, L., Kollias, S.: MIA-COV19D: COVID-19
Detection through 3-D Chest CT Image Analysis. ArXiv:2106.07524 (2021)

2. Kollias, D., et al.: Deep transparent prediction through latent representation anal-
ysis. ArXiv:2009.07044 (2020)

3. Kollias, D., et al.: Transparent adaptation in deep medical image diagnosis. In:
Heintz, F., Milano, M., O’Sullivan, B. (eds.) TAILOR 2020. LNCS (LNAI), vol.
12641, pp. 251–267. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
73959-1 22

4. Kollias, D., Tagaris, A., Stafylopatis, A., Kollias, S., Tagaris, G.: Deep neural archi-
tectures for prediction in healthcare. Complex Intell. Syst. 4(2), 119–131 (2017).
https://doi.org/10.1007/s40747-017-0064-6

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
CoRR, abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

6. Huang, G., Liu, Z., Weinberger, K.: Densely Connected Convolutional Networks.
CoRR, abs/1608.06993 (2016). http://arxiv.org/abs/1608.06993

7. Opitz, J., Burst, S.: Macro F1 and Macro F1. CoRR, abs/1911.03347 (2019).
http://arxiv.org/abs/1911.03347

8. Chollet, F.: Xception: Deep Learning with Depthwise Separable Convolutions.
CoRR, abs/1610.02357 (2016). http://arxiv.org/abs/1610.02357

9. Pogorelov, K., et al.: KVASIR: A Multi-Class Image Dataset for Computer Aided
Gastrointestinal Disease Detection (2017)

10. Martinez, A.: Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning (2020)

11. Guo, S., Yang, Z.: Multi-Channel-ResNet: an integration framework towards
skin lesion analysis. Inform. Med. Unlocked. 12, 67–74 (2018). https://www.
sciencedirect.com/science/article/pii/S2352914818300868

12. Nguyen, N., Tran, D., Nguyen, N., Nguyen, H.: A CNN-LSTM Architecture for
Detection of Intracranial Hemorrhage on CT scans (2020)

http://arxiv.org/abs/2106.07524
http://arxiv.org/abs/2009.07044
https://doi.org/10.1007/978-3-030-73959-1_22
https://doi.org/10.1007/978-3-030-73959-1_22
https://doi.org/10.1007/s40747-017-0064-6
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1911.03347
http://arxiv.org/abs/1610.02357
https://www.sciencedirect.com/science/article/pii/S2352914818300868
https://www.sciencedirect.com/science/article/pii/S2352914818300868


Res-Dense Net for 3D Covid Chest CT-Scan Classification 495

13. Bonvini, M., Kennedy, E., Ventura, V., Wasserman, L.: Causal Inference in the
Time of COVID-19 (2021)

14. Alizadehsani, R., et al.: Risk factors prediction, clinical outcomes and mortality of
COVID-19 patients. J. Med. Virol. 93, 2307–2320 (2020)

15. Gao, X., Qian, Y., Gao, A.: COVID-VIT: Classification of COVID-19 from CT
chest images based on vision transformer models (2021)

16. Qi, H., Wang, Y., Liu, X.: 3D RegNet: Deep Learning Model for COVID-19 Diag-
nosis on Chest CT Image (2021)

17. Tan, W., Liu, J.: A 3D CNN Network with BERT For Automatic COVID-19
Diagnosis From CT-Scan Images (2021)

18. Teli, M.N.: TeliNet: Classifying CT scan images for COVID-19 diagnosis (2021)
19. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.: Densely connected con-

volutional networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4700–4708 (2017)

20. Li, G., Zhang, M., Li, J., Lv, F., Tong, G.: Efficient densely connected convolutional
neural networks. Pattern Recogn. 109, 107610 (2021)

21. Shah, V., Keniya, R., Shridharani, A., Punjabi, M., Shah, J., Mehendale, N.: Diag-
nosis of COVID-19 using CT scan images and deep learning techniques. Emerg.
Radiol. 28(3), 497–505 (2021). https://doi.org/10.1007/s10140-020-01886-y

22. Ahuja, S., Panigrahi, B.K., Dey, N., Rajinikanth, V., Gandhi, T.K.: Deep transfer
learning-based automated detection of COVID-19 from lung CT scan slices. Appl.
Intell. 51(1), 571–585 (2020). https://doi.org/10.1007/s10489-020-01826-w

23. Maghdid, H., Asaad, A., Ghafoor, K., Sadiq, A., Mirjalili, S., Khan, M.: Diagnosing
COVID-19 pneumonia from X-ray and CT images using deep learning and transfer
learning algorithms. In: Multimodal Image Exploitation And Learning 2021, vol.
11734, pp. 117340E (2021)

24. Miron, R., Moisii, C., Dinu, S., Breaban, M.: COVID Detection in Chest CTs:
Improving the Baseline on COV19-CT-DB (2021)

25. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1 25

https://doi.org/10.1007/s10140-020-01886-y
https://doi.org/10.1007/s10489-020-01826-w
https://doi.org/10.1007/978-3-540-31865-1_25


Deep Regression by Feature
Regularization for COVID-19 Severity

Prediction

Davide Tricarico1,2(B) , Hafiza Ayesha Hoor Chaudhry1 ,
Attilio Fiandrotti1 , and Marco Grangetto1
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Abstract. During the COVID-19 worldwide pandemic, CT scan
emerged as one of the most precise tool for identification and diagno-
sis of affected patients. With the increase of available medical imaging,
Artificial Intelligence powered methods arisen to aid the detection and
classification of COVID-19 cases. In this work, we propose a methodol-
ogy to automatically inspect CT scan slices assessing the related disease
severity. We competed in the ICIAP2021 COVID-19 infection percent-
age estimation competition, and our method scored in the top-5 at both
the Validation phase ranking, with MAE = 4.912%, and Testing phase
ranking, with MAE = 5.020%.

Keywords: COVID-19 · Severity prediction · Deep regression

1 Introduction

A new global pandemic Coronavirus Disease (COVID-19) started in 2019 and
soon became the center of focus with an unidentified source of start, an exponen-
tial growth rate and an insufficient knowledge of the transmission process. The
symptoms of this disease vary from mild to severe and in extreme cases may lead
to pneumonia, lung failure and ultimately death [11,15]. The epidemic spread of
COVID-19 has affected the medical area most and created a shortage of medical
supplies all around the world, with varying factors to accessibility of health-care
and medical supplies [13]. The most commonly used method to detect COVID-19
is reverse transcription polymerase chain reaction (RT-PCR), where the speci-
men is taken from lower or upper respiratory tract of the patient. The RT-PCR
is cheaper and widely available compared to most of the other methodologies for
detecting COVID-19 (like Chest X-rays and CT scans). However, the high rate
of false negatives, the lengthy processing time and a low sensitivity rate have
made RT-PCR somewhat unreliable [7,21].
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Computed Tomography (CT) on the other hand, gives an in depth knowledge
of the patho-physiology, hence giving the possibility of detecting several stages
of the disease in light of the affected organs. In common practice CT scan is
done after a positive RT-PCR, therefore developing a correlation between both.
However a CT scan can also catch early COVID-19 stages in patients who have
mild to no symptoms, and those with a negative RT-PCR [1,20]. Due to these
advantages CT scan is becoming the ultimate tool in early diagnosis of COVID-
19 worldwide.

With an increase in the patients and medical imaging produced, a need for
Artificial Intelligence (AI) arises to aid the detection and classification process
of COVID-19 patients. CT scans provide a perfect image that could be fed into
the Deep Learning (DL) network, generating automated biomarkers to detect
and classify COVID-19. The most important factor in deep learning techniques
is a diverse, large, and high quality annotated dataset. Another challenge for
the medical staff is distinguishing common cold pneumonia from COVID-19 as
both affect the lungs, but the COVID-19 pneumonia could be more fatal. Deep
learning could not only detect COVID-19 from CT scans but also distinguish
it from the common cold pneumonia [12,18]. Using automated deep learning
techniques will also take some burden off the manual labor of radiologists and
doctors, and help in decreasing the shortage of medical staff.

Using the concept of Multi task learning, feature maps along with an encoder
and decoder have been used in detection of the COVID-19 disease, segmenta-
tion of the affected areas, and the reconstruction using a large dataset by [2].
Providing promising results, this technique yielded 97% area under the ROC
curve. Research has also been done on detecting COVID-19 from CT scans using
weakly supervised techniques [9]. The network used in this work was inspired by
VGG architecture, consisting of convolution layers, batch normalization and rec-
tified linear units. Despite giving good results on the COVID-19 detection, a big
drawback of this work is the high probability of mis-classification of community
acquired pneumonia (CAP) as COVID-19.

Apart from CT scans, a lot of research has also been done on other medical
imaging including Chest Xrays (C-Xray), Lung Ultrasounds (LUS) and MRI.
A deep learning study has been carried out using lung ultrasound videos for
the detection of COVID-19 [14]. Besides detection, it also performs localization
on each lung ultrasound frame to provide better estimate of the disease. Chest
Xray is the other popular imaging technique being used for classification and
detection of COVID-19. As it is more accessible and inexpensive than CT scans,
many researchers preferred it initially [5,16]. The limitation of Chest Xray is that
it has a 69% sensitivity and the best findings from Chest Xrays are retrieved
when it is generated after a week of symptom onset [19]. This makes interpreting
the early onset Chest Xrays difficult for even the expert radiologist. Other factors
as the patient’s position (standing or laying down) while going through medical
imaging, the presence of tubes in case of severely ill patients, and the type
of projection used also plays an important role. In another study, 15% of the
Chest Xrays suggested normalcy in the patients who were already affected by



498 D. Tricarico et al.

COVID-19 [8]. Proving that CT scans are more reliable and vivid than Chest
Xrays and should also be used to follow-up on COVID-19 patients.

In this paper we present a novel technique for the classification and estimation
of COVID-19 disease using dataset from a competition proposed by ICIAP 2021
conference. In this challenge, teams are asked to estimate COVID-19 severity
score related to transverse plane CT scan slices. For this purpose a set of images
and related labels have been provided to the participants. The key contributions
of this study are:

– We adopted a contrastive learning method for image regression task, consist-
ing of a training procedure with the goal of learning a feature space where
the distance between samples is proportional to their difference in targeted
labels;

– We proposed a novel loss function to support the above-mentioned method
based on the calculation of distance matrices in the feature and output spaces
and the minimization of their relative differences;

– To predict the severity score, we adopted an approach derived from image
retrieval and few-shot classification problems, computing the prediction by
averaging the score of nearest neighbours in the feature space obtained apply-
ing the above-mentioned training procedure and loss function.

2 The Dataset

The dataset used in this project is provided by the ICIAP 2021 conference
organizer for the COVID-19 infection percentage estimation competition [4,17],
through the Codalab online platform [6]. The dataset includes CT scan slices
(simply slices from now on) of patients either infected with COVID-19 or healthy
and the problem statement is to estimate the percentage of COVID-19 infection
rate. The dataset is divided into three sets, Train, Test and Validation.

The Train set includes 3054 CT scan slices from 132 patients, out of which 128
are diagnosed as infected by COVID-19. The method of diagnosis are CT scan
prognosis by expert thoracic radiologists and the positive reverse transcription
polymerase chain reaction (RT-PCR). The remaining 4 patients are healthy i.e.
not infected by COVID-19. In the Train set, CT scan slices are provided with
their respective estimated COVID-19 infection rate, calculated by two expert
radiologists. The infection rate is a figure between 0 and 100.

The Validation set includes 1301 slices from 57 patients, among which 55
are COVID-19 positive. This set is blinded, i.e. the COVID-19 ground truth
infection rate is not known. The Train and Validation sets have been collected
from different patients including both Male and Female patients. The age of
patients range from 27 to 70 years old. The data collection was done between
June to December 2020, from two hospitals, Hakim Saidane, in Biskra (Algeria),
and Ziouch Mohamed, in Tolga (Algeria) [3].

The Test set includes 4449 CT Scan slices from 130 patients. All of the
included patients are tested positive for COVID-19 using both diagnosis meth-
ods, RT-PCR and thoracic CT scan prognosis. The dimensions of these slices is
630 × 630.
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The test set is also blind, i.e. the ground truth labels are not known.
Table 1 summarizes the composition of each set.

Table 1. Summary of the ICIAP 2022 COVID-19 infection percentage estimation
competition dataset used in this work.

Dataset Patients Positive patients Total slices

Train 132 128 3054

Val 57 55 1301

Test 130 130 4449

Using the predictions on the Validation set, the top ten teams/participants
were invited to test their code on the Test set, after which the final ranking of
the challenge would be calculated.

For the evaluation part three metrics are used in this competition, Mean
Absolute Error (MAE), Root Mean Square Error (RMSE) and Pearson Cor-
relation coefficient (PC). The priority is given to Mean Absolute Error, RMSE
and PC are used as tie breaker between two teams/participants with same MAE.
The final ranking of the teams/participants in the competition is calculated from
Test set and Validation set results using the following formula:

Final rank = (0.7 × Test set results) + (0.3 × V alidation set results) (1)

3 Proposed Method

The method we propose to predict COVID-19 severity of each CT scan slice is
illustrated in Fig. 1 and can be summarized as following. In a nutshell, each slice
is projected in a well-behaved lower dimensional target feature space such that
nearby points in this feature space correspond to slices with similar COVID-19
scores, while distant points correspond to different severity values. Whenever the
COVID-19 score shall be predicted for a query slice, it is projected in the target
feature space. The query slice projection is compared with the projections of the
labelled slices from training set, i.e.e the reference slices. The query slice score is
predicted by interpolating the scores of the nearest reference slices in the feature
space.

The proposed method is implemented as a 3-stages pipeline as follows:

– Image pre-processing, to normalize the slices pixel intensity and resolution
across the different image acquisition settings

– Feature extraction, to project the slice into the above-mentioned well-behaved
feature space, and

– Distance based regression, to predict the severity score looking at the query
slice neighbors in the feature space from reference set.

In the following, we detail each of the above stages.
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Fig. 1. High level illustration of adopted methodology. a) query : original CT scan slice;
b) image pre-processing ; c) pre-processed slice; d) e) feature extraction; f) g) h) ref-
erence set : database of labelled cases from training set with corresponding projections;
i) l) distance based regression; m) final COVID-19 severity prediction

Image Pre-processing. CT scan slices appearance can be strongly affected by
the adopted image acquisition process and technology. In particular the contrast,
the brightness and the pixel intensity histogram can change when equipment
from different vendors are used, or different settings are applied. This variability
is evident in Fig. 2, where differences in pixel intensity are present among the
samples. It can be also observed, that the image size (Fig. 2(c)) and scale (Fig.
2(f)) can differ significantly between samples.

Fig. 2. Samples from dataset provided by ICIAP 2021 Challenge organizers during
testing phase. Depending on the production process, slices appearance can strongly
differ in term of colour distribution, scale and size. In terms of colour distribution, the
slices in the first row are significantly brighter than the last ones. Image size of third
slice is different from the others. The sixth slice has a different scale.
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Because these sharp differences can lead to poor performance, we put in place
a pre-processing strategy composed by the following steps:

– Image resize: first, slices are resized to 512×512 pixels format: our experiments
showed that above this resolution no significant gains are found, while the
computational complexity remains reasonable;

– Pixel intensity scaling: pixel values are re-scaled in range between 0 to 1,
where 1 corresponds to amount equal or higher than 90th percentile of original
intensities distribution.

Feature Extraction. The preprocessed slice images are projected into the tar-
get feature space using the deep convolutional neural network DenseNet-121 [10].
This architecture is characterized by a sequence of dense blocks (concatenation of
non linear operators with skip connections to prevent gradient vanishing effect),
connected by transition layers (concatenation of convolution and pooling lay-
ers), finally a linear layer is responsible for the class prediction. In our case, the
original architecture has been truncated before the output classification layer,
resulting in a convolutional feature extractor that yields a 1024-dimensional pro-
jection of the 512 × 512 slice image provided in input.

Consider a CT scan slice pre-processed picture x from the set of all possible
CT scan slices X, and a deep neural network model M(·), we have:

∀x ∈ X → M(x) = z ∈ F ⊆ R
1024, (2)

where z is the feature vector corresponding to the CT scan slice x and belongs
to the target feature space F . With the notation xi the i-th sample in X and
zi = M(xi), consider yi ∈ S ⊆ R, the COVID-19 severity associated with xi,
our goal is to design M(·) such that:

∀i, j, k ∈ N : {||yi, yj || < ||yi, yk||} → {||zi, zj || < ||zi, zk||} (3)

where i, j, k indicate three samples in set X and ||a, b|| is the euclidean distance
between points a and b.

