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Simple Summary: The use of radiomics has been studied to predict Gleason Score from bi-parametric
prostate MRI examinations. However, different combinations of type of input data (whole prostate
gland/lesion features), sampling strategy, feature selection method and machine learning algorithm
can be used. The impact of such choices was investigated and it was found that features extracted
from the whole prostate gland were more stable to segmentation differences and produced better
models (higher performance and less overfitting). This result suggests that the areas surrounding the
tumour lesions offer relevant information regarding the Gleason Score that is ultimately attributed to
that lesion.

Abstract: Prostate cancer is one of the most prevalent cancers in the male population. Its diagnosis
and classification rely on unspecific measures such as PSA levels and DRE, followed by biopsy, where
an aggressiveness level is assigned in the form of Gleason Score. Efforts have been made in the past to
use radiomics coupled with machine learning to predict prostate cancer aggressiveness from clinical
images, showing promising results. Thus, the main goal of this work was to develop supervised
machine learning models exploiting radiomic features extracted from bpMRI examinations, to predict
biological aggressiveness; 288 classifiers were developed, corresponding to different combinations of
pipeline aspects, namely, type of input data, sampling strategy, feature selection method and machine
learning algorithm. On a cohort of 281 lesions from 183 patients, it was found that (1) radiomic
features extracted from the lesion volume of interest were less stable to segmentation than the
equivalent extraction from the whole gland volume of interest; and (2) radiomic features extracted
from the whole gland volume of interest produced higher performance and less overfitted classifiers
than radiomic features extracted from the lesions volumes of interest. This result suggests that the
areas surrounding the tumour lesions offer relevant information regarding the Gleason Score that is
ultimately attributed to that lesion.

Keywords: radiomics; prostate cancer; machine learning; bi-parametric MRI

1. Introduction

Prostate cancer is the second most prevalent cancer in the world, according to the
World Health Organization; 1,414,259 new cases were reported in 2020, with an ASR (world)
mortality rate of 7.7 per 100,000 [1].

Prostate cancer in its early stages does not cause any specific symptoms, so a suspicion
of PCa can arise from: an abnormality on digital rectal examination, DRE [2–4], or an
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elevated level of prostate-specific antigen (PSA) in the serum [3,5]. Both situations are not
specific to PCa, making an appearance in conditions like BPH (benign prostatic hypertrophy
or enlargement of the prostate) and prostatitis (inflammation of the prostate) [6]. Prostate
cancer diagnosis and classification is not ideal, relying on these unspecific measures,
followed by TRUS-guided biopsy, where an aggressiveness level is attributed in the form
of Gleason Score (GS).

The Gleason Score is the most widely used measure for PCa aggressiveness. This
grading system is assigned to a lesion after biopsy, according to the microscopic appearance
of the tissue. Two grades, ranging from 1 to 5, are given per patient. The primary grade
represents the GS of the largest area of the tumour and the secondary grade describes the
GS of the next largest area. The sum of the two scores is taken to be the final GS. The larger
the GS the more likely it is that the cancer will grow and spread quickly, with a high GS
lesion being considered clinically significant [7].

Contrary to TRUS, magnetic resonance images (MRI) allow for a clear visualization of
the zonal anatomy of the prostate [8]. Multiparametric MRI (mpMRI) is a combination of
functional and anatomical imaging methods: T1-weighted imaging (T1W), T2-weighted
imaging (T2W), diffusion weighted imaging (DWI) and dynamic contrast enhanced MRI
(DCE-MRI) [8]. mpMRI is able to provide morphologic and metabolic data as well as
characterize tissue vascularity, showing promise in the detection of PCa [9,10]. In this study,
bi-parametric MRI was utilized, which comprises of T2W and DW sequences. The use of
bpMRI has clear advantages in the reduction of image acquisition time and overall costs
per patient [11].

One of the biggest challenges in the clinical use of mpMRI, and consequently bpMRI,
is that its interpretation is dependent on the radiologist’s subjective opinion and, thus, is
inevitably affected by a high rate of inter-reader variability [12]. In order to reduce these
effects, a standardized reporting system was developed, the Prostate Imaging Reporting
and Data System (PI-RADS) [13], which assigns a specific score of suspicion to the MRI
sequences. Despite this, there is still room for improvement in mpMRI reporting. Hence,
efforts have been made to implement computer-aided diagnosis (CAD) coupled with
radiomics and machine learning to predict GS from clinical images, with the aim to bypass
interobserver variability, showing promising results [14–17].

Radiomics is the transformation of medical images into high dimension mineable data
through the extraction of quantitative features [18]. Based on the hypothesis that tumour
tissue characteristics can be quantified by the extracted features, these can be used to build
supervised machine learning models capable of assessing the GS attributed to the referred
image. The use of radiomic features extracted from bpMRI can be easily found in the
literature, with a meta-analysis by Cuocolo et al. reporting an average AUC of 0.90 [19].

That being said, the main goal of this work was to develop supervised machine learn-
ing models exploiting radiomic features extracted from bpMRI examinations (T2W, DWI,
and ADC), to predict biological aggressiveness in the form of Gleason Score. In this work,
we will address a supervised binary classification machine learning problem, where the in-
put is a vector of radiomic features and the output is the clinical significance of the tumour,
described as True for clinically significant PCa or False for clinically non-significant PCa.

