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Featured Application: This study provides quantitative data about the loss of informative 

content of MRI radiomic features when calculated on small volumes. Besides providing useful 

information for the design of MRI radiomic studies in the pelvic region, it proposes a 

methodology that might be replicated for other imaging modalities and clinical scenarios upon 

the development of suitable phantoms. 

Abstract: Radiomics is emerging as a promising tool to extract quantitative biomarkers—called 

radiomic features—from medical images, potentially contributing to the improvement in diagnosis 

and treatment of oncological patients. However, technical limitations might impair the reliability of 

radiomic features and their ability to quantify clinically relevant tissue properties. Among these, 

sampling the image signal in a too-small region can reduce the ability to discriminate tissues with 

different properties. However, a volume threshold guaranteeing a reliable analysis, which might 

vary according to the imaging modality and clinical scenario, has not been assessed yet. In this 

study, an MRI phantom specifically developed for radiomic investigation of gynecological 

malignancies was used to explore how the ability of radiomic features to discriminate different 

image textures varies with the volume of the analyzed region. The phantom, embedding inserts 

with different textures, was scanned on two 1.5T and one 3T scanners, each using the T2-weighted 

sequence of the clinical protocol implemented for gynecological studies. Within each of the three 

inserts, six cylindrical regions were drawn with volumes ranging from 0.8 cm3 to 29.8 cm3, and 944 

radiomic features were extracted from both original images and from images processed with 

different filters. For each scanner, the ability of each feature to discriminate the different textures 

was quantified. Despite differences observed among the scanner models, the overall percentage of 

discriminative features across scanners was >70%, with the smallest volume having the lowest 

percentage of discriminative features for all scanners. Stratification by feature class, still aggregating 

data for original and filtered images, showed statistical significance for the association between the 
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percentage of discriminative features with VOI sizes for features classes GLCM, GLDM, and 

GLSZM on the first 1.5T scanner and for first-order and GLSZM classes on the second 1.5T scanner. 

Poorer results in terms of features’ discriminative ability were found for the 3T scanner. Focusing 

on original images only, the analysis of discriminative features stratified by feature class showed 

that the first-order and GLCM were robust to VOI size variations (>85% discriminative features for 

all sizes), while for the 1.5T scanners, the GLSZM and NGTDM feature classes showed a percentage 

of discriminative features >80% only for volumes no smaller than 3.3 cm3, and equal or larger than 

7.4 cm3 for the GLRLM. As for the 3T scanner, only the GLSZM showed a percentage of 

discriminative features >80% for all volume sizes above 3.3 cm3. Analogous considerations were 

obtained for each filter, providing useful indications for feature selection in this clinical case. Similar 

studies should be replicated with suitably adapted phantoms to derive useful data for other clinical 

scenarios and imaging modalities. 

Keywords: radiomics; MRI; texture analysis; volume dependency 

 

1. Introduction 

Radiomics is the practice of converting standard-of-care medical images into minable 

high-dimensional data (hereinafter referred to as radiomic features) in order to support 

clinical decisions [1]. It is based on the hypothesis that quantitative imaging of the tumor 

anatomy can yield information on its functional and progression mechanisms by 

investigating the spatial variations in the tumoral tissues and their surroundings [2,3] 

through texture analysis. As a matter of fact, when a tumor originates, many complex 

mechanisms occur, at the cellular level, possibly resulting in intra-tumoral heterogeneity, 

which might be captured by medical images. Tumors with higher heterogeneity are 

thought to be associated with a worse prognosis [1]. 

Most radiomic features were initially developed to characterize two-dimensional 

rectangular aerial photographs, which shared the same pixel dimensions and therefore 

did not require normalization to differences in the size of the region of interest [4]. In 

medical radiomics, these descriptors are extracted from volumes-of-interest (VOIs) 

encompassing the tissue under investigation, typically a tumor, which will vary in terms 

of area and volume. Several studies assessed the dependency of some radiomic features 

with volume and suggested corrections to remove such dependencies [4,5]. Identifying 

the dependencies of radiomic features with the size of the VOI is of major importance for 

their use as imaging biomarkers, as it allows the disentanglement of the texture 

component from the size component and, therefore, improves reliability [5]. 