To train the model M(·) achieving the sought property in Eq. 3, we minimize
a loss function based on the relative distance of the samples in the target feature
space F and severity scores space S.

Considering a random subset of n CT scan pictures Xbatch, related COVID-
19 severity scores Y batch, and computed projections in the feature space Zbatch,
let us define the following distance matrices:

Dx ∈ R
n×n → Dx[i, j] = ||zi, zj || zi, zj ∈ Zbatch∀i, j ∈ [1, 2, ...n] (4)

Dy ∈ R
n×n → Dy[i, j] = ||yi, yj || yi, yj ∈ Y batch∀i, j ∈ [1, 2, ...n] (5)
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The loss function LD is defined as the Mean Absolute Error (MAE) between
Dx and Dy:

LD =
1
n2

n∑

i=1

n∑

j=1

|Dx[i, j] − Dy[i, j]| (6)

Distance Based Regression. To compute the final prediction for COVID-19
severity, our method exploits the distance in the target feature space between
the query slice and the reference slices for which the score is known.

Consider a set Xref of nref references with relative severity score Y ref , such
that given a xref

i ∈ Xref its disease quantification is yrefi , ∀i = [1, 2, ...nref ].
The methodology computes feature reference set Zref as:

Zref := {M(xref
i ) ∀i = [1, 2, ...nref ]} (7)

Whenever it is requested to predict the severity score for a query slice xquery,
its projection in the target feature space is computed as:

zquery = M(xquery) (8)

The euclidean distance between the resulting 1024-dimensional vector zquery and
the set of reference vectors Zref is then computed.

The elements in feature reference set are sorted from the nearest to the most
distant and related elements in Y ref are stored in the sorted list Y ref,sorted.

To compute the final prediction ŷquery, the proposed algorithm computes:

ŷquery =
1
m

m∑

i=1

yref,sortedi , yref,sortedi ∈ Y ref,sorted ∀i = 1, 2, ...nref (9)

where m ≤ nref is a parameter of the algorithm, regulating the number of
nearest neighbours considered in the score estimation. To tune it, an iterative
process have to be put in place: for increasing values of m, the performance of
the method is evaluated, looking for the best trade-off, as we discuss in detail in
the experimental section.

4 Results

To verify the performance of the proposed approach, we used the dataset pro-
vided by the ICIAP 2021 conference organizer in the context of COVID-19 infec-
tion percentage estimation competition [4,17]. We recall that at the moment of
the writing of this document, the validation and test set ground truth had not
been made available yet, therefore is not possible to perform detailed analysis
on the predictions.

We point out that while the training data, we noticed that slice
Image 0736.png from CT scan 25 looks like a strong outlier: we checked the
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slices immediately before and after and found values 10 times lower, suggesting
a possible mistake in the labelling phase, possibly a typo with decimal separator.
To reduce the noise, we chose to exclude this sample from all the experiments
below. Training parameters and environment are illustrated in Table 2.

Table 2. Summary of the training setup and relative hyperparameters

Optimization algorithm Stochastic gradient descent

Learning rate 5e−2

Batch size 12 samples

Epochs 30

Environment Tensorflow/Python

GPU accelerator NVIDIA GeForce RTX2080 Ti 12GB

To improve generalization, we adopted online data augmentation strategy,
applying the following transformations: random horizontal flip and random crop
of 448 × 448 pixels patches. Finally, the pictures are resized to the original
512 × 512 pixels size.

4.1 Preliminary Results on the Training Set

As a preliminary experiment, we find the number of reference neighbors m in
Eq. 9 that minimizes the severity score prediction error. We recall that the ground
truth for neither the validation or test set is available at the moment of the
writing of this document, so we had to rely on the train set solely.

To cope with the lack of ground truth for validation and test, we performed
a leave-one-out cross validation (LOOCV). At each iteration, one patient is left
out of the train set. Next, the other samples are used to train our neural network
responsible for feature extraction minimizing the loss function described in the
previous section. The experiments we showed that the loss function converged to
about 10−2 already after 30 epochs of training. Next, the slices used for training
are kept as reference set, while the slices from the left out patient are used
as query set. For each query set slice, we compute the Mean Absolute Error
(MAE), the Median Absolute Error (MdAE), the Pearson Correlation index
(PC) and Root Mean Squared Error (RMSE) comparing the COVID-19 severity
score predictions with their ground truth. The same metrics are computed for
each slice in the query set. Next, the network is retrained from scratch leaving
out another patient and this procedure is repeated for all the 132 patients in
the train set. Finally, we find the optimal m that minimizes the MAE across all
slices from all left out patients. Our experiments showed best performance for
m = 21 neighbors, with MAE = 1.847, MdAE = 1.119, PC = 0.994, RMSE =
2.838.

This value for parameter m = 21 is used also in the prediction of COVID-19
score for Validation and Test datasets.
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To better understand the results, we visualized the distribution of the pre-
diction error and the correlation of predictions with actual values in Fig. 3(a).
The prediction error distribution has zero mean and most of its density is in the
[−10%, 10%] interval. Figure 3(b) correlates predicted and ground truth COVID-
19 severity scores for all the slices in the train set (PC = 0.994).

Fig. 3. Right: a) Distribution of prediction error for Train set by using leave-one-out
cross-validation. Left: b) Correlation between predicted and actual values for COVID-
19 severity score on Train set by using leave-one-out cross-validation

4.2 Validation and Test Set Results

We predicted the COVID-19 severity score for the validation set slices using the
network trained on all train set slices and with m = 21. All the train set slices
have been used as reference set, while the validation set slices are used as query
slices. We submitted our predictions to the automatic platform managing the
challenge, Codalab [6], that returned us the following results:

– MAE = 4.912
– PC = 0.943
– RMSE = 8.700

In Table 3 is showed the final ranking for the teams with Validation dataset. Our
approach resulted in the 5th position.

Then, we repeated the procedure with the test set, and Table 4 shows that
our approach resulted in the 5th position.
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Table 3. Final competition ranking for Validation dataset. In bold the result related
to the presented approach

Position Team MAE PC RMSE

1 SenticLab.UAIC 4.317 0.947 8.359

2 Captain-CSgroup 4.479 0.947 8.406

3 TAC 4.484 0.946 8.547

4 Taiyuan university lab713 4.504 0.949 8.097

5 EIDOSlab Unito (ours) 4.912 0.943 8.700

6 IPLab 4.953 0.944 8.604

7 ACVLab 4.993 0.936 9.081

Table 4. Final competition ranking for Test dataset. In bold the result related to the
presented approach

Position Team MAE PC RMSE

1 Taiyuan university lab713 3.557 0.855 7.510

2 TAC 3.645 0.802 8.571

3 SenticLab.UAIC 4.617 0.763 9.100

4 ACVLab 4.866 0.729 10.275

5 EIDOSlab Unito (ours) 5.020 0.798 9.006

6 Captain-CSgroup 5.168 0.772 8.392

7 IPLab 6.536 0.709 9.976

Table 5. Final competition ranking overall. In bold the result related to the presented
approach

Position Team MAE PC RMSE

1 Taiyuan university lab713 3.841 0.883 7.920

2 TAC 3.897 0.845 8.554

3 SenticLab.UAIC 4.483 0.819 8.467

4 ACVLab 4.904 0.791 9.439

5 Captain-CSgroup 4.961 0.825 8.402

6 EIDOSlab Unito (ours) 4.988 0.841 8.792

7 IPLab 6.061 0.779 9.016

5 Conclusions

In this paper we proposed a methodology to assess the COVID-19 disease severity
score in CT scan slice images based on minimizing a loss function expressing
the distance between projected features in a lower dimensional feature space
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as projected by a convolutional deep neural network. Our approach scored 6th

overall in the ICAP2021 COVID-19 infection percentage estimation competition.
The lack of validation and test ground truth prevented us from further explor-

ing our results. For example, the network we trained obtained lowest loss with
a learning rate = 0.05, a relatively high value. Also, performance on validation
and test are slightly worse than on training with LOOCV, suggesting a possible
overfitting situation. As the validation and test set results are made available
by the challenge authors, we will compute the relative metrics and take action
accordingly (Table 5).
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Abstract. The outbreak of the COVID-19 pandemic considerably
increased the workload in hospitals. In this context, the availability of
proper diagnostic tools is very important in the fight against this virus.
Scientific research is constantly making its contribution in this direc-
tion. Actually, there are many scientific initiatives including challenges
that require to develop deep algorithms that analyse X-ray or Computer
Tomography (CT) images of lungs. One of these concerns a challenge
whose topic is the prediction of the percentage of COVID-19 infection
in chest CT images. In this paper, we present our contribution to the
COVID-19 Infection Percentage Estimation Competition organised in
conjunction with the ICIAP 2021 Conference. The proposed method
employs algorithms for classification problems such as Inception-v3 and
the technique of data augmentation mixup on COVID-19 images. More-
over, the mixup methodology is applied for the first time in radiological
images of lungs affected by COVID-19 infection, with the aim to infer
the infection degree with slice-level precision. Our approach achieved
promising results despite the specific constrains defined by the rules of
the challenge, in which our solution entered in the final ranking.

Keywords: Computer Vision · Inception-v3 · Computer Tomography

1 Introduction

In December 2019 a significant increase of pneumonia cases was reported in
Wuhan, Hubei Province, China [9]. These cases are due to an infection with a
novel coronavirus. In the following weeks, infections spread across China and
other countries around the world [5]. On January 30, 2020, the World Health
Organization (WHO) declared the outbreak a Public Health Emergency of Inter-
national Concern [25]. On February 12, 2020, the WHO baptized the disease
caused by the novel coronavirus “coronavirus disease 2019” (COVID-19) [26].
Numerous epidemiological studies have been conducted to model the outbreak
and the trend of the pandemic [15,16]. At the same time, a group of interna-
tional experts, with a range of specialisations, are working to try to contain and
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defeat the pandemic. During these months, the radiological imaging techniques,
e.g. X-rays and Computed Tomography (CT), are demonstrating to be the most
effective diagnostic tests of this disease including the follow-up assessment and
evaluation of disease evolution [3,21] as well as the quick detection of proper
interventions especially for asymptomatic cases. Actually, a clinical study with
1014 patients in Wuhan China, has shown that chest CT analysis can achieve
0.97 of sensitivity, 0.25 of specificity, and 0.68 of accuracy for the detection
of COVID-19 [1]. Similar observations were also reported in other studies [4,19]
suggesting that radiological imaging may help support early screening of COVID-
19. Nevertheless, this practice requires a complex effort by radiologists. For this
reason, many Computer Vision systems [2,6–8,24] have been developed and pro-
posed to offer a diagnostic tool that can help the decision-makers in the medical
and health centers. The goal is a rapid and accurate identification of COVID-19
infection in radiography images (i.e. x-ray or CT imaging) of lungs.

Given the significant scientific and social impact of COVID-19 infection, mul-
tiple research initiatives have been proposed worldwide. One of these is the
First International Workshop on Medical Imaging Analysis for COVID-19 (MIA
COVID) that is associated with 21st International Conference on Image Analysis
and Processing (ICIAP 2021). The workshop proposes an associated challenge
about the estimation of the percentage of COVID-19 Infection from thoracic CT
scans. We as IPLab team1 of the Department of Mathematics and Computer
Science of the University of Catania participated in the challenge. In this paper,
we present our results in the MIA COVID challenge, in which we entered in
the final top-score ranking (seventh ranked out of 50 participants). The paper
illustrates the methodology employed to predict the percentage of COVID-19
infection in CT slices of lungs achieving the best results by the application of
the mixup data augmentation technique during the training of the neural net-
work. We believe that our method would help radiologists in diagnosing infection
related to COVID-19. To encourage research on this topic, we publicly release
our codes and models at the following url: https://github.com/ausilianapoli/
Percentage-Covid-Estimator.

The paper is structured as follows: Sect. 2 describes related work in relation
to our work, Sect. 3 describes all the details of the MIA challenge concerning
COVID-19, the methodology and approach used to solve the challenge prob-
lem are described in Sect. 4, whereas the experiments are detailed in Sect. 5.
Finally, the manuscript concludes with some considerations regarding the results
obtained and possible future works in Sect. 6.

2 Related Works

In recent years, there has been an increasing number of algorithmic solutions
based on computer vision methods to several tasks and practical applications,
among others, significant examples are the applications of computer vision in the
field of medical imaging [12,18]. Nowadays, computer vision is used in solving
1 https://iplab.dmi.unict.it/.

https://github.com/ausilianapoli/Percentage-Covid-Estimator
https://github.com/ausilianapoli/Percentage-Covid-Estimator
https://iplab.dmi.unict.it/
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problems involving COVID-19. Research in this area is very fervent, given the
pandemic state of the world today. Indeed, the combination of Computer Vision
techniques with various imaging modalities can assist to increase the efficiency
of COVID-19 detection worldwide [3]. Gudigar et al. [6] have published a sur-
vey in which they collected and filtered 184 papers that are the most influential
in the field of Computer Vision applied to COVID-19, which deals with classi-
fication issues. Generally, in these problems the input data are CT images or
X-ray images of patients. For instance, Heidari et al. [7] use chest X-ray images
to detect COVID-19 induced pneumonia. They fine-tune a VGG16 [14] based
on Convolutional Neural Network (CNN) model pre-trained on ImageNet [20]
challenge database yielding 94.5% classification accuracy in three-classes sce-
nario (i.e., pneumonia induced by COVID-19, other pneumonia and normal
cases). Moreover, Hellwan et al. [8] finetuned an Imagenet pre-trained DenseNet-
201 [31] on a dataset of chest CT images, achieving an accuracy of 97.8% in a
two-classes scenario (i.e. COVID-19 vs no COVID-19). Vantaggiato et al. [24]
propose an Ensemble-CNNs approach to distinguish chest X-ray images between
healthy, COVID-19 and pneumonia resulting in an accuracy of 100%. The CNNs
employed are ResNext-50 [28], Inception-v3 [23] and DenseNet-161. Bougourzi
et al. [2] introduce a new problem in this research field. It is the estimation
of the percentage of COVID-19 infection from CT scans. For this purpose, the
authors collected a dataset of 183 CT scans and 3986 slices and the dataset was
named Per-COVID-19. The authors employed the Inception-v3 neural network
pre-trained on ImageNet to perform transfer learning. However, this work is
different from the previous ones because it deals with a problem of regression
instead of classification. For this reason, the loss function employed is Huber
Loss and performance is measured with Mean Absolute Error (MAE), Pearson
Correlation (PC) and Root Mean Square Error (RMSE), obtaining 5.34 MAE,
0.9330 PC and 9.44 RMSE.

We decided to work on the latter problem with a strong emphasis on data
augmentation that deals with a suite of techniques that enhance the size and
quality of training datasets such that better deep learning models can be devel-
oped using them. Traditional methods of data augmentation are proven to be
a good practice in many fields [22]. One of these is the color space augmenta-
tion which, among other things, leaves plenty of room for creativity as shown
in [17,27]. A not conventional type of transformation, e.g. mixup [29], regards
the combination of two or more original images to generate the new one. The
mixup authors tested it with state-of-the-art models on some datasets such as
ImageNet and CIFAR. These experiments have shown that this data augmenta-
tion technique improves the generalisation error. Moreover, the mixup technique
is employed in chest CT imaging with success. The authors in [30] apply this
method on chest CT images to do predictions about pulmonary adenocarcinoma
with much improved performance compared to experiments without mixup. For
these reasons, we choose to employ mixup in COVID-19 chest CT images. To the
best of our knowledge, this is the first study introducing mixup into COVID-19
image computing.
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3 Challenge

The MIA COVID 2022 has launched a scientific challenge which task is the
estimation of the percentage of COVID-19 infection from thoracic CT scans.
The presence of COVID-19 is diagnosed through the reverse transcription poly-
merase chain reaction. Nowadays, this test is considered as the global standard
method for COVID-19 diagnosis [13]. Furthermore, the presence of COVID-19
is confirmed by the CT scan manifestations identified by two experienced tho-
racic radiologists. In this way, the authors of [2] have built a dataset for the
competition’s participants (i.e., Per-COVID-19).