2. Materials and Methods
2.1. Data Description

Our dataset consisted of T2W, DW, and ADC data from the SPIE-AAPM-NCI PROSTA-
TEx challenge (the data can be downloaded from (https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=23691656 (accessed on 28 September 2020))) [20–22]. The
MRI exams were acquired at the Prostate MR Reference Center—Radboud University Med-
ical Centre (Radboudumc) in the Netherlands. Due to the public nature of the data, ethics
committee approval was waived for this study. The following description of the dataset
was provided by the Challenge’s organizers: “The images were acquired on two different
types of Siemens 3T MR scanners, the MAGNETOM Trio, and Skyra. T2-weighted images

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656


Cancers 2021, 13, 6065 3 of 17

were acquired using a turbo spin echo sequence and had a resolution of around 0.5 mm in
plane and a slice thickness of 3.6 mm. The DWI series were acquired with a single-shot echo
planar imaging sequence with a resolution of 2-mm in-plane and 3.6-mm slice thickness
and with diffusion-encoding gradients in three directions. Three b-values were acquired
(50, 400, and 800), and subsequently, the apparent diffusion coefficient (ADC) map was
calculated by the scanner software. All images were acquired without an endorectal coil”.
The dataset is composed of 281 lesions from 183 patients. The approximate location of
the centroid of each lesion was provided in DICOM coordinates. Cancer was considered
significant when the biopsy Gleason score was 7 or higher. The lesions were labelled with
“TRUE” and “FALSE” for presence of clinically significant cancer, with a distribution of
67 clinically significant lesions (TRUE) and 214 clinically non-significant lesions (FALSE).

2.2. Feature Extraction

Manual segmentations of the whole prostate gland and of each lesion were performed
independently by two radiologists (M.L., 10 years of experience, and A.U., radiology resi-
dent) on T2W and DW maps separately. The lesion segmentation on DWI was performed
on the high b-value image and the whole gland segmentation was performed on the low
b-value image. An example segmentation can be found in Figure 1. For each sample, one
radiologist’s volume of interest (VOI) was randomly chosen to be included in the final
dataset. Radiomic features were extracted using the package Pyradiomics (version 3.0) [23]
in Python (v. 3.7.9; https://www.python.org/ (accessed on 28 September 2020)). 14 shape
features, 18 firstorder features and 75 texture features were extracted from the VOI of
three MRI modalities, T2W, DWI and ADC, resulting in a total of 321 features extracted.
In the feature extraction of the ADC map, the mask drawn on the DWI was used. The
mathematical expressions and semantic meanings of the features extracted can be found at
https://pyradiomics.readthedocs.io/en/latest/ (accessed on 28 September 2020).

Figure 1. An example of the manual segmentation of lesions and glands performed in this study on
T2W and DW sequences. (a) lesion segmentation on T2W; (b) gland segmentation on T2w; (c) lesion
segmentation on high b-value DWI; (d) gland segmentation on b-value = 0 DWI.

2.3. Dataset Construction

The features extracted from a lesion mask VOI constituted the Lesion Dataset. The
features extracted from a whole gland mask VOI constituted the Gland Dataset. A Gland
was considered to have clinically significant PCa if at least one of its lesions is clinically
significant. From the previous datasets, two additional datasets were constructed:

https://www.python.org/
https://pyradiomics.readthedocs.io/en/latest/
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• Lesion Features with Anatomical Zone dataset—A dataset composed of lesion features
plus features describing the anatomical location of the lesion.

• Single-Lesion Whole Gland Features dataset—A truncated dataset composed of pa-
tients from the Gland dataset that had one only lesion.

The description of the datasets can be found in the Table 1.
The train/test split was performed with the train_test_split() function of the Python

scikitlearn package (version 0.23.2; https://scikitlearn.org/ (accessed on 28 September
2020)) [24–26]. The hold out test sets consisted of 25% randomly selected samples from
the original datasets and the split was stratified so that both train and test sets have the
same proportion of True labels. The lesion train sets constituted of 210 lesions (51 clinically
significant lesions and 159 clinically non-significant lesions) and test sets constituted of
71 lesions (16 clinically significant lesions and 55 clinically non-significant lesions). The
gland train set constituted of 137 glands (48 clinically significant glands and 89 clinically
non-significant glands) and test set constituted of 46 glands (15 clinically significant glands
and 31 clinically non-significant glands). The single-lesion whole gland features dataset
was not split into train and test set, due to its already reduced number of samples, and was
only validated internally.

Table 1. Size and label distribution of the datasets utilized in this study.

Dataset Number of
Features

Number of Clinically
Significant Cases

Number of Clinically
Non-Significant Cases Total

Lesion Dataset 321 67 214 281

Lesion Features with
Anatomical Zone Dataset 325 67 214 281

Gland Dataset 321 63 120 183

Single-Lesion Whole
Gland Features Dataset 321 33 74 107

2.4. Feature Stability to Segmentation

Features that are highly dependent on segmentation margins, will not be stable predic-
tors, since they easily change depending on the radiologist that performed the segmentation.
Features extracted from the VOIs created by both radiologists were compared with Intr-
aclass correlation coefficient (ICC). The ICC used was a two-way, single rater, absolute
agreement ICC model (ICC 2.1) [27]. Features with ICC 95% confidence interval lower limit
over 0.8 were considered to be robust to segmentation and were kept for further analysis.
This analysis was performed in Python (v. 3.7.9; https://www.python.org/(accessed on
28 September 2020)) with the package icc (https://pypi.org/project/icc/ (accessed on 28
September 2020)).