Nonetheless, even after the removal of the dependencies of radiomic features with 

size, it is possible that below a certain VOI size, not enough information is available for 

the proper calculation of the radiomic feature, making it inaccurate and hence unable to 

distinguish two different textures, potentially reflecting the different clinical outcomes 

radiomics aims to predict. Brooks and Grigsby [6,7] analyzed the behavior of texture 

quantifiers as a function of the tumor volume on 18F-fluorodeoxyglucose positron 

emission tomography (18F-FDG PET) images. They concluded that small tumors (volume 

below 700 voxels) should not be included in studies of intratumoral heterogeneity of tracer 

uptake since they do not include a high enough number of voxels to adequately sample 

the underlying tracer distribution and properly calculate some radiomic features. 

Similar research has not yet been performed in magnetic resonance imaging (MRI). 

We hypothesize that, also in MRI, some radiomic features may lose their texture-

discriminative power when obtained using volumes below a certain threshold to be 

identified. 

This study aimed to investigate how the ability of MRI-based radiomic features to 

discriminate different textures varies as a function of the volume of the region considered 
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for the feature extraction. For this purpose, an MRI phantom specifically designed for 

radiomic applications in the pelvic region, embedding inserts with different textures, was 

imaged on three scanners with a T2-weighted sequence included in the clinical protocol 

for the diagnosis of pelvic tumors. 

2. Materials and Methods 

2.1. Phantom 

The radiomic phantom used for this study was described in detail in a previous 

article [8]. Briefly, it consists of a pelvis-shaped container filled with an aqueous solution 

of MnCl2 to reproduce the transverse relaxation time T2 of the abdominal muscle tissue. 

The phantom includes four cylindrical inserts prepared with a mixture of agar gel and 

polystyrene spheres to simulate the T2 average signal and the texture of female pelvic 

tumors. The inserts differ in the spheres’ diameter, which varies from 1 mm to 8 mm, to 

obtain a range of different textures. One insert is prepared with 1 mm diameter spheres 

only (small spheres), two inserts have 3–4 mm diameter spheres (medium spheres), and the 

other one contains both small, medium, and 7–8 mm diameter spheres (the latter referred 

to as large spheres). The phantom was imaged with an axial T2-weighted sequence on three 

MRI scanners, exploiting the usual setup for pelvic diagnostic imaging in clinics. The 

phantom was imaged at IEO European Institute of Oncology IRCCS, Milan, Italy, using a 

1.5T GE Healthcare Optima MR450w scanner, and at Champalimaud Clinical Centre, 

Champalimaud Foundation, Lisboa, Portugal, using a 1.5T and a 3T Philips Healthcare 

Ingenia scanner. On each scanner, two acquisitions were performed in a test-retest setting, 

meaning that the phantom was positioned, scanned a first time, and scanned again after 

fifteen minutes without repositioning the phantom. These images, along with other 

acquisitions, have been previously exploited for a multicentric study on the repeatability 

and reproducibility of MRI radiomic features [9]. The imaging parameters are listed in 

Table 1. 

Table 1. Scanner properties and imaging parameters. TR = repetition time; TE = echo time; FoV = 

field of view; FRFSE = fast recovery fast spin echo; FSE = fast spin echo. 