The challenge has three sets: Train, Validation, and Test. The Train set
contains 132 CT scans, from which 128 CT scans have COVID-19, and the rest
4 CT scans have not any infection type (i.e., healthy). Instead, the Validation
set includes 57 CT scans, from which 55 CT scans are affected by COVID-19,
and the rest 2 CT scans are healthy. Moreover, no information was provided
for the Test set that consists of 4449 CT scans. Finally, the infection labels are
available only for the Train set. The Fig. 1 shows some CT scans from the three
sets of data.

Fig. 1. Sample CT scans included in the three sets of data: (a) and (d) are train images
with respectively 0% and 100% infection percentage; (b) and (e) are validation images;
(c) and (f) are test images.



512 M. A. Napoli Spatafora et al.

The challenge requires that proposed approaches estimate the percentage of
COVID-19 infection from each slice using deep learning techniques. Moreover,
there are some limitations for the participants and the proposed approaches.
Only ImageNet’s pre-trained models and lung nodule segmentation models are
allowed. Thus, the use of other pre-trained models is not allowed. In addition, it
is forbidden to use data other than that provided by the challenge with respect
to Train, Validation and Test sets. Finally, the challenge’s organisers have estab-
lished also the evaluation metrics - that are MAE, PC and RMSE - for all
approaches. The most important evaluation criterion is the MAE. In the event
of two or more competitors achieving the same MAE, the PC and the RMSE
are considered as the tie-breaker.

4 Methodology

The COVID-19 pandemic increased considerably the workload in hospitals. This
has led to the development of various techniques to make diagnosis faster and
more accurate. In this context, computer vision is contributing by developing
deep learning algorithms that can predict the rate of infection in chest CT of
the patients.

For these reasons, there are an increasing number of research works in this
field. Thus, we decided to propose a novel methodology based on a data augmen-
tation technique that firstly is applied on COVID-19 lung images. The technique
is mixup that creates convex combinations of pairs of samples and their corre-
sponding labels [29]. This means that a mixup process is simply averaging out
two images and their labels correspondingly as new data. Specifically, mixup
augmentation is explained with the following equations

x̂ = λ · xi + (1 − λ) · xj

ŷ = λ · yi + (1 − λ) · yj
(1)

where x̂ is a blend of two images that are xi and xj , while ŷ is the mixed label
of labels yi and yj . Instead, λ is a beta distribution generated with a number
between 0 and 1 that specifies the weight of the two samples in contributing to
the new data. The definition of mixup implies that the two samples belong to
different classes. Otherwise, this technique would not be applied properly. This
is valid for classification problems which are the general and most frequent use
case of mixup. However, we deal with a regression task and therefore the choice
of the two samples is random. Examples of new images generated with mixup
are shown in Fig. 2.

The mixup augmentation creates virtual examples that significantly increase
the diversity of data available regardless of the neural architecture employed.
Thus, the technique improves the generalisation error of the neural network
making it more robust. These are the benefits introduced by the use of this tech-
nique that does not compromise the training time of a neural network. Actually,
mixup inside the training pipeline does not bring computational overhead since
it is fast and needs only a few lines of code.
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In our approach, we employ the neural network Inception-v3 pre-trained on
ImageNet. Inception-v3 is a widely-used neural network for image recognition.
Thus, this network is employed in classification problems. Since we deal with
a regression task, we replace the last layer of the original Inception-v3 with a
fully connected layer with a single output that is the probability of COVID-19
infection. We choose the Huber loss function [10] as criterion. The loss function
is defined for N batch size, and Y = (y1, y2, . . . , yN ) are the ground-truth and
Ȳ = (ȳ1, ȳ2, . . . , ȳN ) are their corresponding estimated percentages. The Huber
loss function is defined by

LHuber =
1
N

N∑

i=1

li (2)

where N is the batch size and li is defined by

li =
{

0.5 (xi − ȳi)2, if |xi − ȳi| ≤ δ
δ |xi − ȳi| − 0.5 δ2, otherwise (3)

where δ is a hyperparameter.

5 Experimental Results

The approach described in the previous Section has been trained and validated
by means of the dataset released by the challenge described in Sect. 3. All exper-
iments and setups are reported in detail in the following subsections.

5.1 Neural Network Model Setup

We use the three sets of data provided by the challenge with their respective
purposes namely Train set for training our approach, Validation set for validating
it and Test set for the final rank. Images have been normalised to the range [0, 1]
using the mean and standard deviation of ImageNet challenge database. We
employ the mixup augmentation as described previously and we generate the
beta distribution λ with its parameter = 0.2 in Eq. (1). The Fig. 2a is generated
from image xi with 0% infection and image xj 98% resulting with 38% COVID-
19 infection; the Fig. 2b derives from image xi with 13% infection and image xj

5% resulting with 10% COVID-19 infection; the last Fig. 2c is mixed from image
xi with 33% infection and image xj 44% resulting with 37% COVID-19 infection.
Moreover, we have used other traditional data augmentation techniques that are:

– gaussian blur with kernel 5 × 5;
– color jitter;
– random horizontal flipping;
– random vertical flipping;
– random cropping 492 × 492 followed by a resizing to 512 × 512;
– rotation with a random degree of ±10◦.
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We train our network for 50 epochs with an initial learning rate of 0.0001 with
decays by a factor 10 every 10 epochs and batch size equals 20. The weight decay
hyperparameter is set to 0.5 to regularize the network. Another hyperparameter
varies during the training i.e. δ in the Huber loss function. It decreases from 15
to 1 by 0.5 step every epoch. Finally, we use Stochastic Gradient Descend (SGD)
as optimizer.

Fig. 2. Examples of new data generated with mixup augmentation technique from
training images

5.2 Results and Discussion

We employ the evaluation metrics suggested by the challenge’s organisers i.e.
MAE, PC and RMSE. The Table 1 shows the results of our best model for each
phase of the challenge. In the final rank our approach is placed seventh. To
interpret the network predictions, we also produce saliency maps to visualise
the areas of the image most indicative of the infection using CAMERAs [11].
To generate the saliency maps, we feed an image into the fully trained network
and choose the final convolutional block of the Inception-v3 network to obtain
these maps. The Figs. 3 and 4 show some prediction and their saliency maps
respectively for Validation set and Test set. Analysis of the saliency maps shows
that the algorithm focuses on the highest density areas, i.e., those with a grey
level close to white. This is meaningful because the COVID-19 infection involves
an increase in density within the lungs resulting in whitish areas. It is important
to note that the lungs are surrounded by other tissue that shows up as a thick
whitish area that confuses the algorithm. Actually, it happens that the focus is
on these regions where there is no COVID-19 infection.

The experiments show that the proposed method is valid for processing
COVID-19 chest CT images. The validation MAE is better than the thresh-
old for admission to the final phase of the challenge (i.e. 5.294). Moreover, in
this phase we improved the results achieved by Bougourzi et al. [2] that deal
with our same problem but on the entire labeled Per-COVID-19 dataset. Actu-
ally, the Train set of the challenge is a subset of the Per-COVID-19 database
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Table 1. Results achieved by IPLab team during all challenge’s phases.

Phase MAE PC RMSE

Validation results 4.953 0.944 8.604

Testing results 6.536 0.709 9.976

Final ranking (0.3 ∗ V alidation + 0.7 ∗ Testing) 6.061 0.779 9.016

Fig. 3. Some predictions on images from Validation set and their saliency maps: (a)
has 3% COVID-19 infection estimated by the model while (d) is its saliency map; (b)
has 18% COVID-19 infection estimated by the model while (e) is its saliency map; (c)
has 41% COVID-19 infection estimated by the model while (e) is its saliency map.

and labels are provided for only this subset. This limitation together with the
impossibility of using external data sources promotes the occurrence of overfit-
ting. Actually, there are signs of overfitting in the performance on the Test set
since these are worse than the ones in the Validation set. This is due to the lim-
ited amount of data available for the above-mentioned reasons and the diversity
of testing images whose details are illustrated in the following. In addition, it
was not possible to fine-tune the network after the results about the Test set
due to the challenge rules2. Despite the limitations imposed and the difficulties
exhibited, the proposed method is promising and valid given that the estimated
predictions can be plausible as shown in the images reported in this manuscript.

2 https://github.com/faresbougourzi/Covid-19-Infection-Percentage-Estimation-
Challenge.

https://github.com/faresbougourzi/Covid-19-Infection-Percentage-Estimation-Challenge
https://github.com/faresbougourzi/Covid-19-Infection-Percentage-Estimation-Challenge


516 M. A. Napoli Spatafora et al.

Fig. 4. Some predictions on images from Test set and their saliency maps: (a) has 2%
COVID-19 infection estimated by the model while (d) is its saliency map; (b) has 14%
COVID-19 infection estimated by the model while (e) is its saliency map; (c) has 16%
COVID-19 infection estimated by the model while (f) is its saliency map.

Considerations About Test Set. As previously mentioned, the Test set is
different from other datasets. Actually, the Fig. 5 shows that the source of the
Testing set is not the same as the other two data sets for the following reasons:

– the size of the images is not always the same (i.e. 512 × 512) unlike Train
set and Validation set as shown in Fig. 5a for which our model predicts 18%
COVID-19 infection;

– the colour gamut in Train set and Validation set is the same but not in
the Test set for some images as displayed in Fig. 5b for which our approach
estimates 7% COVID-19 infection;

– the presence of text in the images (e.g. Fig. 5c for which the model predicts
64% COVID-19 infection), while Train and Validation images have no text.

This negatively affects the performance on the testing set.
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Fig. 5. Some images of Test set that reveal the different source of the data.

6 Conclusions

The COVID-19 pandemic significantly affected everyone’s life, as well as any
type of organisation and public service. Hospitals are the most affected tar-
get due to the large number of cases of patients admitted for this infection,
and indirect consequences to patients affected by other diseases, overload of the
healthcare personnel, and the subsequent crisis of any care service. The diagnos-
tic techniques available are good for diagnosing this disease. However, science
and research are making a considerable contribution to the development of new
diagnostic methods that are faster and more accurate. In this context, com-
puter vision offers tools that could support medical decisions in the presence of
radiological images of the lungs. Actually, many research works deal with the
COVID-19 detection in chest X-ray or CT resolving a classification task. More-
over, the MIA COVID 2022 workshop has organised a challenge that requires
deep learning algorithms for predicting the percentage of COVID-19 infection in
chest CT images of patients. This is a regression task to which we have chosen
to participate by adopting state-of-the-art classification algorithms. Specifically,
we employ the Inception-v3 neural network together with the data augmenta-
tion mixup technique. The proposed method reaches the final classification by
passing the Validation and Testing phases. Our results show that the approach
is promising despite the limitations given by the constrains defined by the chal-
lenge rules. For these reasons, we plan to overcome the limitations imposed by
the challenge such as the prohibition to use external data to those provided by
the challenge. As future work, we thought to give as input to our approach the
output of a lung segmentation network. Other improvements may be carried
out by the exploitation of pre-trained models designed for lungs’ micro nodules
segmentation, in order to make transfer learning on the available Per-COVID-
19 dataset. In addition, we plan further experiments on the mixup method to
evaluate its advantages and disadvantages in an uncontrolled domain such as
misalignment of the chest in the CT images. We would also like to compare
mixup technique with random noise as the adding noise to the training data
could improve generalisation and prevent overfitting.
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Abstract. Coronavirus disease 2019 (COVID-19) is an infectious dis-
ease that has spread globally, disrupting the health care system and
claiming millions of lives worldwide. Because of the high number of
Covid-19 infections, it has been challenging for medical professionals to
manage this crisis. Estimating the Covid-19 percentage can help medi-
cal staff categorize patients by severity and prioritize accordingly. With
this approach, the intensive care unit (ICU) can free up resuscitation
beds for the critical cases and provide other treatments for less severe
cases to efficiently manage the healthcare system during a crisis. In this
paper, we present a transformer-based method to estimate covid-19 infec-
tion percentage for monitoring the evolution of the patient state from
computed tomography scans (CT-scans). We used a particular Trans-
former architecture called Swin Transformer as a backbone network to
extract the feature from the CT slice and pass it through multi-layer
perceptron (MLP) to obtain covid-19 infection percentage. We evaluated
our approach on the covid-19 infection percentage estimation challenge
dataset, annotated by two expert radiologists. The experimental results
show that the proposed method achieves promising performance with
a mean absolute error (MAE) of 4.5042, Pearson correlation coefficient
(PC) of 0.9490, root mean square error (RMSE) of 8.0964 on the given
Val set leaderboard and a MAE of 3.5569, PC of 0.8547 and RMSE
of 7.5102 on the given Test set Leaderboard. These promising results
demonstrate the high potential of Swin Transformer architecture for this
image regression task of covid-19 infection percentage estimation from
CT-scans. The source code of this project can be found at: https://
github.com/suman560/Covid-19-infection-percentage-estimation.

Keywords: COVID-19 · Deep learning · CT-scan · Transformers

1 Introduction

Coronavirus disease 2019 (Covid-19) is a highly contagious respiratory illness
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
first case was reported at the end of 2019. However, now it has spread globally,
claiming millions of lives worldwide. It has completely disrupted the health care
system of many countries due to its highly contagious nature. Early diagnosis of
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covid-19 can play a significant role in saving the lives of patients and preventing
the virus from spreading around and causing a health crisis in a particular area.

In order to diagnose COVID-19 in person, various testing methods have been
developed. Some of which includes Reverse Transcription Polymerase Chain
Reaction (RT-PCR) [10], X-ray scan [19,23,24] and CT scan [2,12]. RT-PCR
detects nucleic acid of the virus. Actually, it is considered the standard diag-
nostic method for covid-19 detection [7,27]. However, the RT-PCR test is very
expensive and time-consuming, which prevents it from being the first choice for
testing Covid-19 in many parts of the world [10]. X-ray and CT scans can be
efficient alternatives for Covid-19 detection [7,19]. However, detecting covid-19
from these scans requires an expert radiologist. Due to the highly contagious
nature of covid-19, the number of individuals requiring tests can be high, and
the number of expert radiologists might not be sufficient to examine these scans
and manage the crisis on time. This is where artificial intelligence (AI) comes
into play [18].

AI has become a significant component in many technological and scien-
tific fields, including medical image analysis. Although various computer-based
methods have been playing an essential role in analyzing medical images for a
long time, the rise of AI methods, especially deep learning-based methods, has
significantly advanced the use of AI in the medical field [8,14]. In the past, in
order to apply machine learning, it was essential to extract informative features
that well represent patterns inherent in data. These meaningful features were
mainly extracted by human experts in the respective field. Therefore, designing a
computer-based algorithm for medical image analysis was very time-consuming,
costly, and challenging. However, in the last few years, deep learning-based algo-
rithms, which require minimum or no feature engineering, have made designing
computer vision algorithms much more efficient and faster. The main reason for
this sudden rise of these algorithms is the growth of the computational powers
of modern computers and large-scale data that are much more readily available
than in the past [21].

Most of the proposed approaches for Covid -19 diagnosis from CT focus on
two tasks: Covid 19 detection [2,3,11,12,25] and Covid-29 segmentation [7,17,
22,27]. However, CT offers many advantages over other approaches. In addition
to very accurate Covid-19 detection, it can also be used to quantify infection
and monitor disease evolution, which plays an essential role in saving a patient
[13]. Moreover, with estimated covid-19 infection percentage from CT scans,
the patients can be classified into Normal (0%), Minimal (<10%), Moderate
(10–25%), Extent (25–50%), Severe (50–75%), and Critical (>75%) [9]. This
categorization can help the intensive care unit (ICU) free up resuscitation beds
for critical cases and provide other treatments for less severe cases to manage
the healthcare system during a crisis efficiently.