2.5. Zero or Near-Zero Variance

Zero and nearzero variance analysis was performed with the nearZeroVar() function
of the R caret package (version 6.086; https://topepo.github.io/caret/ (accessed on 28
September 2020)) [28].

2.6. Outlier Detection

In order to identify outliers, the local outlier factor (LOF) was used. Since scale affects
the distance function, the data was normalized before applying the LOF algorithm. Samples
with LOF over 2 were removed from the original not normalized dataset. Outlier detection
and removal was performed inside cross validation with the software RapidMiner Studio
(version 9.9; https://rapidminer.com/ (accessed on 28 September 2020)) [29].

https://scikitlearn.org/
https://www.python.org/
https://pypi.org/project/icc/
https://topepo.github.io/caret/
https://rapidminer.com/
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2.7. Feature Correlation

The feature correlation analysis was performed inside cross validation on RapidMiner
Studio (version 9.9; https://rapidminer.com/ (accessed on 28 September 2020)) [29] with
the operator “Remove Correlated Attributes”. This operator uses the Pearson correlation
coefficient to compute the correlation between each pair of features. If a pair of features is
found to have a correlation higher than the threshold, one of the features is randomly elim-
inated. The correlation threshold was a hyperparameter optimized during model training.

2.8. Feature Selection

Four feature selection algorithms were applied separately, and their performance
compared. These algorithms were recursive feature elimination with support vector
machine weighing (SVM-RFE), Boruta algorithm [30], minimum redundancy maximum
relevance algorithm (mRMR) and LASSO regularization.

2.9. Model Development

In this work, different aspects of model development were assessed and compared
(Figure 2). The machine learning algorithms were chosen so as to cover a wide range of ma-
chine learning algorithm types [31]. In total, 288 pipelines were produced, corresponding
to the different combinations. Each was trained and validated according to the diagram in
Figure 3.

Figure 2. Different pipeline dimensions explored in this study.

Figure 3. Overall pipeline followed in this study to train and validate models.

Hyperparameter tuning was done in a nested cross-validation fashion with an exhaustive
grid search. This was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/
(accessed on 28 September 2020)) with the operator “Optimize Parameters (Grid)” [29]. In

https://rapidminer.com/
https://rapidminer.com/
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this work, we have chosen to optimize the F2-score, so as to take into account the higher
cost of a false negative misclassification when compared to a false positive. Additionally,
we report Cohen’s Kappa.

A subset of best classifiers was selected according to the 4-fold cross-validation F2 and
Kappa performances, following the rule: CVF2 > 0.8∩ CVKappa > 0.5. These were applied
to the holdout test set for validation.

2.10. Metric Volatility Analysis

The Gland, Lesion, and Lesion with anatomical location Datasets were each randomly
split in training and testing sets in 50 different ways, according to 50 different random
seeds. Each of the highest-ranking classifiers was then trained on each of the 50 training
sets and validated through both cross-validation and each of the 50 holdout testing sets.
The distribution of cross-validation and test set performance results was recorded for
further analysis (Figure 4). This analysis was based on the metric volatility analysis
performed by the Probatus package (https://ing-bank.github.io/probatus/ (accessed on
28 September 2020)) .

Figure 4. Methodology followed in the metric volatility analysis.

2.11. Distribution Comparison Tests

All performance distributions were tested for normality using the Shapiro-Wilk
test [32] and the D’Agostino K2 test [33]. For each classifier, the distribution of cross-
validation performances was compared to the distribution of test set performances, to
assess whether they belonged to the same distribution. Two statistical tests were used:
the paired t-test and the Kolmogorov-Smirnov test [34]. Both tests behave like common
hypothesis tests and the hypothesis were as follows:

Hypothesis 1 (H1). The distributions of cross-validation and test set performances are identical.

Hypothesis 2 (H2). The distributions of cross-validation and test set performances are different.

The significance level, α, was chosen to be 0.05.

3. Results
3.1. Feature Stability to Segmentation

In the Lesion Dataset, 154 features were found to be unstable, out of the total 321 features.
While, in the Gland Dataset, 64 features were found to be unstable, out of the total 321 fea-
tures. Among the unstable features, the feature type that was considered the most unstable
was texture features (72.73% of the unstable lesion features and 84.38% of the unstable
gland features) and the MRI modalities that showed the lower stability were DWI (45.45%
of the unstable lesion features) and ADC (82.81% of the unstable gland features).

3.2. Zero or Near-Zero Variance

In the Lesion Dataset, out of the total 169 stable features, 2 features were found to
have near-zero variance: DWI_original_glszm_GrayLevelNonUniformity and ADC_ori

https://ing-bank.github.io/probatus/
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ginal_glszm_GrayLevelNonUniformity. While, in the Gland Dataset, no features were ex-
cluded.

3.3. Classifier Development

In Figure 5a–d, we can see the cross-validation performance of the same 288 pipelines
grouped by the different pipeline aspects assessed in this work.

Overall, the Boruta algorithm (Figure 5a) did not perform as well as expected. Despite
having a high cross-validation F2, most kappa values were extremely low, especially for
pipelines trained on whole gland features. Pipelines trained with data that underwent
SVM-RFE achieved an average cross-validation F2 of 0.7226 and Kappa of 0.3781. While
the feature sets that underwent mRMR achieved average performances of 0.7071 on F2 and
0.4095 on Kappa. Overall, at this stage, SVM-RFE and mRMR pipelines show a similar
average performance. Pipelines trained with data that underwent Lasso feature selection
achieved an average cross-validation F2 of 0.643 and Kappa of 0.347, not performing, on
average, as high as SVM-RFE and mRMR.