Scanner 
Field Strength 

(T) 
Vendor Model Sequence TR (ms) TE (ms) 

Slice 

Thickness 

(mm) 

Slice 

Spacing 

(mm) 

Pixel 

Spacing 

(mm) 

FoV 

(mm × mm) 

A 1.5 GE 
Optima 

MR450w 
FRFSE 4763 109 5 5.5 0.6 × 0.6 320 × 320 

B 1.5 Philips Ingenia FSE 3750 90 5 5 0.6 × 0.6 340 × 340 

C 3 Philips Ingenia FSE 3750 90 5 5 0.6 × 0.6 340 × 340 

2.2. Region-of-Interest Definition and Radiomic Feature Extraction 

Three phantom inserts corresponding to three different textures were chosen for the 

analysis (Figure 1). 
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Figure 1. MR representation of the inserts embedded in the phantom, with corresponding textures 

and VOIs placement. Three phantom inserts were chosen as representative of three textures, from a 

finer texture (1) to a coarser one (3) through a medium texture (2). The volumes of the selected VOIs 

were: 29.8 cm3 (red), 20.7 cm3 (green), 13.3 cm3 (blue), 7.4 cm3 (yellow), 3.3 cm3 (pink), and 0.8 cm3 

(cyan). Window width/window level for the image: 1970/1165. 

An example of the phantom imaged on each of the three scanners is shown in Figure 

2. 

 

Figure 2. MR representation of the inserts embedded in the phantom on different scanners. On top 

left, the representation obtained on scanner A is shown. The representation obtained on scanner B 

is shown on top right, while the representation obtained on scanner C is shown at the bottom. 

NOTE: differences in background between scanner C and scanners A and B are due to the replace-

ment of the aqueous solution of MnCl2 by phantom oil (Spectrasyn 4 phantom oil; Philips 

Healthcare; T1 = 230 ms and T2 = 194 ms at 3T) to avoid dielectric artifacts intensified at higher field 

[9]. Window width/window level for the image of scanner A: 2175/1088; window width/window 

level for the image of scanner B: 43380/22690; window width/window level for the image of scanner 

C: 2208/1044. 
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To assess the texture-discriminative power of each radiomic feature as a function of 

the VOI size, six concentric cylindrical VOIs of different radii were drawn in each insert, 

as shown in Figure 1, on three consecutive slices placed in correspondence with the mid-

dle of the insert along the z-axis (see Supplementary Material Figure S1). For each scanner, 

these VOIs were used to extract radiomic features from both the test and retest scans. 

Before feature extraction, intensity normalization was performed by rescaling the in-

tensities of the different images to have a mean value of 300 and a standard deviation (s.d.) 

of 100. Then, for each VOI, radiomic features from the classes first-order, gray level co-

occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size zone 

matrix (GLSZM), neighboring gray-tone difference matrix (NGTDM), and gray level de-

pendence matrix (GLDM) were extracted in 2D from both original and filtered images 

(Laplacian of Gaussian, LoG, with σ = 6 mm; wavelet; square; square root; logarithm; ex-

ponential) using PyRadiomics 3.0.1 package (available at https://github.com/AIM-Har-

vard/pyradiomics/releases/tag/v3.0.1, accessed on 5 January 2021) [10]. A total of 944 ra-

diomic features were extracted for each VOI. Parameter files used for the feature extrac-

tion are provided at https://github.com/ReliabilityRadiomicsIEOFC/PhantomStudy, ac-

cessed on 5 January 2021. 

The following 8 features were corrected, after calculation, for their intrinsic volume 

dependence, not accounted for in the package version used in this study but confirmed in 

the literature [4,5]: firstorder_Energy, firstorder_TotalEnergy, glrlm_GreyLevelNonUni-

formity, glrlm_RunLengthNonUniformity, glszm_GreyLevelNonUniformity, gldm_De-

pendenceNonUniformity, gldm_GreyLevelNonUniformity, and ngtdm_Coarseness. 

Then, only repeatable features were considered by using the results obtained by 

Bianchini et al. on these same test-retest images [9]. As a result, 829, 810, and 689 radiomic 

features were included in the subsequent analysis for scanners A, B, and C, respectively. 