Bougourzi et al. [4] evaluated the performance of three states of the art Deep
convolutional neural networks (CNN) in their work for covid-19% estimation
from CT-scans. The used CNN architectures are ResNext-50, Densenet161 and
Inception-v3. Their results show that the Deep CNN architectures can estimate
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the COVID-19 infection percentage for monitoring the evolution of the patient
state with high accuracy and efficiency. CNN architectures have the ability to
capture the local relationship between the input features. However, they can-
not capture the global relationship between the input features, preventing them
from being highly robust and accurate performers. In 2017 Vaswani et al. [20]
proposed another type of deep learning architecture, called transformer architec-
ture, which efficiently captures the global dependencies between input features.
It quickly becomes an integral component for natural language processing tasks.
However, It consists of a self-attention mechanism whose computational cost
grows exponentially with input size. Therefore, it was not easy to implement it
for computer vision in a standard way until recently. In 2020 Dosovitsky et al. [6]
proposed an efficient way to implement transformer architecture for computer
vision. They used a sequence of image patches as input features instead of pixels.
This simple technique drastically decreased the size of the input features. They
were able to achieve performance as good as the state of the art CNN with mini-
mum computational resources for training. This work, famously known as vision
transformer (ViT), opened the path for researchers to find a more efficient way
to use a transformer for computer vision. The ViT model had two main limita-
tions. First, it consists of tokens of a fixed scale. However, unlike word tokens,
the visual object can have a different scale. Second, its computational complex-
ity grows quadratically with the size of the input, making it unfeasible for tasks
involving high-resolution images. In order to overcome these limitations, Liu et
al. [15] proposed another transformer-based architecture called the Swin trans-
former, which is highly flexible at different scales and has linear computational
complexity with the input size.

In this paper, we analyzed the performance of Swin transformer architecture
for COVID-19% estimation. Results show that Swin transformer, when used as
the backbone network for feature extraction, can extract robust features and
achieve promising performance in estimating the percentage of Covid-19 infec-
tion for monitoring the evolution of the patient state.

2 Methods

2.1 Dataset

In our experiments, we used COVID-19 infection percentage estimation challenge
database [4]. It consists of three sets: Train, Val, and Test set. According to
the data descriptions provided by challenge organizers, the Train set is obtained
from 132 CT scans, from which 128 CT scans has been confirmed to have Covid-
19 based on positive reverse transcription-polymerase chain reaction (RT-PCR)
and CT scan manifestations identified by two experienced thoracic radiologists.
The rest four CT scans do have not any infection type (Healthy). The Val set
is obtained from 57 CT scans, from which 55 CT-scans has been confirmed to
have Covid-19 based on positive reverse transcription-polymerase chain reaction
(RT-PCR) and CT scan manifestations identified by two experienced thoracic
radiologists. The rest two CT scans do not have any infection type (Healthy).
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There are 3054 CT slices in the Train set, 1301 CT slices in the Val set and 4449
CT slices in the Test set. Some of the CT slices from the Train set with their
covid infection percentage is shown below in Fig. 1.

Fig. 1. CT slice with their covid infection percentage

2.2 Swin Transformer

The Swin transformer [15] is a variant of the Vision transformer. It con-
sists of shifted windows that restrict the computation of self-attention to non-
overlapping windows while allowing cross-attention. These simple techniques
make this model extremely flexible at different scales and have linear compu-
tational complexity with respect to the size of the input. As discussed in [15],
they proposed four variants of the Swin transformer, namely Swin-T, Swin-S,
Swin-B, and Swin-L, based on the channel number of the hidden layer in the first
stage (C) and a number of Swin transformer block layers at each stage of the
architecture. T, S, B, and L stand for tiny, small, base, and large, respectively.
The main distinguishing parameters of these variants are listed below:

1. Swin-T: C = 96, layer numbers = {2, 2, 6, 2}
2. Swin-S: C = 96, layer numbers = {2, 2, 18, 2}
3. Swin-B: C = 128, layer numbers = {2, 2, 18, 2}
4. Swin-L: C = 192, layer numbers = {2, 2, 18, 2}.

2.3 Network Architecture

We used Swin-L as backbone of our final framework. The framework of the
implemented algorithms is shown in Fig. 2. Initially, we passed the CT slice
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into Swin Transformer architecture to extract features. After that, we passed
the extracted features through a multi-layer perceptron (MLP) with two hidden
layers and one output layer to obtain covid infection percentage. The number
of neurons in the first and second hidden layer of MLP is set to 128 and 64,
respectively, whereas the output layer consists of only one neuron, as shown in
Fig. 2.

Fig. 2. Proposed framework

2.4 Experimental and Implementation Details

Since the labels for the validation and tests splits are not known, we randomly
divided the train set into ten folds and performed training ten times where
on each time, nine folds were used for training and one fold for validation.
Before passing the CT slice into a model, we down-sampled to size 384× 384.
We applied two data augmentation HueSaturationValue and RandomBright-
nessContrast from albumentation library [5] on the training folds to solve the
overfitting problem. Due to the limitation of our GPU memory, the maximum
batch size we could set for the algorithm was 8. We used adam optimizer with
initial learning rate of 0.0001 to optimize the learning process. Cosine Annealing
was used to schedule learning rate after each optimization step. As loss function,
we used Mean square error (MSE) to calculate the loss for this image regression
problem. Before beginning the training process, the backbone swin transformer
was initialized with image net pretrained weight. We used PyTorch [16] deep
learning framework in order to perform this experiment. Timm [26] PyTorch
library was used to load the swin transformer model, and Tez PyTorch library
[1] was used to design the pipeline for the training process. The model’s per-
formance was evaluated on the validation set and test set by measuring Mean
Absolute Error (MAE), Pearson Correlation Coefficient (PC), Root Mean Square
Error (RMSE). The formula for calculating MAE, PC, RMSE is defined below:

MAE =
1
n

n∑

i=1

|yi − ŷi| (1)

PC =
∑n

i=1(yi − ȳi)(ŷi − ¯̂yi)
√∑n

i=1(yi − ȳi)2
√∑n

i=1(ŷi − ¯̂yi)2
(2)
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RMSE =

√√√√ 1
n

n∑

i=1

(yi − ŷi)2 (3)

where Y = (y1, y2, y3, ..., yn) are the the ground-truth COVID-19 infection per-
centage and Ŷ = (ŷ1, ŷ2, ŷ3, ..., ŷn) are corresponding predicted COVID-19 infec-
tion percentage. In Eq. 2, ȳi and ¯̂yi are the mean value of ground-truth and
predicted COVID-19 infection percentages respectively.

3 Results and Discussion

In this work, we evaluated the performance of the swin transformer for the image
regression task of covid-19% estimation. Experiments on the covid-19% estima-
tion challenge database show that when swin transformer used as backbone
network with image-net pretrained weight can achieve promising performance
with MAE of 4.5042, PC of 0.9490, RMSE of 8.0964 on a validation set and
MAE of 3.5569, PC of 0.8547 and RMSE of 7.5102 on a test set. Table 1 shows
the performance on the validation set by a model trained on different training
folds. On each fold, 90% of the data was used for training and 10% for vali-
dation. Through multiple experiments, we found that the performance of the
Swin Transformer increases with an increase in image size. Another interesting
observation is that the ensembling model from 10 folds did not achieve the best
result on the validation set, as shown in Table 1. We were able to achieve the
best performance on fold 0.

Table 1. Performance of the proposed framework on Val set leaderboard

Fold No. (MAE) (PC) (RMSE)

0 4.5042 0.9490 8.0964

1 4.6950 – –

2 4.9828 – –

3 4.6458 – –

4 4.8468 – –

5 4.9140 – –

6 4.5878 – –

7 4.7681 – –

8 4.6508 – –

9 4.7537 – –

Ensemble 4.5244 – –
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Table 2 shows the slice-level performance comparison of our transformer-
based method with the other convolution-based methods on Test set. The perfor-
mance of convolution-based methods was directly extracted from the benchmark
paper published by challenge organizers.

Table 2. Comparison with convolution based methods

Model (MAE) (PC) (RMSE)

ResNeXt-50 with MSE loss [4] 5.61 0.92 10.01

ResNeXt-50 with Huber loss [4] 5.29 0.92 10.10

Densenet-161 with MSE loss [4] 5.48 0.92 9.81

Densenet-161 with Huber loss [4] 5.23 0.93 9.42

Inception-V3 with MSE loss [4] 5.55 0.92 9.87

Inception-V3 with Huber loss [4] 5.10 0.93 9.25

Our proposed model 3.55 0.85 7.51

4 Conclusion

In this paper, we evaluated the performance of the Swin transformer architecture
for covid 19 infection percentage estimation for monitoring the evolution of the
patient state. We used a swin transformer initialized with image-net pretrained
weight to extract the feature from CT slices and passed it through MLP to
obtain covid 19 infection percentage. Experiment on covid-19 infection percent-
age estimation challenge database shows that Swin transformer, when used as a
backbone network, can achieve promising performance with a MAE of 4.5042,
a PC of 0.9490 and a MSE of 8.0964 on Val set Leaderboard, and a MAE of
3.5569, a PC of 0.8547 and a RMSE of 7.5102 on Test set Leaderboard.
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Abstract. A better backbone network usually benefits the performance
of various computer vision applications. This paper aims to introduce
an effective solution for infection percentage estimation of COVID-19
for the computed tomography (CT) scans. We first adopt the state-of-
the-art backbone, Hierarchical Visual Transformer, as the backbone to
extract the effective and semantic feature representation from the CT
scans. Then, the non-linear classification and the regression heads are
proposed to estimate the infection scores of COVID-19 symptoms of CT
scans with the GELU activation function. We claim that multi-tasking
learning is beneficial for better feature representation learning for the
infection score prediction. Moreover, the maximum-rectangle cropping
strategy is also proposed to obtain the region of interest (ROI) to boost
the effectiveness of the infection percentage estimation of COVID-19.
The experiments demonstrated that the proposed method is effective
and efficient.

Keywords: COVID-19 · Computed tomography · Deep learning ·
Transformer

1 Introduction

In the past decade, deep learning achieved state-of-the-art image recognition
tasks compared to conventional machine learning and computer vision tech-
niques. Similarly, deep learning-related schemes were widely adopted in the med-
ical image field. In COVID-19 Computer-Aided Diagnosis (CAD) systems, the
recognition issues are the most common and active [1]. However, it is well-known
that the different slices in a Computed Tomography (CT) scan have different
meanings. Directly predicting the COVID-19 symptoms for all slices in a CT
scan might be unreliable since some slices might become meaningless. There-
fore, effectively estimating the infection percentage of each slice in a CT scan is
the most critical task for diagnosing COVID-19 symptoms.

In general, a U-shaped Network (U-Net) [10] is widely adopted for seman-
tic segmentation of medical images with CAD applications. The main advan-
tage of U-Net is the relatively few parameters in the network, leading to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. L. Mazzeo et al. (Eds.): ICIAP 2022 Workshops, LNCS 13374, pp. 529–535, 2022.
https://doi.org/10.1007/978-3-031-13324-4_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13324-4_45&domain=pdf
https://doi.org/10.1007/978-3-031-13324-4_45
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overfitting issue that should be avoided since the number of training medical
images is usually less than that of traditional RGB images. In contrast, U-Net
might be underfitting with a sufficient number of training images since the net-
work capacity is relatively small. Recently, several different Convolutional Neu-
ral Networks (CNNs) have been proposed to improve the effectiveness of feature
learning and specific tasks, such as VGG [11], ResNet [5], and EfficientNet [12].
Recently, visual transformer [4] has been proposed to achieve state-of-the-art
performance on various tasks. The visual transformer-variants also demonstrated
promising results like the Swin-Transformer (Shifted window Transformer) [7]
demonstrated excellent performance and was highly efficient on various tasks.
In Swin-Transformer, it capably serves as a general-purpose backbone for com-
puter vision tasks. Inspired by CNNs, the feature representation of a hierarchical
Visual Transformer is computed with shifted windows. The shifted windowing
scheme brings greater efficiency by limiting self-attention computation to non-
overlapping local windows while allowing for cross-window connection. There-
fore, the computational complexity can be reduced compared to the traditional
visual transformer [4]. Therefore, Swin-Transformer is suitable for the Covid-19
infection percentage estimation task.

The CT images of patients with COVID-19 show distinct features such as
patchy multi-focal consolidation, ground-glass opacities, interlobular cavities,
lobular septum thickening, and a clear indication of fibrotic lesions, peribron-
chovascular, Pleural effusion, and thoracic lymphadenopathy [9].

Figure 1 shows two CT images which are COVID-19 infected and uninfected
patients. The most common finding on chest CT is a “ground-glass opacities”
spread throughout the lung. They represent tiny air sacs, or alveoli, that are
filled with fluid and become shades of gray on CT scans [6]. As marked by the
red arrows in the right CT-scan in Fig. 1. The disease severity was proportionate
to lung findings, meaning that more severely ill individuals had more of these
opacities in one of both lobes of the lungs in chest CT scans.

The rest of this paper is organized as follows. Section 2, the proposed boosted
Swin-Transformer is demonstrated. Section 3 draws the comprehensive experi-
ments for Covid-19 infection prediction. Finally, conclusions are drawn in Sect. 3.

2 Method

2.1 Overview

The framework of the proposed method is depicted in Fig. 2. First, the training
samples are cropped by the proposed maximum-rectangle algorithm to obtain
the Region Of Interest (ROI). Then, data augmentation is adopted to increase
the diversity of the training samples. The regression and classification heads are
developed to guide the network to learn the discriminative features by gradient
descent algorithm, termed multi-task learning. Here, Swin-Transformer is treated
as our backbone network for the infection prediction tasks. Finally, the trained
model can be used to predict the infection score of the given CT slice with the
regression head.
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Fig. 1. The difference between positive and negative samples for COVID-19 symptoms.

Fig. 2. Overview of the proposed method in the training phase.

2.2 Maximum-Rectangle Extraction

Since we observed that most of the CT-scan will have an ROI where the informa-
tion only existed within, to retrieve this information without information loss, a
maximum-rectangle algorithm is proposed to extract this ROI. Specifically, we
take the maximum rectangle out of the circular area to remove the information-
less regions (say, black regions/background), as well as keeping the meaningful
regions as large as possible. First, we calculate the entropy I(R) of the extracted
region R at coordinate (x, y) with width and height (h,w), where we decrease
the coordinate and size to obtain the next ROI Rxyhw. In this way, we can sim-
ply apply the iterative algorithm to obtain the maximum entropy I(R) with the
specific coordinate and size. Since this operation can be offline performed on the
training and testing samples, it is cost-less in the inference phase.

2.3 Multi-task Learning

Since the number of training samples of the medical images is relatively small
compared to the conventional RGB images, it is worthy that more prior
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information can be adopted to guide the network training for better and more
stable purposes. Toward this end, we introduce multi-tasking learning to boost
performance. Specifically, we introduce the traditional regression loss and the
classification loss to perform better. While regression loss could make the pre-
dicted value get closer to the target, the classification loss could be treated as a
relaxed condition in the training phase. We quantize the score label into K-level,
and the traditional Softmax-based cross-entropy loss is applied to learning the
classification task. In this way, we guide the network to have correct classifica-
tion results rather than the exact score prediction. In the regression head, we
adopt the L1 and L2 norm as the loss function simultaneously to have the joint
advantages from each other. In summary, we optimize the parameters of Swin-
Transformer by minimizing the sum of L1, L2, and classification loss computed
by Softmax. The L1 loss, The L2 loss, and classification loss are computed as

L1loss(Xi, yi) =
1
n

n∑

i=1

|yi − f(Xi)|, (1)

L2loss(Xi, yi) =
1
n

n∑

i=1

(yi − f(Xi))2, (2)

CLSloss(Xi, yi) =
1
n

n∑

i=1

−log(
ef(Xi)

∑n
j=1 e

f(Xj)
), (3)

respectively, where f(Xi) is obtained by taking Xi as input CT-scan image, and
yi is the corresponding ground-truth infection percentage.

2.4 Dataset and Criterion

In this section, the datasets used for performance evaluation are provided by
organizers [2,3,13]. In this dataset, the training set and validation set contain
3054 and 1301 images, respectively, where the validation set does not provide a
label for infection percentages. Therefore, the evaluation results on the validation
set can only be retrieved from the competition website. We extract a portion of
the training data to avoid overfitting to evaluate performance.

The criterion of the performance evaluation in this study is the Mean Abso-
lute Error (MAE), which is defined as follows:

MAE =
1
n

n∑

i=1

|f(Xi) − yi|, (4)

where f(Xi) indicates the estimation of infection percentage and its correspond-
ing ground truth is yi.
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3 Experimental Result

In this study, the initial learning rate is 1e − 6 with Cosine Annealing decay
scheduling in the training phase. The total number of epochs of the training
phase is 260, which is determined empirically. The weight decay is 0.005, and
the optimizer is AdamW [8] with the momentum 0.9. The number of Linear
Embedding and Swin-Transformer-Block in each stage (i.e., each block in Fig. 3)
for conventional Swin-Transformer [7] are 2, 2, 6, 2, respectively. Since the num-
ber of the training images in dataset [3] is relatively larger than that of the
traditional medical images, we increase the number of the blocks in the 3rd unit
from 6 to 20 to increase the network capacity. Additionally, we also increase the
number of the attention head in Swin-Transformer to further improve the global
attention ability.