(a) (b)

(c) (d)
Figure 5. Cross-validation F2 and Kappa performance results grouped by (a) feature selection method, (b) sampling strategy,
(c) machine learning algorithm and (d) type of input data.

In Figure 5b, we can see that the average cross-validation performance results were
higher on the models trained with sampled data on both F2 and Kappa, with average F2
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of 0.7541 and Kappa of 0.3659 on the models trained with downsampled data and F2 of
0.8094 and Kappa of 0.3666 on the models trained with SMOTE data. As expected, the
pipelines trained with the original imbalanced dataset performed lower with an average
F2 of 0.4779 and Kappa of 0.2626.

On average the Naïve Bayes classifier (Figure 5c) achieved an F2 of 0.6573 and a Kappa
of 0.3016, the Logistic regression classifier achieved an F2 of 0.6569 and a Kappa of 0.3058,
the Logistic regression classifier with Elastic Net regularization achieved an F2 of 0.6984
and a Kappa of 0.3002, the Adaboosted Decision Tree classifier achieved an F2 of 0.6784
and a Kappa of 0.2931, the Random Forest classifier achieved an F2 of 0.6725 and a Kappa
of 0.3914 and, finally, the Extreme Gradient Boost classifier achieved an F2 of 0.7226 and a
Kappa of 0.3885. While the Random Forest and Extreme Gradient Boost classifiers seem to
have performed, on average, higher than the remaining machine learning algorithms, both
an ANOVA and Kruskal-Wallis test revealed no statistically significant difference.

In Figure 5d, we can see that, on average, classifiers trained with whole Gland radiomic
features achieved a cross-validation performance of 0.7426 on F2 and of 0.351 on Kappa.
While classifiers trained with the Lesion Dataset achieved an average cross-validation
F2 of 0.6344 and a Kappa of 0.2749. The classifiers trained with the Lesion features with
anatomical zone dataset achieved an average cross-validation F2 of 0.6682 and a Kappa of
0.3687. Finally, the classifiers trained with the single-lesion whole gland features dataset
achieved an average cross-validation F2 of 0.7508 and a Kappa of 0.3806. Overall, the
pipelines trained with whole gland features performed, on average, higher than the ones
trained on lesion features, both in terms of Kappa and of F2.

3.4. Best Classifiers Validation

Figure 6 shows the 26 models that satisfied the condition: CVF2 > 0.8∩ CVKappa > 0.5,
as well as their performance on the cross-validation setting and hold-out test set. 65% of
these are models trained on whole gland features. All of the best models were trained on
data that underwent some kind of sampling: 42% downsampled data and 58% SMOTE data.
Regarding feature selection, 31% of the pipelines included SVM-RFE, 50% included mRMR,
15% included Lasso and 4% included Boruta. As for the machine learning algorithm, the
large majority of best models are tree-based algorithms (73%) and the remaining models are
logistic regressions with or without elastic net regularization and one Naïve Bayes pipeline.

Figure 6. Performance of the best classifiers on the cross-validation setting and hold out test set in
terms of F2 and Kappa.

Table 2 shows the performance of the best models on the cross-validation setting and
on the hold out test set in terms of F2, Kappa, ROC-AUC, and AUPRC. In addition, it
shows the difference between cross-validation and test set performance, ∆. The models
where this difference is closest to zero are the least overfitted models. There seems to be a
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cluster of overfitted models on the bottom of the table (in darker red). These correspond to
the pipelines trained with Lesion data.

Table 2. Best classifiers’ cross-validation and test set performances, as well as the difference between cross-validation and test set
performance, ∆. The performance columns are colour coded from highest value in green, to lowest value in white. The ∆ columns are
colour coded from lowest value in green to highest value in red.

Model cv_F2 ts_F2 cv_Kappa ts_Kappa cv_AUC ts_AUC cv_AUPRC ts_AUPRC ∆ F2 ∆ Kappa ∆ AUC ∆ AUPRC