2.3. Radiomics Tumor Texture Discrimination at Different VOI Volume 

The radiomic feature values extracted from each VOI on the test and retest images 

were used to determine the repeated measures’ mean and difference (����). A similar 

principle to the Bland–Altman analysis [11] was used to determine the upper and lower 

bound variability range of each feature, related to the 95% confidence interval bounds of 

the Bland–Altman analysis, as shown in Equations (1) and (2), 

����������� ����� ������,�,� = ����(����,������)�,�,�
− 1.96 ����(����,������)�,�,�

 (1)

����������� ����� ������,�,� = ����(����,������)�,�,�
+ 1.96 ����(����,������)�,�,�

, (2)

where � represents a specific feature, � is used to indicate an insert and is � the VOI size. 

These bounds define the test-retest variability range, ��,�,�, for feature �, insert �, and VOI 

size, �. 

Then, for each feature � and VOI size �, the discrimination power, � between two 

different inserts, � and �, representing different tumoral textures, is given by 

� � ��.��,�
= �

1, �� ��,�,� ∩  ��,�,� = ∅

 0, �� ��,�,� ∩  ��,�,� ≠ ∅
, � ≠ � ��� �, � ∈ {1, 2, 3} (3)

where � � ��.��,�
= 0 indicates that feature � for VOI size � does not allow the discrimi-

nation between the textures in inserts � and �, while � � ��.��,�
= 1 shows that this dis-

crimination is possible. 

The source code and respective data for this analysis are available at 

https://github.com/ReliabilityRadiomicsIEOFC/Radiomics_Size_Dependency, created on 

7 March 2022. 
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2.4. Statistical Analysis 

Several levels of aggregation were used to study (1) the overall discriminability of 

the insert textures by the radiomic features across VOI volumes for the different scanners, 

(2) the discriminability at different volumes for each feature class, and (3) the discrimina-

bility at different volumes for each filter and feature class. Spearman correlation was used 

to assess the correlation between discriminability and the VOI sizes, and the correspond-

ing coefficient of determination, R-squared, and p-value were obtained. The level of sig-

nificance α was set at 5%. 

3. Results 

Due to the high volume of data, results are presented in aggregated form. The overall 

discriminability of the insert textures across VOI volumes for the different scanners was 

obtained by contemplating the discriminability of inserts 1 vs. 2, 1 vs. 3, and 3 vs. 2 for all 

filters and feature classes. The percentage of discriminative features for each scanner at 

different VOI volumes is shown in Figure 3. 

 

Figure 3. Overall percentage of features discriminative at different volumes for each scanner. 

The level of aggregation was subsequently decreased to obtain the percentage of dis-

criminative features separated by feature class at different volumes for each scanner, still 

aggregating the different filters and including the comparisons among all texture couples. 

The corresponding coefficients of determination to assess the association between the per-

centage of discriminative features and VOI volume were also determined. These results 

are shown in Figure 4. Additionally, in the Supplementary Material, Figures S2–S10 show, 

for each scanner, the discriminability of each radiomic feature for all filters, for different 

VOI volumes, this time separating for each pair of inserts. Detailed examples and com-

parisons are also provided in Figure S11. Similarly, Figure S12 reports the percentage of 

discriminative features at different volumes separated by the filter for each scanner, ag-

gregating the different feature classes and all texture couples. 
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Figure 4. Overall percentage of features discriminative at different volumes for each feature class in 

scanners A (top left), B (top right), and C (bottom left). At bottom right, coefficient of determination, 

R-squared, of the percentage of discriminative features explained by the volume for each scanner. 

In Figure 5, the same plot as Figure 4 is reported, this time considering only the fea-

tures extracted from original images without filtering. This was performed in considera-

tion of the fact that different filters act differently on image texture (Figure S13). A similar 

analysis was performed for each of the applied filters, and results are shown in Supple-

mentary Material Figures S14–S22. 