Table 1. Performance comparison between the proposed Swin-Transformer and other
methods for the validation set.

Method MAE

ResNet-50 [5] 17.6033

VGG19 [11] 7.4596

Method in [3] 5.2943

Our method 4.9926

Table 1 presents the comparison between the proposed Swin-Transformer
with the multi-task learning and the other conventional CNNs, including ResNet-
50 and VGG19 without multi-task learning. It is clear that the Swin-Transformer
achieves state-of-the-art performance on the validation set, implying that Swin-
Transformer well captures the hierarchical Transformer whose representation is
computed with shifted windows.

Fig. 3. The proposed fixed Swin-transformer.
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3.1 Ablation Study

In this section, we draw the advantages of the proposed multi-task learning and
the maximum-rectangle algorithm in Table 2. It is remarkable that each part
of the proposed method is significantly contributing to the performance of the
infection score prediction for COVID-19 CT scans.

Table 2. Ablation study of the proposed method.

Method Multi-task learning Maximum-rectangle MAE

Swin-transformer 5.2533

Swin-transformer v 5.1194

Swin-transformer v 5.0932

Full model v v 4.9926

4 Conclusion

In this paper, the boosted Swin-Transformer with both proposed multi-task
learning and the maximum-rectangle algorithm has been proposed to predict the
infection score of COVID-19 CT scans effectively. First, the promising result is
the multi-task learning incorporated with the classification and regression heads.
Second, a maximum-rectangle algorithm is also proposed in this paper to retrieve
the complete information from CT slices to guide our Swin-Transformer’s feature
learning better. A more significant number of the blocks in the third stage of
Swin-Transformer also verified that the performance could be further improved
when the number of the training samples is relatively sufficient. The experimental
results prove the efficiency of using the proposed fixed Swin Transformer to
improve estimating Covid-19 infection percentage estimation from the CT scans
compared with other approaches.

References

1. Bougourzi, F., Contino, R., Distante, C., Taleb-Ahmed, A.: Recognition of COVID-
19 from CT scans using two-stage deep-learning-based approach: CNR-IEMN. Sen-
sors 21(17), 5878 (2021)

2. Bougourzi, F., Distante, C., Ouafi, A., Dornaika, F., Hadid, A., Taleb-Ahmed, A.:
Per-COVID-19: A benchmark dataset for COVID-19 percentage estimation from
CT-scans. J. Imaging 7(9), 189 (2021). https://doi.org/10.3390/jimaging7090189

3. Bougourzi, F., Distante, C., Taleb-Ahmed, A., Dornaika, F., Hadid, A.: COVID-19
infection percentage estimation challenge (2022). https://sites.google.com/view/
covid19iciap2022. Accessed 20 Apr 2022

4. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

https://doi.org/10.3390/jimaging7090189
https://sites.google.com/view/covid19iciap2022
https://sites.google.com/view/covid19iciap2022
http://arxiv.org/abs/2010.11929


COVID-19 Infection Percentage Prediction 535

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. Kundu, R., Singh, P.K., Ferrara, M., Ahmadian, A., Sarkar, R.: ET-Net: an ensem-
ble of transfer learning models for prediction of COVID-19 infection through chest
CT-scan images. Multimed. Tools App. 81(1), 31–50 (2022)

7. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030 (2021)

8. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in Adam (2018)
9. Perumal, V., Narayanan, V., Rajasekar, S.J.S.: Prediction of COVID-19 with com-

puted tomography images using hybrid learning techniques. Dis. Mark. 2021,
552279 (2021)

10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

13. Vantaggiato, E., Paladini, E., Bougourzi, F., Distante, C., Hadid, A., Taleb-Ahmed,
A.: COVID-19 recognition using ensemble-CNNs in two new chest X-ray databases.
Sensors 21(5), 1742 (2021)

http://arxiv.org/abs/2103.14030
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1409.1556


Novel Benchmarks and Approaches
for Real-World Continual Learning -

CL4REAL



Catastrophic Forgetting in Continual
Concept Bottleneck Models

Emanuele Marconato1,3(B) , Gianpaolo Bontempo2,3(B) ,
Stefano Teso1(B) , Elisa Ficarra2(B) , Simone Calderara2(B) ,

and Andrea Passerini1(B)

1 University of Trento, Trento, Italy
{emanuele.marconato,stefano.teso,andrea.passerini}@unitn.it

2 University of Modena and Reggio Emilia, Modena, Italy
{gianpaolo.bontempo,elisa.ficarra,simone.calderara}@unimore.it

3 University of Pisa, Pisa, Italy

Abstract. Almost all Deep Learning models are dramatically affected
by Catastrophic Forgetting when learning over continual streams of data.
To mitigate this problem, several strategies for Continual Learning have
been proposed, even though the extent of the forgetting is still unclear.
In this paper, we analyze Concept Bottleneck (CB) models in the Con-
tinual Learning setting and we investigate the effect of high-level fea-
tures supervision on Catastrophic Forgetting at the representation layer.
Consequently, we introduce two different metrics to evaluate the loss of
information on the learned concepts as new experiences are encountered.
We also show that the obtained Saliency maps remain more stable with
the attributes supervision. The code is available at https://github.com/
Bontempogianpaolo1/continualExplain

Keywords: Continual Learning · Explainable Artificial Intelligence ·
Catastrophic Forgetting · Concept Bottleneck models

1 Introduction

In recent years, a significant number of important successes have been reached in
computer vision for the classification task. Many of them are grounded on the i.i.d.
hypothesis and to achieve good generalization results, huge quantities of data are
required. However, in a more realistic case, data are received in small amounts
over continuous streams or they cannot be revisited once trained on them, e.g. for
privacy reasons. Several studies have shown that standard models are not able to
generalize when they learn incrementally as they tend to forget past information.
This phenomenon is referred to as Catastrophic forgetting [8](CF) and resolving
this issue would be a milestone towards more human-like AIs.

Over years, this problem has been addressed in Continual Learning (CL)
research [6,11,13,20]. However, despite some marginal results, state of the art
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CL models still can not achieve as good performances as iid approaches. Even
more, they struggle when compared to trivial approaches in CL, such as GDUMB
[16].

All the state-of-the-art CL models are based on advanced Deep Learning
models, thus their missing interpretation complicates more the understanding
of what is forgotten [22]. In order to solve the interpretability issue, the field
of eXplainable Artificial Intelligence (XAI) is promoting the research for expla-
nation methods on how a Machine Learning model returns a certain prediction
[9]. These methods are divided into two categories: the so-called “transparent”
methods, which treats models that are interpretable by design, and “post-hoc”
methods [2]. A class of XAI models, see e.g. [3] and references therein, integrates
explainability in the learning pipeline and forces the model to extrapolate inter-
pretable high-level features. After that, the decision process is based solely on
them with simple rules [17]. In particular, several works showed that achieving
better interpretability does not imply drops in downstream performance [1,5,12].

To the best of our knowledge, no work has yet addressed the learning of
intermediate concepts in Continual Learning nor how human-understandable
concepts are affected by CF. In this article, we mind the gap between existing
literature on XAI based on Deep Interpretable models and Continual Learning by
integrating Concept Bottleneck models into Continual Learning. To summarize,
our contribution is two-fold:

1. We introduce Concept Bottleneck models in Class-Incremental learning and
we design two different metrics for evaluating CF of concepts Sect. 3;

2. Considering only the fine-tune strategy, we analyze how CF affects the model
both with and without supervision on attributes.

This study paves the way for a more grounded use of Deep Interpretable models
for Continual Learning.

2 Related Works

Deep Interpretable models are a class of algorithms introduced to make more
explainable usual Deep Learning models [17]. Based on [3], they are a “grayfica-
tion” of black boxes where the classifier becomes “white” (interpretable), while
the concept extractor remains a black-box. They usually consist of two stacked
parts: the first one is a concept extractor while the second is a classification
module. The inherent interpretability of these models is guaranteed once sim-
ple rules are applied on the extracted concepts to predict the target class, e.g.
by combining high-level features with linear weights. Depending on the type of
supervision on the concept layer, different models have been proposed [1,5,12].

Continual Learning explores the relaxation of the i.i.d. hypothesis to
sequences of data seen in several experiences: in each of these, the available
dataset reduces only to the observed stream. While many possible CL scenar-
ios exist, CL tier research has specialized in three categories [20]. The Task-
Incremental Learning considers different experiences containing data points that
do not share previously seen classes. In this scenario, the experience identity is
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always available and, therefore, multi-head approaches are possible given the
experience label. On the other hand, in the Class-Incremental Learning the task
identity is omitted: models in this scenario are based on the single-head app-
roach. Domain-Incremental Learning differs from other scenarios as the shift
occurs in the observed domain, where, in principle, previously seen classes can
still be encountered. In this case, also, the experience identity is not available.

At the present moment, few works have explored the inception of XAI meth-
ods in CL [7,10]. Among them, the authors in [7] proposed a replay method
which saves the most relevant samples and correspondent saliency maps for each
experience.

3 Methodology

In the following, we consider the class prediction on a dataset of images, each one
provided by a fixed number of human concepts. Let D = {(xn, yn), n = 1, ..., N}
be the observed labelled samples for that we want to infer a predictive model,
and let S be the additional set provided by the human-annotated concepts.

In general, a Concept-Learning model [3] consists in an embedding function
E : RD → R

d mapping the input x ∈ R
D to its encoding z ∈ R

d with a classifier
on top F : Rd → K, where K = {1, ...,K} contain all provided K classes. In our
case, the encoding outputs the percentage of each concept in the instance x:

z = sigmoid(E(x)) .

We consider a linear classifier FW : [0, 1]d → R
K , where W denotes the

weights. The probability over the predicted class is given by

p(y|x) = softmax(F(z))

We study the Class-Incremental scenario: for each experience t, the task
dataset D(t) contains only a restrained subset of classes Y(t), such that Y(i) ∩
Y(j) = ∅, ∀i �= j.

3.1 Concept Bottleneck Models

When referring to Concept Bottleneck models [12], the information related to
visual concepts is added to the dataset D ≡ {X ,S,Y}. In our case, the addi-
tional information is made of binary values, each one referring to the presence
or absence of a discriminative attribute for the classification task.

Following [12], we force a semantic structure in the encoding space R
d by

constraining each dimension to match all d supervised concepts. The overall loss
is defined as:

L(x, c, y) = LCE(x, y) + Lenc(x, c)

= − log p(y|x) − 1
NC

NC∑

j=1

[cj log zj + (1 − cj) log(1 − zj)]
(1)
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Fig. 1. Saliency maps of a bird image belonging to the first experience classes. a) shows
the evolution over the tasks without the supervision on the attributes, while b) with
full supervision on concepts.

where LCE is the categorical loss for classification and Lenc is the Binary Cross
Entropy for the encoding z = E(x) over the expected c. In this case, the acti-
vation z ∈ [0, 1]d can be interpreted as a collection of d disjoint percentages of
each concept presence.

3.2 Continual Learning

In Class-Incremental Learning, we have access to only one dataset D(t) =
{X (t),S(t),Y(t)} for each experience t. The Continual strategy we considered
consists in the optimal train of the CB model on the data points of each expe-
rience: no regularization nor replay strategies are adopted. This procedure is
usually addressed as the fine-tuning strategy [6] and it constitutes the baseline
over which new CL strategies are constructed. Let θ ≡ (θE , θF ≡ W ) be the
parameters of the Concept Bottleneck model, after each experience we obtain:

θ∗
t = arg min

θ
Lθ(D(t)) (2)

4 Concept Shift Detection

In this section, we introduce the metrics to quantify the Catastrophic Forgetting
effect on the learned concepts. Unlike those already present in the literature, see
e.g. [6,13,20], the ones we have considered take into account the concept distri-
bution and can be evaluated w.r.t the ground-truth thanks to the availability of
extra annotation.
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4.1 Concepts Accuracy

The average accuracy over seen class-specific attributes is the first quantity that
can be evaluated. For each concept j, we define the average accuracy on all
experiences based on the concept-extractor model Eτ at task τ as:

Aj(τ) =
1
τ

τ∑

t=1

Ex,c∼Dt

[
1l{(Eτ (x))j − cj}

]
(3)

where Dt denotes the observed dataset at the experience t. Taking the average
over all concepts in Eq. (3), we obtain the mean accuracy for the fine-tuned
model at task τ :

〈A(τ)〉 =
1

NC

NC∑

j=1

Aj(τ) (4)

The same can be done by restricting the calculation to each observed experience
e ∈ {1, ..., τ}, obtaining:

A(e)
j (τ) = Ex,c∼De

[
1l{(Eτ (x))j − cj}

]
, 〈A(e)(τ)〉 =

1
NC

NC∑

j=1

A(e)
j (τ) . (5)

Thus, Eq. (5) reduces to Eqs. (3) and (4) when taking the time average of A(e)

over e.

4.2 Concepts Divergence

As an additional quantifier for the concept drift in CL, we introduce the concept
divergence built on the concepts posterior distribution at a given experience t.
In order to acquire information on the class encoding, we estimate the frequency
on each concept j for every class l within past and present experiences:

p
(l)
j (t) =

1
|Cl|

∑

x∈Cl

Et(x)j

where Cl = {x, c, y ∈ D|y = l}. For the sake of simplicity, we approximate
the concept distribution for the class l at time t with the disjoint probability
distribution:

P (l)(c; t) =
Nc∏

j=1

p
(l)
j (t) (6)

Then, to quantify the distance between two different temporal concept distribu-
tions we take the Kullback-Lieber divergence:
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Dl(t, t′) =
∑

{c}
P (l)(c, t) log

P (l)(c, t)
P (l)(c, t′)

(7)

where the sum is done over all possible realizations of the concept vector c. By
means of Eq. (6) we obtain:

Dl(t, t′) =
∑NC

j=1

[
p
(l)
j (t) log

p
(l)
j (t)

p
(l)
j (t′)

+
(
1 − p

(l)
j (t)

)
log

1 − p
(l)
j (t)

1 − p
(l)
j (t′)

]
(8)

To obtain information on the average KL divergence it is sufficient to equate
on the observed classes at the reference time t0. In this way, the average KL
divergence becomes:

D(t0, t) =
1

|Yt0 |
∑

l∈Yt0

Dl(t0, t) (9)

5 Experiments

5.1 Implementation Details

Data: The entire set of experiments has been performed on the CUB-200 dataset
[21], which contains images of 200 different birds species with almost 30 instances
per class. Following the procedure in CB [12], a subset of the most significant
attributes per class is extracted in order to reduce their sparsity, passing from
312 annotated attributes to 112 per image. Also, the same set of concepts is
assigned to each class images by a majority voting.
Model: The model architecture is composed of:

• a pretrained Inception-v3 model [19] as the backbone for processing the low-
level features;

• a Multi Layer Perceptron with ReLU activations in the middle layers and
Sigmoid activation in the last one for mapping the low-level features to con-
cepts;

• a final linear layer with Softmax activation for mapping concepts to labels.

Finally, in order to reproduce continual learning experiments, we based the
implementation on Pytorch library [15], Mammoth [4] and Avalanche [14] frame-
works.

5.2 Results

We performed experiments with two versions of the dataset: one without the
presence of attributes, whereas the other with full supervision. They are the two
extreme cases, whether, for a realistic setting, only a fraction of concepts would



Catastrophic Forgetting in Continual Concept Bottleneck Models 545

Fig. 2. Results without supervision on the concepts: (left) the average accuracy on
concepts as new experiences are encountered, (right) the average concept shift over the
classes learned at experience zero.

be provided to some images. This complicates more the scenario under study
and it is left for future work.

For the concept-unsupervised case, we measured the concepts divergence over
the experiences and plot the worst 10 attributes at each experience. In Fig. 2,
we report the result obtained with the concept shift measure (8) on a single run
over a total of 4 experiences. The left figure shows that the learned concepts
representations at each reference experience are almost immediately forgotten
at successive tasks, as expected. Each curve refers to the average concept shift
on the classes encountered at every experience t ∈ {0, 1, 2, 3}. Instead, the right
figure displays the 10 attributes most affected by CF effect after the training
at experience zero: almost all of them get slightly worse as successive tasks are
encountered. The values are calculated on the instances encountered in the first
task.