G_D_SVM-RFE_LR 0.826 0.745 0.555 0.416 0.765 0.772 0.68 0.518 0.081 0.139 −0.007 0.162

G_D_SVM-RFE_RF 0.859 0.618 0.657 0.333 0.857 0.843 0.787 0.734 0.241 0.324 0.014 0.053

G_D_SVM-RFE_XGB 0.868 0.729 0.655 0.354 0.859 0.753 0.792 0.545 0.139 0.301 0.106 0.247

G_S_SVM-RFE_LR 0.831 0.652 0.528 0.32 0.798 0.766 0.742 0.655 0.179 0.208 0.032 0.087

G_S_SVM-RFE_DT 0.868 0.611 0.584 0.301 0.806 0.746 0.545 0.449 0.257 0.283 0.06 0.096

G_S_SVM-RFE_RF 0.862 0.737 0.629 0.385 0.873 0.788 0.841 0.576 0.125 0.244 0.085 0.265

G_S_SVM-RFE_XGB 0.849 0.684 0.551 0.308 0.847 0.728 0.805 0.504 0.165 0.243 0.119 0.301

G_D_mRMR_LR_EN 0.812 0.638 0.557 0.26 0.789 0.755 0.724 0.53 0.174 0.297 0.034 0.194

G_D_mRMR_DT 0.836 0.632 0.556 0.231 0.767 0.634 0.636 0.404 0.204 0.325 0.133 0.232

G_D_mRMR_RF 0.827 0.488 0.636 0.385 0.789 0.757 0.683 0.737 0.339 0.251 0.032 −0.054

G_D_mRMR_XGB 0.84 0.575 0.576 0.314 0.808 0.719 0.718 0.485 0.265 0.262 0.089 0.233

G_S_mRMR_DT 0.884 0.722 0.554 0.325 0.778 0.691 0.405 0.271 0.162 0.229 0.087 0.134

G_S_mRMR_RF 0.853 0.798 0.618 0.494 0.841 0.847 0.8 0.642 0.055 0.124 −0.006 0.158

G_S_mRMR_XGB 0.844 0.729 0.607 0.354 0.814 0.783 0.766 0.576 0.115 0.253 0.031 0.19

G_D_Lasso_DT 0.815 0.568 0.574 0.282 0.808 0.71 0.696 0.346 0.247 0.292 0.098 0.35

G_D_Lasso_RF 0.855 0.722 0.638 0.466 0.826 0.824 0.754 0.659 0.133 0.172 0.002 0.095

G_D_Lasso_XGB 0.84 0.652 0.576 0.32 0.856 0.7 0.798 0.447 0.188 0.256 0.156 0.351

L_S_Lasso_XGB 0.826 0.652 0.56 0.363 0.855 0.755 0.844 0.54 0.174 0.197 0.1 0.304

Lp_D_SVM-RFE_LR_EN 0.806 0.368 0.55 0.001 0.786 0.581 0.706 0.812 0.438 0.549 0.205 −0.106

Lp_S_Boruta_XGB 0.833 0.64 0.591 0.091 0.874 0.646 0.861 0.874 0.193 0.5 0.228 −0.013

Lp_S_mRMR_NB 0.873 0.389 0.554 0.075 0.836 0.55 0.793 0.713 0.484 0.479 0.286 0.08

Lp_S_mRMR_LR 0.872 0.404 0.528 0.006 0.853 0.53 0.804 0.783 0.468 0.522 0.323 0.021

Lp_S_mRMR_LR_EN 0.882 0.49 0.566 0.078 0.849 0.667 0.783 0.862 0.392 0.488 0.182 −0.079

Lp_S_mRMR_RF 0.879 0.44 0.617 0.124 0.881 0.58 0.868 0.805 0.439 0.493 0.301 0.063

Lp_S_mRMR_XGB 0.85 0.427 0.534 0.227 0.864 0.697 0.845 0.871 0.423 0.307 0.167 −0.026

Lp_S_Lasso_XGB 0.852 0.305 0.667 0.073 0.904 0.634 0.907 0.846 0.547 0.594 0.27 0.061

3.5. Metric Volatility Analysis

The mean and standard deviation values were calculated for each performance metric
and each classifier, as well as the ∆ values (Table 3). The latter are shown in Table 4, where
each column is individually colour-coded from lowest value, in green, to highest value,
in red. As previously, there seems to be a cluster of overfitted models on the bottom
of the table (in darker red). These correspond to the pipelines trained with Lesion data.
Three clusters of lower ∆ can be found in green, these correspond to the pipelines where
downsampling of the majority class was performed.
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Table 3. Mean and standard deviation values calculated for each performance metric and each classifier during the volatility analysis.

Models

F2 Kappa AUC AUPRC
∆ (CV - TS)CV TS CV TS CV TS CV TS

mean std mean std mean std mean std mean std mean std mean std mean std F2 Kappa AUC AUPRC

G_D_SVM-RFE_LR 0.6447 0.0582 0.6060 0.0910 0.3103 0.1095 0.2754 0.1177 0.7041 0.0607 0.7130 0.0646 0.6308 0.0465 0.6281 0.1745 0.0388 0.0349 −0.0089 0.0027

G_D_SVM-RFE_RF 0.6734 0.0651 0.6207 0.0957 0.3278 0.1174 0.2678 0.1199 0.7195 0.0782 0.7076 0.0688 0.6502 0.0584 0.6286 0.1638 0.0527 0.0601 0.0119 0.0215

G_D_SVM-RFE_XGB 0.6538 0.0832 0.6309 0.1085 0.3168 0.1286 0.3033 0.1080 0.7074 0.0722 0.7072 0.0640 0.6371 0.0565 0.6159 0.1838 0.0230 0.0135 0.0002 0.0212

G_S_SVM-RFE_LR 0.8011 0.0302 0.6944 0.0822 0.4376 0.0683 0.2762 0.1193 0.7721 0.0324 0.7102 0.0690 0.7156 0.0410 0.6245 0.1752 0.1067 0.1614 0.0619 0.0911

G_S_SVM-RFE_DT 0.7939 0.0312 0.6484 0.0990 0.3893 0.0827 0.1906 0.1280 0.7357 0.0487 0.6336 0.0824 0.5059 0.0912 0.4347 0.1954 0.1454 0.1987 0.1021 0.0712

G_S_SVM-RFE_RF 0.7967 0.0278 0.6318 0.0963 0.4422 0.0671 0.2311 0.1195 0.8122 0.0278 0.6838 0.0747 0.7662 0.0272 0.5959 0.1722 0.1649 0.2110 0.1284 0.1703

G_S_SVM-RFE_XGB 0.7509 0.0462 0.5627 0.1085 0.4599 0.0752 0.2364 0.1450 0.7986 0.0318 0.6718 0.0733 0.7469 0.0366 0.5786 0.1704 0.1881 0.2235 0.1268 0.1683