Appl. Sci. 2022, 12, 5465 8 of 13 
 

 

 

Figure 5. Overall percentage of features discriminative at different volumes for each feature class 

extracted from the original images in scanners A (top left), B (top right), and C (bottom left). At 

bottom right, coefficient of determination, R-squared, of the percentage of discriminative features 

explained by the volume for each scanner. 

4. Discussion 

In this study, a phantom specifically designed for MRI radiomic studies in the pelvic 

region was used to investigate the dependency on VOI size of the ability of radiomic fea-

tures to discriminate between different textures. Three scanners of different manufactur-

ers and different magnetic field strengths were used to perform these assessments, aiming 

to understand to what extent such dependency may vary across these different settings. 

Only the radiomic features that had proved to be repeatable at test-retest imaging in 

a previous study performed on the same images [9] were included in this analysis. As a 

result, the number of analyzed features was different for the three scanners: 829 for scan-

ner A, 810 for scanner B, and 689 for scanner C (this lower number is likely due to the 

increased water-fat shift artifact). 

At the very first level of analysis, performed for each scanner separately, but aggre-

gating the results for all feature classes, imaging filters, and texture couples, the main re-

sult emerged indicating that, for any scanner and VOI volume, a non-negligible fraction 

of features (>70%) was actually able to discriminate the different textures (Figure 3). It was 

also observed that the smallest volume (0.8 cm3) was less discriminative irrespectively of 

the scanner manufacturer and magnetic field strength; this is likely related to the reduced 

amount of information in the VOI (e.g., number of voxels), which might lead to inadequate 

sampling of the signal distribution therein, degrading the ability of the features to quan-

tify the texture properties. Another common trend among scanners was the reduction in 
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the proportion of discriminative features when increasing the VOI volume from 20.7 cm3 

to 29.8 cm3, the latter being the largest VOI drawn in correspondence with the insert edge. 

In this regard, it might be argued that a slight amount of partial volume effect/background 

signal was included in the 29.8 cm3 VOIs, possibly affecting the value of some features, 

which would have been discriminative otherwise. Finally, in the volume range from 3.3 

cm3 to 20.7 cm3, an increasing trend in the proportion of discriminative features with vol-

ume was found for scanners A and B, supporting the hypothesis that a volume threshold 

(in terms of volume, or number of voxels) does exist for each feature to become discrimi-

native, whereas noisy results were obtained for scanner C. While the number of features 

being considered was already different between scanners following the repeatability 

study performed on [9], the percentage of discriminative features still varied across dif-

ferent scanners. Possible causes for such findings may be the different signal-to-noise ra-

tios between scanners, artifacts affecting different scanners with different magnitudes, 

system types, e.g., digital versus analog, and coils used. 

While the aggregated results captured interesting, broad, and succinct information, 

a more detailed analysis allows a deeper understanding and potentially provides more 

practical indications. 

For this reason, the analysis of discriminative features was first stratified, for each 

scanner, according to feature class, still aggregating data by imaging filters (Figure 4). For 

scanners A and B, while confirming the lower discriminability of the 0.8 cm3 volume with 

respect to the larger volumes across all feature classes, the first-order class distinguished 

itself for better discrimination, even with the 0.8 cm3 volume, with >85% of discriminative 

features, versus 55–81% for the other classes. In addition, a monotonic trend for the per-

centage of discriminative features as a function of volume (R2 > 0.85) was obtained for 

GLCM, GLDM, and GLSZM classes for scanner A and for first-order and GLSZM classes 

for scanner B (Figure 4, bottom right). In the case of scanner C, a general worse perfor-

mance across volumes and feature classes was obtained, with no apparent trends. Supple-

mentary Figures S2–S10 report detailed results for each feature and separately for each 

couple of textures. 