In the concept-supervised scenario, we only measured the accuracy on the
task-specific attributes w.r.t. their ground truth values and reported the results
in Fig. 3. Surprisingly, it is possible to see that CF does not worsen too much
the accuracy on the learned concepts as new experiences are met.

As a qualitative investigation, we applied GradCAM [18] on the concept
layer to look at the Saliency map obtained from the prediction of the ground-
truth class and reported them in Fig. 1. In the concept-supervised case, as the
tasks pass, it can be noticed a smoother transition of the activation map than
in the unsupervised one. This indicates a small improvement on the learned
representation when concepts annotations are available.
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Fig. 3. Average accuracy on attributes. Each line refer to the average on the data
encountered at the starting experience.

6 Conclusion

In the following work, we proposed a further investigation of CF in the Class-
Incremental scenario focusing at the concept-level representations. Adopting the
Concept Bottleneck architecture, we showed two different methods to evaluate
the Catastrophic Forgetting at that level, with either the presence or the absence
of attributes. As expected, the concept shift measure of Eq. (8) increases in
the unsupervised concept setting, thus indicating a severe drift from the initial
representation. On the other hand, when supervision on concepts is available,
the accuracy obtained is not dramatically affected by forgetting: this is due to
the presence of shared concepts over different experiences. It must be noticed
that in the CL scenario we considered, the model is dramatically affected by the
CF effect and, as is, its performances are the lower bound for any non-trivial CL
strategy.

In future work, these metrics can be included in the learning process in order
to mitigate CF and to improve the representation over experiences. Moreover,
some existing CL strategies may show lesser forgetting as attributes are included:
we expect this kind of supervision to play an important role for learning a con-
sistent representation over time.
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Continual learning for robotics: definition, framework, learning strategies, oppor-
tunities and challenges. Inf. Fusion 58, 52–68 (2020)

14. Lomonaco, V.: Avalanche: an end-to-end library for continual learning. In: Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2nd
Continual Learning in Computer Vision Workshop (2021)

15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E.,
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Abstract. Continual Learning requires the model to learn from a
stream of dynamic, non-stationary data without forgetting previous
knowledge. Several approaches have been developed in the literature
to tackle the Continual Learning challenge. Among them, Replay
approaches have empirically proved to be the most effective ones [16].
Replay operates by saving some samples in memory which are then used
to rehearse knowledge during training in subsequent tasks. However, an
extensive comparison and deeper understanding of different replay imple-
mentation subtleties is still missing in the literature. The aim of this work
is to compare and analyze existing replay-based strategies and provide
practical recommendations on developing efficient, effective and gener-
ally applicable replay-based strategies. In particular, we investigate the
role of the memory size value, different weighting policies and discuss
about the impact of data augmentation, which allows reaching better
performance with lower memory sizes.

Keywords: Continual learning · Replay-based approaches ·
Catastrophic forgetting

1 Introduction

Traditional machine learning models learn from independent and identically dis-
tributed samples. In many real-world environments, however, such properties on
training data cannot be satisfied. As an example, consider a robot learning a
sequence of different tasks. For artificial neural networks, learning a new task
causes a deterioration of performance on the previous one. This phenomenon
is known as Catastrophic Forgetting [18]. Continual learning [19] is a branch of
machine learning which focuses on learning from a sequence of tasks while at the
same time preventing catastrophic forgetting. Although many approaches have
been developed with different degrees of success, preventing catastrophic forget-
ting is still a difficult task. Moreover it is difficult to compare these approaches
since there is not a standard evaluation protocol [8].
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The aim of this work is to deepen our understanding of replay-based strate-
gies [2,21,23,25], a specific category of continual learning strategies, and provide
practical recommendations to achieve a better efficiency-efficacy trade-off in their
implementation. Replay strategies avoid forgetting by training the model on both
current samples and some samples of the past tasks. In this paper, we extensively
compare replay-based strategies on different benchmarks and settings to better
characterize the role played by their main components in the mitigation of for-
getting. We explore three main research directions. The first (Sect. 5) concerns
the role of memory size. We extensively test the most popular replay strategies
varying this parameter, finding out that the memory size value depends not only
on the size of the dataset but also on the difficulty of the tasks and the num-
ber of classes involved in the learning process. The second direction (Sect. 6)
is related to the balancing of the memory buffer. In the literature the replay
buffer is usually balanced to have an equal amount of samples of each past task
or class. We propose many weighting policies to distribute samples, unbalanced
by task. We discover recent memories are more useful with respect to others,
confirming the observation on the human brain [3]. Finally, we test the role of
data augmentation [31] in a continual learning scenario (Sect. 7). We find out
that performance increases by augmenting the memory, particularly with a low
memory budget.

2 Related Works

The problem of learning from a sequence of tasks was posed since the origin
of artificial intelligence [28,29]. However, only in 1989 Closkey [18] dealt with
catastrophic forgetting directly. In 1995 a new method was proposed to prevent
it named Replay [25]. This simple method consists of storing in a buffer some
samples and presenting them during consecutive tasks. During the last few years
we have witnesses a significant interest in this area and many strategies have
been developed. Replay-base approaches have proved to be effective [1,2,5,24]
and they differ mainly by the selection algorithm. Buzzega et al. in [5], proved
the effectiveness of the standard Replay strategy [25] using a set of “tricks”, even
without changing the selection algorithm. Moreover Replay-based approaches are
biologically-plausible: previous experiences rehearsal is believed to be important
for stabilizing new memories [30].

Despite this prolific research paper production, none of these works compares
and investigates replay-based strategies extensively.

3 Design Choices

Replay-based approaches rely on a simple yet effective mechanism: replay some
previous samples to avoid catastrophic forgetting. However this apparently sim-
ple mechanism hides many possible modifications. In this section we describe
three possible choices and variations concerning continual learning and replay-
based strategies.
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3.1 Replay Buffer

Replay buffer is the principal component of a replay-based strategy.
The buffer structure defines how samples are distributed. Samples can be bal-

anced in the buffer by task or class. In this case the amount of samples belonging
to the same task/class is the same. This structure rely on the assumption that
the task label is known.

Selection and Discarding procedures are the principal components of a replay-
based strategy. The standard Replay strategy [25] assumes that every sample is
important for learning, thus select and discard randomly samples, taking into
consideration the buffer structure. More advanced approches are possible and
demonstrate to be effective with more realistic beanchmarks. ASER [26] uses
data shapley values [9] to score samples and keep only the most informative ones.
Selecting examples in GSS [2] consists of maximizing the diversity of samples in
the replay buffer as suggested in [20] but using the gradient values. ICarl [23]
instead uses an hearding strategy to select and discard samples.

3.2 Memory Size

The size of the memory buffer is a common parameter among all the replay-
based strategies. Despite the importance of this parameter only few papers test
extensively its impact using different continual learning strategies.

In a realistic application this parameter depends on the hardware resources
or time constraints for training. When applying a continual learning strategy in a
new setting it is essential to know the amount of samples sufficient to have good
performances. For this purpose we investigated the influence of this parameter
using different strategies and benchmarks (Sect. 5). The aim is to provide some
practical recommendation useful to apply a continual learning strategy in new
domains.

3.3 Weighting Policies

In literature, selection policies do not takes into account the importance of each
task. However learning could be difficult for some tasks and it could require more
replay of samples.

In a realistic scenario, using a random buffer, we don’t have a-priori knowl-
edge of information such as the nature of the current task, the represented classes,
the number of samples or the difficulty of the current task. In this setting we
have only the possibility to balance the amount of samples belonging to each
previous task. For this reason we experiment with some weighting policies to
verify the effects of recent and old memories in the learning process (Sect. 6).

This experiment is motivated by some recent findings on the human episodic
memory [3], suggesting that episodic encoding occurs preferentially at the end
of events.
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3.4 Augmentation

Data augmentation is a helpful machine learning technique to help improving
the generalization capabilities of a deep network [31]. In a continual learning
scenario, using data augmentation, we can store original samples in the buffer
and then augment them at training time to have more variety and hopefully
increase accuracy. In this way, intuitively we can have a smaller buffer size.
Data augmentation in continual learning is explored by Buzzega et al. in [5],
in this case, crops and horizontal-flips are applied in the input stream and in
the replay buffer. This augmentation leads to an increment in the test accuracy
using the Replay strategy. In a realistic scenario, the training set augmentation is
not always possible: the training time increases with an augmented dataset. We
investigated the augmentation technique in Sect. 7. The aim of this experiment is
to verify whether the augmentation of the training set (and which in particular)
is indeed needed to achieve better performance and which augmentation strategy
is most impactful.

4 Experimental Setup

The goal of this section is to describe benchmarks, models and replay-based
strategies used in the experiments. For the experimental part we used Avalanche
[15] the reference continual learning framework based on PyTorch. The goal
of this library is to provide a shared and collaborative open-source codebase
for fast prototyping, training and reproducible evaluation of continual learning
algorithms.

4.1 Benchmarks and Models

Continual learning algorithm are evaluated by benchmarks: they specify how the
stream of data is created by defining the originating dataset(s), the amount of
samples, the criteria to split the data in different tasks or experiences [6] and so
on. In literature, different benchmarks are used to evaluate results.

We select benchmarks belonging to the New Classes scenario i.e. data sam-
ples contained in the training set at time-step i are related to a new depen-
dent variable Y to be learned from the model. We select three three of them for
our experiments: Split-MNIST [27], Split-CIFAR-10 [32] and Split-TinyImagenet
[17]. These benchmark are derived respectively from MNIST [7], CIFAR-10 [12]
and TinyImagenet [13] datasets. We also include CORe50-NC [14] in our experi-
ments, a benchmark specifically designed for continual learning. This benchmark
is divided in 9 tasks, the first task contains 10 classes, the remaining 8 classes.
In our experiments, we set the number of tasks of each benchmark to 5, except
for CORe50-NC, with a random order of classes.

Concerning the neural network models, for Split-MNIST we use a Multi-Layer
Perceptron with 3 layers and 300 ReLU units at each layer. For Split-Cifar10,
Split-TinyImagenet and CORe50-NC we exploit the ResNet-18 model pretrained
on Imagenet [10] instead.
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4.2 Strategies

We selected four strategies among the most popular and promising rehearsal
approaches.

Replay. We select Replay [22,25] because it is powerful, simple and easily
adjustable. It is also a simple way to prevent catastrophic forgetting, and it
performs better with respect to more complicated strategies [5]. In our experi-
ment we use random sampling and we randomly choose the samples to discard,
to maintain simplicity.

GDumb. Greedy Sampler and Dumb Learner (GDumb) [21] is a simple app-
roach that is surprisingly effective. The model is able to classify all the labels
since a given moment t using only samples stored in the memory. Whenever it
encounters a new task, the sampler just creates a new bucket for that task and
starts removing samples from the one with the maximum number of samples.
Samples are removed randomly. Compared to others, with the same memory
size, this strategy is more efficient, in terms of execution time and resources. In
particular setting this simple strategy can outperforms other approaches. How-
ever, it is not a valid continual learning strategy, since for each new task the
model does not adapt, it must be re-trained from scratch.

ICarl. Incremental Classifier and Representation Learning (ICarl) [23] is a
hybrid approach between rehearsal and regularization. The model parameters
are updated by minimizing both a classification loss and a distillation loss. The
replay memory is managed by a herding strategy: a sample is added if it causes
the average feature vector over all exemplars to best approximate the average
feature vector over all training examples. The order of its elements matters, with
exemplars earlier in the list being more important. Reducing the exemplar set
means discarding the less important samples. We selected ICarl because it is an
effective hybrid strategy, in particular with low memory budget.

GSS. Gradient based Sample Selection [2] is a replay-based strategy. The selec-
tion of the memory buffer population is seen as a constraint selection problem.
The goal is to optimize the loss on the current examples without increasing the
losses on the previously learned ones. Selecting examples consists of maximizing
the diversity of samples in the replay buffer using the gradient. The first way to
select samples is based on integer quadratic programming, the second solution
consists of a faster greedy-alternative and it is sufficient to achieve good perfor-
mances. Scores for each sample is based on the maximal cosine similarity with
a fixed number of others random samples in the buffer.

Avalanche[15] includes many Continual Learning strategies. It has been nec-
essary to validate the strategies used in the experiments. We made sure to repro-
duce results of the original paper with the new Avalanche implementation.

5 Memory Size Experiment

This experiment is designed to understand the impact of memory size for every
selected strategy and have an insight on the amount of samples sufficient to
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have good performances in a classification task as we propose in Sect. 3.2. In our
work, we analyze a vast set of results and try to generalize those across different
benchmarks and strategies.

5.1 Grid Search and Final Models

We select the models through a grid search and we choose a fixed order of classes.
The selected parameters for the grid search are chosen following the parameters
used in other works [2,4,5,11,17,21]. The memory buffer is balanced by task i.e.
the memory contains an equal number of samples belonging to each task. For
each benchmark we use 10% of the training set as validation set and a batch size
of 32 examples. We use 4 epochs for Split-MNIST, 50 epochs for Split-CIFAR10,
100 epochs for Split-Tiny-Imagenet and CORe50-NC. GSS takes up to 10x higher
execution time with respect to other strategies. As a result it was necessary to
simplify the grid search for Split-MNIST benchmark and we did not test it using
other benchmarks.

We have averaged the results of final models over 3 runs changing in each
of them the classes order in a random manner. We plot the accuracy values in
Figs. 1, 2, 3, 4. For each curve we calculate the elbow point, depicted with a
black square. In this case, it indicates the optimal trade-off between accuracy
and memory size. These values give us an idea of the memory sizes useful to
have good performance.

5.2 Discussion

Our results show that the Replay strategy is a powerful and simple mechanism
that most of the time is able to achieve good performance. Instead, ICarl has
a particular behaviour: it performs well with lower memory size. This is due to
the herding strategy as confirmed in other works [4,23]. In the following sections
we analyze more in detail these results.

Split-MNIST. Replay strategy achieved the best performance with respect
to the others. However, GDumb is able to reach good performance with high
memory size and a considerably lower training time. ICarl is valid and effective
using a smaller memory size. Concerning GSS, the performance are worse than
others strategies, but the parameters used for grid search are fewer.

Split-CIFAR-10. Interestingly, in Split-CIFAR-10 the Replay strategy is effec-
tive only for high memory sizes. Instead, ICarl is much more effective with low
memory sizes, it reaches with only 200 samples in memory the same accuracy
of Replay strategy with 800 samples in memory. GDumb is not effective in this
more challenging benchmark.

Split-Tiny-Imagenet. The performance of various strategies are poor. Instead,
ICarl gains accuracy as memory size increases. This behaviour is different with
respect to Split-MNIST and Split-CIFAR-10. This is due to the difference in
their tasks, since, contrarily to Cifar and MNIST, Tiny-Imagenet has 200 classes.
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Fig. 2. Split-CIFAR-10 memory-accuracy
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Fig. 4. CORe50-NC memory-accuracy
curve

In fact, if a benchmark includes more classes than another, a greater memory
size should be granted.

CORe50-NC. In this benchmark, Replay strategy is the most effective with
both low and high memory sizes. GDumb and ICarl are ineffective with this
benchmark. ICarl slowly increases its accuracy as the memory size increases up
to 800. In this case, we can observe a trend inversion in the accuracy values.

This experiment give an insight on the memory size value needed to have
good performance. Results show that in most of the case 1% of the training set
is sufficient to achieve reasonable results.

6 Examples Weighting

The goal of this experiment is to verify the effects of recent and old memories
in the learning process. Recent or old memories can have a different impact on
the learning process as we declared in Sect. 3.3. We propose and investigate 7
alternatives to the balanced policy over tasks.
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6.1 Weighting Policies

We propose different weighting policies i.e. methods to distribute samples, for
the replay strategy, unbalanced by task. We report them in Table 1 with their
abbreviations, instead in Fig. 5 we depict some of them. Except for Balanced
policy, all the policies are parametrized by a factor parameter that regulates the
relevance of a task with respect to the others. For example, in Increasing policy
the number of memory samples for each task is factor − time greater than the
number of memory samples for the previous task. If the amount of samples of first
task is x, there will be factor∗x samples for the second, factor2 ∗x for the third
and so on. A particular case is the Middle policy that works assigning greater
weights to middle distance tasks. Once a new task arrives, some previous tasks
may need more weight than before, as a result the medium policy does not exploit
the full buffer due to those re-calibration. Contrarily, the Middle+replications
replicates some random samples to fill the buffer. MiddleHigh policy gives more
weight to middle and low distance samples. In this case the amount of samples
of low distance task is the same as the one of middle distance task. The weight
of other task is e regulated by the factor parameter. Using the same priciples
we prosose MiddleLow and MiddleLow+replications.
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0

10

20

30

40

50

60

%
of

sa
m
pl
es

Increasing
Middle
Decreasing

Fig. 5. Weighting Policies

6.2 Grid Search and Final Models

We exploit the same grid search parameter and architecture adopted in the first
experiment described in Sect. 5.1 for the Split-MNIST [27] benchmark with 5
experiences. We average the final results over 6 runs using 3 as factor parameter.
In Table 1 we report the accuracy and standard deviation of these policies varying
the memory size.