G_D_mRMR_LR_EN 0.6445 0.0546 0.6109 0.0731 0.3174 0.1084 0.2740 0.1015 0.7135 0.0699 0.7097 0.0624 0.6415 0.0585 0.6274 0.1777 0.0336 0.0434 0.0039 0.0141

G_D_mRMR_DT 0.6043 0.1085 0.6168 0.1652 0.2307 0.1250 0.2207 0.0960 0.6583 0.0834 0.6567 0.0606 0.5721 0.0812 0.5641 0.1742 −0.0125 0.0100 0.0016 0.0080

G_D_mRMR_RF 0.6985 0.0635 0.6594 0.0778 0.3715 0.1103 0.3279 0.1120 0.7330 0.0621 0.7360 0.0648 0.6578 0.0527 0.6570 0.1593 0.0390 0.0436 −0.0030 0.0007

G_D_mRMR_XGB 0.6381 0.0607 0.6188 0.1029 0.3091 0.1076 0.2907 0.1295 0.7058 0.0646 0.6976 0.0862 0.6343 0.0538 0.6175 0.1671 0.0193 0.0184 0.0082 0.0169

G_S_mRMR_DT 0.8257 0.0309 0.6744 0.0757 0.4070 0.0907 0.2260 0.0954 0.7191 0.0434 0.6411 0.0585 0.4480 0.0857 0.3913 0.1666 0.1513 0.1809 0.0780 0.0567

G_S_mRMR_RF 0.8204 0.0296 0.6669 0.0782 0.4850 0.0617 0.2757 0.1116 0.8318 0.0298 0.7283 0.0595 0.7810 0.0305 0.6645 0.1473 0.1535 0.2093 0.1035 0.1165

G_S_mRMR_XGB 0.7490 0.0487 0.5749 0.0967 0.4706 0.0825 0.2607 0.1193 0.8041 0.0357 0.6764 0.0699 0.7544 0.0377 0.5802 0.1835 0.1741 0.2099 0.1276 0.1741

G_D_Lasso_DT 0.6755 0.0738 0.6785 0.0972 0.2788 0.1207 0.2810 0.1136 0.6756 0.0688 0.6784 0.0638 0.5255 0.0748 0.4893 0.1560 −0.0030 −0.0021 −0.0028 0.0362

G_D_Lasso_RF 0.7027 0.0673 0.6779 0.0884 0.3570 0.1144 0.3266 0.1153 0.7213 0.0725 0.7376 0.0728 0.6489 0.0617 0.6530 0.1565 0.0249 0.0304 −0.0163 −0.0041

G_D_Lasso_XGB 0.6590 0.0681 0.6317 0.0985 0.3173 0.0988 0.2875 0.1177 0.7117 0.0703 0.7060 0.0712 0.6386 0.0598 0.6218 0.1838 0.0273 0.0298 0.0058 0.0168

L_S_Lasso_XGB 0.7987 0.0242 0.4141 0.0960 0.5295 0.0457 0.1490 0.0990 0.8500 0.0190 0.6176 0.0610 0.8208 0.0229 0.4277 0.1933 0.3846 0.3805 0.2324 0.3931

Lp_D_SVM-RFE_LR_EN 0.6065 0.0759 0.5396 0.1112 0.2910 0.0984 0.2417 0.1041 0.6913 0.0562 0.7028 0.0715 0.6280 0.0542 0.4944 0.1902 0.0668 0.0493 −0.0115 0.1336

Lp_S_Boruta_XGB 0.7907 0.0277 0.2506 0.2442 0.5480 0.0520 0.0046 0.1402 0.8617 0.0205 0.4881 0.1042 0.8365 0.0230 0.2717 0.1541 0.5401 0.5434 0.3736 0.5648

Lp_S_mRMR_NB 0.7704 0.0453 0.5169 0.1168 0.4336 0.0780 0.2827 0.1331 0.7850 0.0309 0.7045 0.0638 0.7399 0.0313 0.4364 0.2120 0.2534 0.1510 0.0805 0.3035

Lp_S_mRMR_LR 0.8427 0.0178 0.5514 0.1006 0.3930 0.0662 0.2398 0.1102 0.7892 0.0264 0.6803 0.0676 0.7446 0.0374 0.4711 0.1940 0.2913 0.1532 0.1089 0.2735

Lp_S_mRMR_LR_EN 0.8397 0.0194 0.5388 0.1064 0.3781 0.0794 0.2328 0.1240 0.7814 0.0300 0.6840 0.0708 0.7360 0.0373 0.4729 0.1942 0.3009 0.1453 0.0973 0.2631

Lp_S_mRMR_RF 0.8454 0.0203 0.5705 0.0807 0.4940 0.0711 0.2463 0.0945 0.8556 0.0216 0.6925 0.0618 0.8274 0.0228 0.4832 0.1935 0.2749 0.2477 0.1631 0.3441

Lp_S_mRMR_XGB 0.8000 0.0319 0.5152 0.1058 0.5530 0.0528 0.1861 0.1203 0.8560 0.0236 0.6608 0.0732 0.8260 0.0248 0.4621 0.1957 0.2848 0.3669 0.1952 0.3639

Lp_S_Lasso_XGB 0.8012 0.0234 0.5124 0.0990 0.5588 0.0465 0.1614 0.0955 0.8642 0.0211 0.6505 0.0594 0.8364 0.0228 0.4513 0.1910 0.2888 0.3974 0.2137 0.3851
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Table 4. Delta values calculated for each performance metric and each classifier during the volatility
analysis. Each column is individually colour-coded from lowest value, in green, to highest value,
in red.