Aggregating data by image filters might mask some additional and informative 

trends. Indeed, as shown in Supplementary Figure S13, the differences among the three 

textures might be suppressed or highlighted by specific filters. Hence, the inability to dis-

criminate textures of some features might be wrongly attributed to VOI size when it might 

be an effect of the filter instead. For this reason, in Figure 5, we report the analysis of 

discriminative features stratified by scanner and feature class for unfiltered (original) im-

ages only. For all scanners, a very interesting result emerged about the discriminative re-

liability of almost all features belonging to first-order and GLCM classes, for all volumes, 

without an apparent association between the percentage of discriminative features and 

volume (Figure 5, bottom right). According to these results, these categories should be 

favored when analyzing original images, especially if small volumes are present in the 

data set under investigation. As for the remaining feature classes, with 1.5T scanners, 

GLRLM, GLSZM, and NGTDM categories appear to be discriminative with a quite high 

percentage of features (80–93%) but only above the 3.3 cm3 volume threshold. Similar con-

siderations can be derived for each filtered image by inspecting Supplementary Materials 

Figures S14–S22. As a general comment, focusing on 1.5T scanners only, for most filtered 

images, it can be observed that first-order and GLCM features confirm their discrimina-

tive superiority across all volumes, even the small ones. The GLDM and GLRLM features 

are generally less discriminative, and finally, GLSZM and NGTDM features can equal 

first-order and GLCM performance but in most cases for larger volumes only. The worst 

discriminative performance was found with the wavelet-HH filter and with the Laplacian 

of Gaussian (LoG) filter, in the latter case possibly due to the high sigma value considered 

(6 mm), resulting in a smoothing level that reduces the texture differences among inserts; 

different values of sigma might be investigated to improve the discriminative power of 

the features. Conversely, wavelet-LL filtered images, meant as an approximation of 
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original images, which likely reduces noise and other artifacts affecting radiomic features, 

provided very high discriminative performance, not only confirming the results observed 

with first-order and GLCM features on original images but also increasing the perfor-

mance of NGTDM features in the case of scanners A and B, and even of GLRLM and 

GLSZM features in the case of scanner B. 

Scanner C, the 3T scanner, provided, in general, worse discriminative performance 

and noisier results without evidence of specific trends. More in detail, it demonstrated an 

overall lower discriminability of radiomic features across sizes when compared with the 

1.5T scanners (scanners A and B). This result is likely due to the higher magnetic field that 

leads to higher water-fat shift artifacts and possibly other artifacts (related to hardware, 

differences of SNR, parallel imaging not used in the current study, susceptibility, and 

bandwidth) that may reduce the discriminative ability of radiomic features between tex-

tures, as also seen in terms of repeatability. Figure 6 provides an example of the increased 

water-shift artifact in scanner C, particularly visible at the inserts’ edges but potentially 

present also within the inserts, where many interfaces occur. In addition, it appears evi-

dent, especially in the case of texture 2, that scanner C images are more blurry, which 

might have reduced the difference among textures, resulting in a lower ability of radiomic 

features to distinguish them. Hence, in the case of 3T scanners, additional investigation is 

required, especially with further adjustment of the bandwidth, which could reduce the 

chemical shift observed and improve the discriminability of radiomic features. 

The results discussed so far refer to the specific settings used in this study for the 

calculation of features; future studies might investigate a filter-dependent optimization of 

such parameters, aiming to improve the ability of features to discriminate different tex-

tures at different volumes. 

 

Figure 6. Comparison between water-fat shift artifacts between scanner B (left) and scanner C 

(right). Arrows in blue indicate the overlap region of the artifact for different inserts in scanner B. 

Arrows in red indicate the overlap region of the artifact for different inserts in scanner C. Window 

width/window level for the image of scanner B: 1970/1165; window width/window level for the 

image of scanner C: 2208/1104. 