6.3 Discussion

The results highlight that the balanced policy is the best among all. Besides
this, the results are interesting. Let us analyze results starting with the most
simple weighting policies: Decreasing, Increasing and Middle. For most memory



556 G. Merlin et al.

Table 1. Accuracy and std of the final models, averaged over 6 runs. Bal.=Balanced;
Dec.=Decreasing; Inc.=Increasing; Mid.=Middle; Mid.+=Middle+replications;
Mid.Hig.=MiddleHigh; Mid.Low=MiddleLow; Mid.Low+=MiddleLow+replications

Bal. Dec. Inc. Mid. Mid.+ Mid.Hig. Mid.Low Mid.Low+

50 74.54±3.64 60.36±4.03 62.72±2.43 71.63±4.14 66.02±3.07 71.05±5.55 70.59±5.51 66.51±5.22

100 82.35±1.24 72.80±3.71 73.56±3.22 77.48±3.32 77.55±1.77 81.01±1.55 77.41±2.31 77.92±2.37

200 85.59±0.69 79.37±4.83 77.24±2.82 83.18±1.30 82.93±1.52 84.07±2.30 85.14±1.25 83.72±3.01

500 90.69±0.42 84.08±5.04 83.89±3.62 89.09±0.72 89.57±0.68 89.02±1.07 88.94±0.68 89.48±1.18

800 91.83±0.43 87.19±3.27 86.89±3.07 91.48±0.55 90.78±0.55 91.33±0.79 90.64±0.75 91.70±1.05

1k 92.94±0.36 87.18±2.04 88.60±1.73 91.36±0.6 92.52±0.78 92.70±0.43 92.48±0.45 91.92±0.94

2k 94.69±0.31 90.60±1.71 91.28±1.32 94.15±0.17 93.58±0.67 94.58±0.23 94.50±0.71 93.66±1.08

4k 95.56±0.21 92.43±1.83 93.01±0.79 95.03±0.57 94.97±0.32 95.35±0.19 95.35±0.67 95.38±0.24

5k 95.76±0.22 93.54±1.49 94.14±0.82 95.25±0.31 94.71±0.65 95.71±0.26 95.39±0.34 95.34±0.30

size values, the Increasing policy achieves better results than the Decreasing, but
lower with respect to the Middle policy. From this observation we can infer that
the most valuable samples are those from low and middle distances from the
current task. We continue our analysis with the other policies. We observe that
the best policy among all is MiddleHigh, confirming our previous statement.
The performance of this policy is similar to those of the Balanced strategy.
Concerning the policies with replications, results are not better with respect to
the same policy without replications. This might depend on the fact that we
replicate data without further transformations decreasing the diversity of the
data.

7 Augmentation

The aim of this experiment is to investigate on the augmentation technique in a
continual learning scenario as we propose in Sect. 3.4. Inspired by Buzzega et al.
[5] we test different augmentation strategy applied only in the memory samples.
The goal is to verify if the augmentation of the training set is indeed needed or
if augmenting the buffer memory is sufficient to achieve better performance.

7.1 Settings and Results

The experiments have been performed with the Split-CIFAR-10 benchmark.
Model, epochs, and batch size are the same described in Sect. 4. In this exper-
iment, we fix the learning rate to 0.01 and the momentum to 0. We average
the results over 4 runs using different memory size and varying the type of aug-
mentation: Vertical-Flip, Horizontal-Flip, Resize-Crop and Rotation. Results are
reported in Table 2.
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Table 2. Experiment 3. Accuracy and std of final models averaged over 4 runs

Memory size

20 50 250 500 750 1000

Original 19.80±0.54 22.04±0.77 38.74±3.92 44.97±4.08 53.14±1.36 57.42±3.39

Vertical 20.48±1.13 23.12±1.29 37.86±2.22 45.85±2.17 53.33±1.57 54.28±1.06

Horizontal 20.02±0.33 23.73±1.31 35.09±4.73 44.56±3.30 50.11±2.82 55.46±0.57

Crop 19.59±0.91 23.07±0.83 36.63±5.82 45.43±4.29 51.71±2.03 56.92±1.49

Rotation 20.50±0.57 23.07±0.83 36.63±5.82 45.43± 4.29 51.71±2.03 56.92±1.49

7.2 Discussion

In this case, the data augmentation shows just a slight increment in accuracy.
We suppose that this is due to the training set’s lack of augmentation and
the transformation used. However, our experimental results reflect the findings
reported in [5]: data augmentation is effective with low memory size. With 20
and 50 of memory size, accuracy is significantly higher.

8 Conclusion and Future Works

This work aims to deepen replay-based strategies, providing some insights and
practical recommendations on specific implementation issues. We have validated
many replay-based strategies already implemented in Avalanche. We investigated
multiple aspect of continual learning strategies by means of three experiments.

Concerning the memory size experiment we extensively investigated the
behavior of each strategy and benchmark varying the memory size. For each
benchmark and for each strategy we found the amount of samples sufficient to
have reasonably good results and we provided a general guideline to set this
parameter in unseen benchmarks. We understand the role of memory samples of
different tasks, testing different weighting policies. The variation of the standard
balanced policy has proved to be useful to understand the impact of samples
belonging to different tasks. We found out that Middle and Low distance tasks
are more important than others. This paves the way to other experiments regard-
ing this aspect, as well as to the development of new strategies exploiting this
discovery.

We explored the usage of data augmentation in continual learning. We con-
firmed the results presented in [5], remarking the importance of augmenting not
only the memory buffer, but also the training set. However, augmenting only the
memory buffer helps to improve the accuracy, in particular with lower memory
size. More experiments concerning these strategies could be performed. Concern-
ing the weighting experiment in Sect. 6, it could be interesting to test the weight-
ing policies with more challenging benchmarks. In our experiment we fixed the
factor parameter but it could be interesting to test other values. Another possi-
ble modification is changing the type of augmentation, since we simply replicate
some samples. Regarding the augmentation experiment, it could be interesting
to observe the same phenomenon on more challenging benchmarks. Concerning
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the type of augmentation, we test only simple augmentation techniques. It could
be interesting to test other neural-based technique.

Acknowledgements. This work has been partially supported by the H2020 TEACH-
ING project (GA 871385).
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Ljubenović, Marina I-152
Llumiguano, Henry I-28, I-49
Loddo, Andrea I-326
Lomonaco, Vincenzo II-548
Longo, Antonella II-47

López- Ruiz, José Luis I-3
López, Juan C. I-28, I-49
López-Chilet, Álvaro I-522, I-557
Lucenteforte, Maurizio I-487

Magillo, Paola II-73
Magnier, Baptiste I-246
Malchiodi, Dario I-141
Maltezos, Evangelos II-37
Mameli, Marco I-280, I-303, II-191
Mamone, Giuseppe I-408
Marcella, Guarino II-351
Marcianò, Marco I-431
Marconato, Emanuele II-539
Marinazzo, Daniele I-386
Marinozzi, Franco I-362, I-374, I-462
Martin, Jon II-37
Martinelli, Giulia II-203
Martínez-Bernia, Javier I-522, I-557
Martolos, Jan II-26
Maruzzelli, Luigi I-408
Matsuo, Yutaka II-410, II-434
Matteucci, Matteo II-95
Mattos, Leonardo S. II-145
Maurice, Nathan II-119, II-132
Mayer, Helmut A. II-179
Mazzara, Camille I-398
Medina-Quero, Javier I-3, I-38
Megvinov, Andrey I-174
Meloni, Carla II-243
Mentasti, Simone II-95
Mercante, Beniamina II-243
Merennino, Giuseppe I-317
Merlin, Gabriele II-548
Migailo, Giuseppe I-129
Migliore, Michele I-398
Migliorelli, Lucia II-165
Milazzo, Mariapina I-408
Miraglia, Roberto I-408
Miron, Radu II-473
Mishra, Pankaj I-115
Moccia, Sara II-145, II-165
Montoro-Lendínez, Alicia I-3, I-38
Morelli, L. I-210
Mosca, Nicola I-225
Mulot, Baptiste II-361
Mutti, Stefano I-258

Nalamati, Mrunalini II-410
Napoli Spatafora, Maria Ausilia II-508



564 Author Index

Nayak, Abhijeet II-410, II-434
Nepi, Valentina I-362
Nettis, Andrea I-269
Nguyen, Minh-Van II-483
Nguyen-Dinh, Thien-Phuc II-483
Nicastro, Nicola I-317
Niccolucci, Franco II-266
Nicolardi, Paolo I-475
Nitti, Massimiliano I-225, I-258
Noviello, Nicola I-162

Odic, Nathan I-246
Ortis, Alessandro II-215, II-508
Ozfuttu, Kamil Anil II-399, II-410

Paccini, Martina I-450
Pachetti, Eva II-317
Paladini, Dario II-145
Paolanti, Marina I-280, I-303, II-191, II-290
Parenti, Rosalba I-408
Pareschi, Remo I-162
Pascali, Maria Antonietta II-317
Pasini, Giovanni I-362, I-374
Passerini, Andrea II-539
Patané, Giuseppe I-450, I-475
Patruno, Cosimo I-269
Pavleski, Daniel II-410, II-422
Pavone, Anna Maria I-408
Pedrocchi, Nicola I-258
Perliti Scorzoni, Paolo I-510
Perlo, Daniele I-487, I-498
Pernice, Riccardo I-386
Pernisco, Gaetano I-225
Petkovic, Milan II-228
Petrova, Galidiya I-94
Petrovska, Olivera II-422
Pettersson, Andreas I-545
Pezzotti, Nicola II-228
Piazza, Giuseppe Di I-174
Piccinelli, Marina I-338, I-419
Piciarelli, Claudio I-115
Pietrini, Rocco II-290
Pigliapoco, Stefano II-165
Pireddu, Luca I-545
Pirrone, Daniele I-174
Pistola, Theodora I-198
Polo-Rodriguez, Aurora I-38
Prayuktha, Bendadi II-372
Prendinger, Helmut II-410, II-434
Previtali, Mattia II-254

Qaraqe, Marwa I-71
Qiang, Yan II-520

Ramadani, Blerant II-410, II-422
Ramkissoon, Amit Neil II-278
Reccia, Anna II-266
Remondino, F. I-210
Renò, Vito I-225, I-258, I-269
Renzulli, Riccardo I-487
Riccio, Daniel II-329
Rigault, Bastien II-410, II-434
Robertson, Scott I-15
Rodolfo, Guzzi II-372
Roohi, Arman I-533
Rossi, Luca I-280, I-303
Rubio, Ana I-49
Rucco, Chiara II-47
Ruggieri, Sergio I-269
Ruiz-Santaquiteria, Jesus I-15
Ruschioni, Giulia I-141
Rushiti, Veton II-410, II-422
Russo, Giorgio I-351, I-362, I-374

Sabeur, Zoheir II-59
Sahin, Kadir II-399, II-410
Sallal, Muntadher II-59
Salvaggio, Giuseppe I-317, I-431, I-462
San-Emeterio, Miguel G. II-14
Sangiovanni, Mara II-329
Santinelli, Francesca I-487
Santofimia, Maria J. I-49
Savardi, Mattia I-186
Scaioni, Marco II-254
Scaringi, Raffaele I-129
Schicchi, Daniele I-174
Schumann, Arne II-410
Sciucca, Laura Della I-280, I-303
Sharma, Nabin II-410
Shi, Xu I-82
Shvets, Alexander I-198
Signoroni, Alberto I-186
Simonelli, Francesca II-329
Slangen, Pierre R. L. I-235
Solinas, Sergio II-243
Sommer, Lars II-410
Sopena, Julien II-132
Spagnolo, Marco II-26
Spagnuolo, Michela I-450
Sparacino, Laura I-386



Author Index 565

Stefano, Alessandro I-351, I-362, I-374,
I-408, I-419

Stella, Ettore I-225
Stojkovska, Biljana II-422
Summa, Maria Di I-225
Summers, Luke II-26

Taccetti, Francesco II-266
Taleb-Ahmed, Abdelmalik II-461
Tartaglione, Enzo I-498
Tejeda, Yansel González II-179
Teso, Stefano II-539
Tibaldi, Stefano I-487
Tiribelli, Simona II-165
Traviglia, Arianna I-152
Treuillet, Sylvie II-302, II-361
Tricarico, Davide II-496
Trinh, Quoc-Huy II-483
Tuttolomondo, Antonino I-462
Tzes, Anthony II-410, II-446

Unlu, Halil Utku II-410, II-446
Uva, Giuseppina I-269

Valenti, Simone I-386
Vallez, Noelia I-15
Versaci, Francesco I-545
Vessio, Gennaro I-129
Villanueva, Felix J. I-49
Vincent, Per H. I-545

Vishali, Mankina II-372
Vrochidis, Stefanos I-198

Wang, Bin II-340
Wanner, Leo I-198
Wiratunga, Nirmalie I-49

Xefteris, Vasileios-Rafail I-198
Xing, Daitao II-410, II-446

Yang, Wanting II-520
Yao, Bin II-84
Yezzi, Anthony I-338, I-419, I-462

Zaleshin, Alexander II-3
Zaleshina, Margarita II-3
Zanaboni, Anna Maria I-141
Zanotti, Marisa II-26
Zappatore, Marco II-47
Zarpalas, Dimitrios II-410
Zedda, Luca I-326
Zelic, Renata I-545
Zenati, Tarek I-291
Zhang, Zheyuan II-340
Zingaretti, Primo I-280, I-303, II-191
Zizi, Antonello II-243
Znamenskiy, Dmitry II-228
Zora, Antonino I-174
Zuccarà, Rosa II-215


	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Human Behaviour Analysis for Smart City Environment Safety - HBAxSCES
	A Framework for Forming Middle Distance Routes Based on Spatial Guidelines, Perceived Accessibility and Visual Cues in Smart City
	1 Introduction
	2 Orientation and Perception Along the Route When Using the Navigation Interface
	2.1 Mental Maps and Traveler Environment in Route Network Sustainability
	2.2 Aggregation of Information for Navigation Tasks
	2.3 Planning, Detailing, and Optimizing a Middle-Distance Route
	2.4 Smart Routes Application Interface

	3 GIS Applications in the Study of Navigation Behavior
	3.1 Materials and Methods
	3.2 Results

	4 Conclusion
	References

	A Survey on Few-Shot Techniques in the Context of Computer Vision Applications Based on Deep Learning
	1 Introduction
	2 Description of Few-Shot Learning
	2.1 Applications of FSL
	2.2 FSL Techniques
	2.3 FSL Benchmarks for Computer Vision

	3 FSL for Human Behaviour Analysis Applications
	4 Few-Shot for Smart City Environment Safety Applications
	5 Conclusion
	References

	Decision-Support System for Safety and Security Assessment and Management in Smart Cities
	1 Introduction
	2 Material and Method
	2.1 Conceptual Model
	2.2 System Architecture

	3 Case Study
	4 Conclusions and Discussion
	References

	Embedded Intelligence for Safety and Security Machine Vision Applications
	1 Introduction
	2 Edge Computing Machine Vision Systems in S4AllCities Project
	3 Integration with the Distributed Edge Computing Platform (DECIoT)
	4 Hardware Platform for Machine Vision Based on the I.MX8M PLUS
	5 VAEC System
	6 Conclusions
	References

	Supporting Energy Digital Twins with Cloud Data Spaces: An Architectural Proposal
	1 Introduction
	2 Background and State of Art
	2.1 Energy of Things
	2.2 Open Initiatives in Energy Computing Field

	3 Design of the Italian Energy Data Space
	3.1 Logical Architecture
	3.2 The Proposed Development Process

	4 Conclusion
	References

	High-Level Feature Extraction for Crowd Behaviour Analysis: A Computer Vision Approach
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Pre-processing
	3.2 Supervised Deep Learning Module
	3.3 Unsupervised Learning for Trajectory Clustering