Models ∆ (CV - TS)

F2 Kappa AUC AUPRC

G_D_SVM-RFE_LR 0.0388 0.0349 −0.0089 0.0027

G_D_SVM-RFE_RF 0.0527 0.0601 0.0119 0.0215

G_D_SVM-RFE_XGB 0.0230 0.0135 0.0002 0.0212

G_S_SVM-RFE_LR 0.1067 0.1614 0.0619 0.0911

G_S_SVM-RFE_DT 0.1454 0.1987 0.1021 0.0712

G_S_SVM-RFE_RF 0.1649 0.2110 0.1284 0.1703

G_S_SVM-RFE_XGB 0.1881 0.2235 0.1268 0.1683

G_D_mRMR_LR_EN 0.0336 0.0434 0.0039 0.0141

G_D_mRMR_DT −0.0125 0.0100 0.0016 0.0080

G_D_mRMR_RF 0.0390 0.0436 −0.0030 0.0007

G_D_mRMR_XGB 0.0193 0.0184 0.0082 0.0169

G_S_mRMR_DT 0.1513 0.1809 0.0780 0.0567

G_S_mRMR_RF 0.1535 0.2093 0.1035 0.1165

G_S_mRMR_XGB 0.1741 0.2099 0.1276 0.1741

G_D_Lasso_DT −0.0030 −0.0021 −0.0028 0.0362

G_D_Lasso_RF 0.0249 0.0304 −0.0163 −0.0041

G_D_Lasso_XGB 0.0273 0.0298 0.0058 0.0168

L_S_Lasso_XGB 0.3846 0.3805 0.2324 0.3931

Lp_D_SVM-RFE_LR_EN 0.0668 0.0493 −0.0115 0.1336

Lp_S_Boruta_XGB 0.5401 0.5434 0.3736 0.5648

Lp_S_mRMR_NB 0.2534 0.1510 0.0805 0.3035

Lp_S_mRMR_LR 0.2913 0.1532 0.1089 0.2735

Lp_S_mRMR_LR_EN 0.3009 0.1453 0.0973 0.2631

Lp_S_mRMR_RF 0.2749 0.2477 0.1631 0.3441

Lp_S_mRMR_XGB 0.2848 0.3669 0.1952 0.3639

Lp_S_Lasso_XGB 0.2888 0.3974 0.2137 0.3851

3.6. Distribution Comparison Tests

Out of 26 classifiers, 19 classifiers displayed a significant difference between the F2
test set performance distribution and the F2 cross-validation performance distribution,
5 classifiers displayed no significant difference between the test set performance distribu-
tion and the cross-validation performance distribution, 1 classifier displayed a significant
difference on the Kolmogorov-Smirnov test but no difference on the paired t-test and 1 clas-
sifier displayed a significant difference on the Kolmogorov-Smirnov test but inconclusive
results on the paired t-test.

Out of 26 classifiers, 15 classifiers displayed a significant difference between the Kappa
test set performance distribution and the Kappa cross-validation performance distribu-
tion, 8 classifiers displayed no significant difference between the test set performance
distribution and the cross-validation performance distribution, 1 classifier displayed a
significant difference on the Kolmogorov-Smirnov test but no difference on the paired
t-test, 1 classifier displayed a significant difference on the paired t-test test but no differ-
ence on the Kolmogorov-Smirnov and 1 classifier displayed a significant difference on the
KolmogorovSmirnov test but inconclusive results on the paired t-test.

Five classifiers displayed no significant difference between the cross-validation perfor-
mance and the test set performance on both performance metrics, these were: G_D_SVM-
RFE_XGB, G_D_mRMR_XGB, G_D_Lasso_DT, G_D_Lasso_RF, and G_D_Lasso_XGB.
These were also among the classifiers found to be least overfitted previously, support-
ing those results. The performance distributions of these 5 classifiers can be found in
Figure 7.
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Figure 7. Distribution of F2 and Kappa performances obtained during the volatility analysis for each
of the 5 classifiers with no statistically significant overfitting.

4. Discussion

In this work, an extensive analysis of different dimensions of a machine learning
pipeline were assessed and their performance compared.

We started by assessing the radiomic features’ stability to segmentation, where we
found that the whole-gland features seem to be considerably more robust than lesion
features (approximately 50% of lesion features were found to be unstable, compared to
approximately 20% of gland features being unstable). This was expected since there is a
lot more inter-reader variability in determining lesion borders when compared to whole
gland borders.

Regarding feature selection, a low performance was unexpectedly observed from the
pipelines that applied Boruta feature selection. These showed a high F2, because the model
would classify the large majority of samples as the minority class, leading to a high recall.
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However, the low Kappa score makes it clear that these were not useful models. It was
observed that the Boruta algorithm found very few features that were better predictors
than the random versions of themselves. Hence, it is hypothesised that the number of
features selected by the Boruta algorithm (around three features) was not enough to build
a meaningful radiomics signature, which led to the poor results.

The pipelines where sampling was applied performed higher than the ones where no
sampling was done, whether it was downsampling of the majority class or upsampling of
the minority class with SMOTE. This was expected since training a model with balanced
data gives it equal opportunities to learn from both classes. While the pipelines where
SMOTE upsampling was performed seem to slightly outperform downsampling of the
majority class, the volatility analysis showed that the latter produces classifiers that are
consistently less overfitted and more reliable. This can be explained by the fact that SMOTE
generates synthetic samples from the existing samples in the dataset. Thus, we are forcing
the model to learn more from the same data, increasing the model’s confidence in random
variability, or noise, present in the data, which results in the overfitted behaviour.