A similar study with both 1.5T and 3T scanners was performed by Ammari et al. [12], 

who acquired images of phantom embedding inserts with different textures. Radiomic 

features were extracted for each insert considering a fixed VOI volume (6 cm3). The au-

thors report that texture features that are able to differentiate phantom textures were sig-

nificantly influenced by field strength, in line with our findings. However, they did not 

report whether the number of discriminative features was higher in the case of 1.5T or 3T 

images, not allowing a straightforward comparison with our data. It must be highlighted, 

however, that to explain the different behavior of 1.5T and 3T scanners, not only the field 
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strength has to be taken into account, but also the coil properties, which might be different 

between the two scanners, and the sequence parameters, which can be varied and opti-

mized in different ways. For example, Waugh et al. [13] found comparable texture mis-

classification with 1.5T images and 3T images acquired with a high temporal resolution 

and low spatial resolution sequence, whereas misclassification at 3T was notably reduced 

when using a high spatial resolution sequence. In our study, 3T images were acquired 

with the same acquisition parameters used on the 1.5T scanner from the same vendor. 

In general terms, these data are a first attempt to quantify to what extent the ability 

of radiomic features to discriminate different textures depends on the VOI size, the tex-

tures to be discriminated, the magnetic field strength, the radiomic feature, and the image 

filter type, in case of T2-weighted imaging of pelvic region. Despite not being directly gen-

eralizable to every clinical scenario, they are important for offering the first guide in the 

absence of more adequate data and, most importantly, for setting the basis and method-

ology for further investigation. To allow other researchers to adapt this analysis to their 

clinical scenario, the source code and data files used in this study are publicly available in 

the Github repository: https://github.com/ReliabilityRadiomicsIEOFC/Radi-

omics_Size_Dependency, created on 7 March 2022. 

Aiming at a clinical application of radiomics, especially in the case of the classical 

radiomic approach with the calculation of handcrafted radiomic features, it should be of 

paramount importance to assess these dependencies before designing a new radiomic 

study, along with other methodological investigations such as radiomic feature repeata-

bility and reproducibility upon image acquisition and reconstruction parameters. If avail-

able, such information would allow customizing the patient inclusion criteria, setting a 

threshold/range to the size of the regions that can be properly investigated with radiomics, 

and would guide the choice of the most suitable image filter and feature categories for 

each study, avoiding an unnecessary proliferation of the parameters calculated from the 

images. Conversely, in the absence of this information, noise could be introduced, which 

might ultimately mask the information radiomics is expected to quantify and prevent the 

possibility of identifying useful associations between radiomic features and clinically rel-

evant information. 

Despite its relevance, this issue has not been extensively investigated in the case of 

MRI, probably due to the lack of suitable phantoms to perform systematic acquisitions 

under controlled settings. Jensen et al. [14] investigated the stability of radiomic features 

across different VOI sizes using a homogeneous phantom and evidenced the need to re-

peat the analysis with heterogeneous objects to allow clinical translation of the phantom 

results. Ammari et al. [12] developed a phantom with heterogeneous objects, but they 

considered one VOI volume only. To assess the volume dependency, instead, it is neces-

sary not only to have objects with different textures, possibly simulating the texture of the 

tissues under investigation in the clinical application, but also that each object is homoge-

neous and large enough to incorporate different VOIs with different volumes but fixed 

texture. In this sense, the phantom developed by our group appears suitable for the pur-

pose, even if the pattern within each insert is not obtained via replication of a texture ker-

nel to increasingly larger volumes, as would be more appropriate, and even if until now 

only texture 1—small spheres—was demonstrated to be comparable to a real clinical sce-

nario (gynecological diseases [8]). Nonetheless, despite these two limitations, this phan-

tom incorporates three textures that are different by construction, a difference that radio-

mic features should theoretically be able to reflect. In addition, despite the random distri-

bution of small, medium, and large spheres in each insert, it is still true that the textures 

within different VOIs of the same insert are far more similar among them than the textures 

within VOIs drawn on different inserts. For these reasons, important information can be 

obtained from this phantom prototype, laying the basis for further studies, possibly with 

improved phantom versions to match more closely specific clinical scenarios. 
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