	4 Experimental Results
	5 Conclusions
	References

	Binary is the New Black (and White): Recent Advances on Binary Image Processing
	A Simple yet Effective Image Repairing Algorithm
	1 Introduction
	2 Background Notions
	3 Related Work
	4 Our Approach to Image Repairing
	4.1 Algorithm A
	4.2 Algorithm B

	5 Proof of Correctness
	5.1 Well-Composedness
	5.2 Homotopy Equivalence

	6 Experimental Results and Discussion
	6.1 Results of Algorithms A and B
	6.2 Processing The Repaired Images

	7 Conclusion
	References

	A Novel Method for Improving the Voxel-Pattern-Based Euler Number Computing Algorithm of 3D Binary Images
	1 Introduction
	2 Review of Conventional Voxel-Pattern-Based Euler Number Computing Algorithm of a 3D Image
	3 Our Proposed Method
	4 Experimental Results
	4.1 Execution Time Versus Image Sizes
	4.2 Execution Time Versus Image Densities

	5 Conclusion
	References

	Event-Based Object Detection and Tracking - A Traffic Monitoring Use Case -
	1 Introduction
	2 State of the Art
	3 Object Detection and Tracking from Event Data
	3.1 Preprocessing
	3.2 Model-Free Detection
	3.3 YOLO-Based Detector
	3.4 Object Tracking

	4 Experimental Results
	5 Conclusions
	References

	Quest for Speed: The Epic Saga of Record-Breaking on OpenCV Connected Components Extraction
	1 Introduction
	2 The First Approach
	3 A Novel Interface
	4 Going Faster with Blocks
	5 Spaghetti for All
	6 GPU Implementation
	7 Discussion
	8 Conclusion
	References

	An Efficient Run-Based Connected Component Labeling Algorithm for Processing Holes
	1 Introduction and State-of-the-Art
	2 General Overview of Our New Algorithm
	3 Specificities of Black and White Labeling and Hole Processing
	3.1 Black and White Labeling
	3.2 Holes and Adjacency Tree Computation
	3.3 Example

	4 Benchmark and Performance Analysis
	5 Conclusion
	References

	LSL3D: A Run-Based Connected Component Labeling Algorithm for 3D Volumes
	1 Introduction
	2 Classical Approaches to Connected Components Labeling and Their Evaluation
	2.1 Main Principles of Modern CCL Algorithms
	2.2 Benchmarking Procedure and Datasets

	3 State-of-the-Art of 3D Algorithms
	3.1 Pixel-Based Algorithms
	3.2 Block-Based Algorithms
	3.3 Segment-Based Algorithms

	4 LSL3D and Efficient Unification Strategies for 3D Volumes
	4.1 Extension of the Segment-Based Unification for 3D Volumes
	4.2 A Finite-State Machine-Based Unification
	4.3 Computational Reuse of Merged Lines

	5 Architecture-Specific Optimizations of Run-Length Encoding on 3D Images
	6 Conclusion and Future Work
	References

	Artificial Intelligence for Preterm Infants’ HealthCare - AI-Care 
	Deep-Learning Architectures for Placenta Vessel Segmentation in TTTS Fetoscopic Images
	1 Introduction
	2 Materials and Methods
	2.1 Backbones
	2.2 Decoder Architectures

	3 Experimental Protocol
	4 Results
	5 Discussion and Conclusions
	References

	An Advanced Tool for Semi-automatic Annotation for Early Screening of Neurodevelopmental Disorders
	1 Introduction
	2 Related Work
	2.1 Marker-Less AI Tools for Children's Motion Analysis
	2.2 Existing Tools for Face Childrens' Analysis

	3 The Proposed Annotation Tool
	3.1 The Graphical User Interface
	3.2 Deep Learning Components

	4 The Dataset
	5 Experimental Results
	6 Conclusions
	References

	Some Ethical Remarks on Deep Learning-Based Movements Monitoring for Preterm Infants: Green AI or Red AI?
	1 Introduction
	2 State of the Art: Green AI and Red AI
	3 Methods
	3.1 Considered Deep Learning Architectures
	3.2 The BabyPose Dataset
	3.3 Evaluation Metrics

	4 Results and Discussion
	5 Conclusion
	References

	Towards a Complete Analysis of People: From Face and Body to Clothes - T-CAP
	Effect of Gender, Pose and Camera Distance on Human Body Dimensions Estimation
	1 Introduction
	2 The Problem of Human Body Dimensions Estimation
	3 Related Work
	4 Material and Methods
	4.1 Dataset
	4.2 Neural Anthropometer

	5 Results and Discussion
	5.1 Effect of Gender
	5.2 Effect of Pose
	5.3 Effect of Camera Distance
	5.4 Quantitative Comparison to Related Work

	6 Conclusions and Future Work
	6.1 Future Work

	References

	StyleTrendGAN: A Deep Learning Generative Framework for Fashion Bag Generation
	1 Introduction
	2 State-of-the-Art
	3 Materials and Methods
	3.1 Deep Generative Models
	3.2 MADAME Dataset
	3.3 Performance Metrics

	4 Results and Discussion
	5 Conclusions and Future Works
	References

	Gender Recognition from 3D Shape Parameters
	1 Introduction
	2 Related Work
	3 Datasets
	4 Approach
	4.1 Model Selection

	5 Results
	5.1 Comparison with Previous Body Shape-Based Methods
	5.2 Comparison with Image-Based Methods

	6 Conclusions
	References

	Recognition of Complex Gestures for Real-Time Emoji Assignment
	1 Introduction and Motivations
	2 Proposed Method
	2.1 Methods for Recognizing Facial Expressions
	2.2 Methods for Recognizing Hand Gestures

	3 Real-Time Emoji Assignment
	4 Experimental Results
	5 Conclusion
	References

	Generating High-Resolution 3D Faces Using VQ-VAE-2 with PixelSNAIL Networks
	1 Introduction
	2 Related Works
	2.1 3D to 2D Representations
	2.2 3D Face Generation with GANs
	2.3 3D Face Generation with Autoencoders

	3 Method
	3.1 VQ-VAE-2 with PixelSNAIL
	3.2 Metrics for Quantitative Evaluation

	4 Experiments
	4.1 Quantitative Evaluation

	5 Discussion and Conclusion
	References

	Artificial Intelligence for Digital Humanities - AI4DH
	The Morra Game: Developing an Automatic Gesture Recognition System to Interface Human and Artificial Players
	1 Introduction
	2 Methods
	2.1 Apparatus
	2.2 Procedure

	3 Results
	4 Discussion
	References

	Integration of Point Clouds from 360° Videos and Deep Learning Techniques for Rapid Documentation and Classification in Historical City Centers
	1 Introduction
	2 Background
	3 Method
	3.1 Generation of Point Clouds from 360° Videos
	3.2 Deep Learning-Based Point Cloud Classification

	4 Case Study
	4.1 Dataset – Bassano Dataset
	4.2 Acquisition and Post-processing
	4.3 Classification

	5 Conclusion
	References

	Towards the Creation of AI-powered Queries Using Transfer Learning on NLP Model - The THESPIAN-NER Experience
	1 Introduction
	1.1 The Digital Infrastructure of INFN-CHNet

	2 The NER Model
	2.1 The Training Dataset: Archaeological Documents and Scientific Reports Annotated with INCEpTION
	2.2 Training and Evaluation of the Model

	3 The Web Service: AI-powered Queries
	4 Conclusions and Outlook
	References

	Detecting Fake News in MANET Messaging Using an Ensemble Based Computational Social System
	1 Introduction
	2 Literature Review
	2.1 Vehicular Ad Hoc Networks
	2.2 Computational Social Systems
	2.3 ML-Based Fake News Detection

	3 Legitimacy Ensemble Model
	3.1 Two-Class Boosted Decision Tree (BDT)
	3.2 Two-Class Neural Network
	3.3 Mixture of Experts
	3.4 Two Class Logistic Regression

	4 Ensemble Based Veracity Architecture
	5 Experimental Design
	5.1 ML Model
	5.2 Dataset
	5.3 Libraries

	6 Results and Observations
	6.1 Initial Results
	6.2 Comparative Analysis

	7 Conclusion
	References

	PergaNet: A Deep Learning Framework for Automatic Appearance-Based Analysis of Ancient Parchment Collections
	1 Introduction
	2 Related Works
	3 Materials and Methods
	3.1 Parchments Digitalization and Annotation: Dataset Collection
	3.2 Deep Learning Pipeline

	4 Results and Discussions
	5 Conclusion and Future Works
	References

	Transformers with YOLO Network for Damage Detection in Limestone Wall Images
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Transformer
	3.2 Anchors
	3.3 Bounding Box Filtering
	3.4 Loss Function

	4 Database and Implementation Details
	4.1 Dataset
	4.2 Implementation Details

	5 Experiments
	6 Conclusion
	References

	Medical Transformers - MEDXF
	On the Effectiveness of 3D Vision Transformers for the Prediction of Prostate Cancer Aggressiveness
	1 Introduction
	2 3D Vision Transformer and 3D CNN Development for Prostate Cancer Classification
	2.1 Dataset Composition
	2.2 Data Preparation
	2.3 3D ViT Architectures
	2.4 3D ViTs Training
	2.5 CNNs Architectures

	3 Results
	3.1 3D ViT Results
	3.2 CNN Results

	4 Discussion and Conclusions
	References

	Exploring a Transformer Approach for Pigment Signs Segmentation in Fundus Images
	1 Introduction
	2 Methods
	3 Data
	4 Experiments and Results
	5 Discussion and Conclusions
	References

	Transformer Based Generative Adversarial Network for Liver Segmentation
	1 Introduction
	2 Proposed Method
	2.1 Transformer Based GAN
	2.2 Transformer Based CycleGAN

	3 Experimental Setup
	4 Results
	5 Conclusion
	References

	Learning in Precision Livestock Farming - LPLF
	Suggestions for the Environmental Sustainability from Precision Livestock Farming and Replacement in Dairy Cows
	1 Introduction
	2 Materials and Methods
	2.1 Farm Description
	2.2 Modelled Scenarios
	2.3 LCA and Climate Change

	3 Results and Discussion
	4 Conclusions
	References

	Intelligent Video Surveillance for Animal Behavior Monitoring
	1 Introduction
	2 Object Detection
	3 Proposed Approach
	4 Experimental Evaluation
	4.1 Data
	4.2 Detector Evaluation
	4.3 Homography Evaluation

	5 Conclusions and Future Work
	References

	Quick Quality Analysis on Cereals, Pulses and Grains Using Artificial Intelligence
	1 Introduction
	1.1 Problem Definition and Solution

	2 Literature Review
	3 Methodology
	3.1 Approach Technology

	4 Implementation
	4.1 Hardware System
	4.2 Software System
	4.3 How Does Our Neural Network Work?

	5 Results
	6 Conclusion
	7 Future Work
	References

	Label a Herd in Minutes: Individual Holstein-Friesian Cattle Identification
	1 Introduction
	2 Dataset
	3 Implementation
	3.1 PHASE #1: Self-supervision
	3.2 PHASE #2: Cluster Analysis
	3.3 PHASE #3: Active Learning

	4 Experimental Results
	5 Conclusion
	References

	Workshop on Small-Drone Surveillance, Detection and Counteraction Techniques - WOSDETC
	DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection
	1 Introduction
	2 Related Work
	3 Proposed Technique
	3.1 Detection Model
	3.2 Synthetic Data
	3.3 Binary Classifier Boosting
	3.4 Improved Track Boosting and Scoring

	4 Experiments
	4.1 Datasets
	4.2 Training Details
	4.3 Results

	5 Conclusion and Discussion
	References

	Drone-vs-Bird Detection Challenge at ICIAP 2021
	1 Introduction
	2 Challenge Dataset and Evaluation Protocol
	3 Participation and Best Proposed Algorithms
	4 Results
	5 Conclusions
	References

	An Image-Based Classification Module for Data Fusion Anti-drone System
	1 Introduction
	2 System Design
	3 Dataset Generation Methodology
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	Evaluation of Fully Convolutional One-Stage Object Detection for Drone Detection
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 FCOS Description
	3.2 FCOS Parameters

	4 Data Set, Results and Discussion
	4.1 Data Set
	4.2 Results
	4.3 Discussion

	5 Conclusions
	References

	Drone Surveillance Using Detection, Tracking and Classification Techniques
	1 Introduction
	2 Related Work
	2.1 Object Detection
	2.2 Object Tracking
	2.3 Classification and Super Resolution
	2.4 Inference Optimization

	3 Drone Surveillance System
	3.1 System Overview
	3.2 Detection Module
	3.3 Tracking Module
	3.4 Classification Module

	4 Experimental Studies
	4.1 Overall Performance
	4.2 Speed Analysis
	4.3 Field Test Analysis

	5 Conclusions
	References

	Medical Imaging Analysis for Covid-19 - MIACOVID 2022
	ILC-Unet++ for Covid-19 Infection Segmentation
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	4 Performance Evaluation
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Experimental Setup
	4.4 Experimental Results on Intra-dataset Scenario
	4.5 Experimental Results on Cross-Datasets Scenario

	5 Conclusion
	References

	Revitalizing Regression Tasks Through Modern Training Procedures: Applications in Medical Image Analysis for Covid-19 Infection Percentage Estimation
	1 Introduction
	2 Related Work
	3 Investigated Approaches
	3.1 Training Procedure
	3.2 Inference Procedure

	4 Experimental Analysis
	4.1 Dataset
	4.2 Ablation Study

	5 Conclusions
	References

	Res-Dense Net for 3D Covid Chest CT-Scan Classification
	1 Introduction
	2 Related Work
	2.1 CT-scan Images
	2.2 Image Classification
	2.3 CT-Scan COVID-19 Image Classification

	3 Dataset
	3.1 Evaluation Methods

	4 Method
	4.1 Densely Connected Convolutional Network
	4.2 Deep Residual Network (ResNet)
	4.3 Res-Dense Net
	4.4 Data Preprocessing
	4.5 Data Augmentation
	4.6 Training

	5 Conclusion
	6 Discussion
	7 Future Work
	References

	Deep Regression by Feature Regularization for COVID-19 Severity Prediction
	1 Introduction
	2 The Dataset
	3 Proposed Method
	4 Results
	4.1 Preliminary Results on the Training Set
	4.2 Validation and Test Set Results

	5 Conclusions
	References

	Mixup Data Augmentation for COVID-19 Infection Percentage Estimation
	1 Introduction
	2 Related Works
	3 Challenge
	4 Methodology
	5 Experimental Results
	5.1 Neural Network Model Setup
	5.2 Results and Discussion

	6 Conclusions
	References

	Swin Transformer for COVID-19 Infection Percentage Estimation from CT-Scans
	1 Introduction
	2 Methods
	2.1 Dataset
	2.2 Swin Transformer
	2.3 Network Architecture
	2.4 Experimental and Implementation Details

	3 Results and Discussion
	4 Conclusion
	References

	COVID-19 Infection Percentage Prediction via Boosted Hierarchical Vision Transformer
	1 Introduction
	2 Method
	2.1 Overview
	2.2 Maximum-Rectangle Extraction
	2.3 Multi-task Learning
	2.4 Dataset and Criterion

	3 Experimental Result
	3.1 Ablation Study

	4 Conclusion
	References

	Novel Benchmarks and Approaches for Real-World Continual Learning - CL4REAL
	Catastrophic Forgetting in Continual Concept Bottleneck Models
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Concept Bottleneck Models
	3.2 Continual Learning

	4 Concept Shift Detection
	4.1 Concepts Accuracy
	4.2 Concepts Divergence

	5 Experiments
	5.1 Implementation Details
	5.2 Results

	6 Conclusion
	References

	Practical Recommendations for Replay-Based Continual Learning Methods
	1 Introduction
	2 Related Works
	3 Design Choices
	3.1 Replay Buffer
	3.2 Memory Size
	3.3 Weighting Policies
	3.4 Augmentation

	4 Experimental Setup
	4.1 Benchmarks and Models
	4.2 Strategies

	5 Memory Size Experiment
	5.1 Grid Search and Final Models
	5.2 Discussion

	6 Examples Weighting
	6.1 Weighting Policies
	6.2 Grid Search and Final Models
	6.3 Discussion

	7 Augmentation
	7.1 Settings and Results
	7.2 Discussion

	8 Conclusion and Future Works
	References

	Author Index