Among the most interesting findings is the higher performance of models trained with
radiomic features extracted from the whole gland VOI, as well as their higher reliability
and lower overfitting. This suggests that the areas surrounding tumorous lesions might
offer relevant information regarding their overall aggressiveness in the form of Gleason
score. In addition to suggesting that the monotonous lesion segmentation work performed
by radiologists may not be necessary or even be harming to the radiomics signature.
However, it is of note that a few patients had more than one lesion. If these multiple
lesions have the same clinical significance (same target label), then it seems reasonable
that the model performs higher with gland features since it has more information pointing
to the correct label. In order to make a fair comparison between the performance of both
types of input data, the single-lesion whole gland dataset was created, including only
patients with a single lesion. The performance results obtained with this smaller dataset
confirm the suspicions above, that whole gland features produce more reliable machine
learning models than lesion features. Additionally, the volatility analysis showed that the
Lesion-based models seem to be the most overfitted, which supports the previews findings.
This is not the first paper of its kind to report the performance of whole-gland radiomic
features to predict PCa clinical significance [35,36].

As a final note, it is important to point out that given so many pipeline combinations
we have to assume that it is possible to find one that performs well by chance. Statistically
speaking, we could remedy this by doing something similar to a multiple comparisons
p-value correction. However, at this point, we are not aware of such a correction for
machine learning performance metrics.

Regarding the MR sequences used, DW images and ADC maps, although related, do
not offer the same information. DW images quantify the diffusion of water molecules in
the tissue. Their sensitivity to diffusion is regulated by the b-value, with a high b-value
allowing the distinction between healthy tissue and tumorous tissue (where there is a much
higher restriction to diffusion). While ADC maps show the rate of variation of the DWI
signal intensity with respect to a change in b-values. Here, it is known that PCa signal
intensity on DWI decreases slower than healthy tissue’s signal intensity. Thus, the rate of
variation will be lower and PCa will appear hypointense on the ADC map. The information
provided by DWI and ADC is different and, so, not redundant, which is why we include
both in our analysis.

In terms of literature comparison, the dataset used in this study has been widely used,
both within and out of the SPIE-AAPM-NCI PROSTATEx challenge. In this setting, the
highest performing classifier achieved an AUC of 0.87 [37]. Even though, we felt that the
AUC was not the most appropriate metric to optimize, we still achieved AUCs of up to
0.90 while optimizing the F2-score. Recent literature has shown the growing interest in
PSMA PET radiomics for the classification of PCa’s clinical significance [38,39], so it would
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be interesting to assess in the future how PET radiomics would perform in the context of
this study.

This study has some limitations. First, this was a retrospective study and, so, a multi-
centre prospective analysis should be carried out to validate these results and investigate
the impact these predictive models have on patient outcome. Second, only T2W, DWI, and
ADC sequences were used. Other sequences, such as dynamic contrast enhanced MRI,
could be worth exploring. Third, only one set of MRI sequences was evaluated per patient,
so we were unable to evaluate the temporal stability of the radiomic features. Fourth,
although the overall class imbalance was addressed through downsampling of the majority
class or SMOTE upsampling of the minority class, we did not address the imbalanced
nature of the anatomical location of lesions, with the large majority of lesions belonging
to the PZ. It would be interesting to investigate the model’s performance on the different
anatomical zones independently. Fifth, the use of a publicly available dataset increased
transparency but limited our access to clinical data, such as PSA levels, patient age, or
PI-RADS score, which are a fundamental component of a clinician’s assessment, but could
not be included in our model. Sixth, dataset quality issues were not addressed, such as
the sometimes imperfect location of the centroid of each lesion [40]. Seventh, despite the
effort of performing a metric volatility analysis, proper assessment of real-world clinical
performance is only possible through external validation. This important validation step
will be addressed in future work. Finally, inherent to the Gleason system is the subjectivity
of cancer grading, so we must keep in mind that the gold standard used in this study
is subject to human error and inter or intra-observer variability. In addition to this, the
definition of clinical significance might be based on more than Gleason score alone, and
variables such as tumour volume or tumour category might be of relevance.

5. Conclusions

In conclusion, our results further confirm the validity of MRI-based radiomic features
in the identification of clinically significant prostate cancer. Additionally, we highlight the
higher performance of models trained with whole gland radiomic features, as well as their
higher stability and lower overfitting, when compared to lesion VOI radiomic features.
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Abbreviations
The following abbreviations are used in this manuscript:

PCa Prostate cancer
GS Gleason Score
DRE Digital Rectal Examination
PSA Prostate Specific Antigen
TRUS Trans-rectal Ultrasound
mpMRI Multiparametric MRI
T2W T2-weighted imaging
DWI Diffusion-weighted imaging
ADC Apparent diffusion coefficient
VOI Volume of interest
G Model trained with gland data
L Model trained with lesion data
Lp Model trained with lesion data with anatomical location
D Model trained with downsampled data
S Model trained with synthetic SMOTE data
NB Naive Bayes
LR Logistic Regression
LR_EN Logistic Regression with Elastic Net Regularization
DT Decision Tree
RF Random Forest
XGB Extreme Gradient Boost
CV Cross-validation performance
TS Test-set performance
FWHM Full width at half maximum
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