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HIGHLIGHTS

• Novel 3D CAD architecture for automated localization of

cancer in prostate MRI.

• Dual-attention mechanisms to discriminate clinically sig-

nificant prostate cancer.

• Decoupled false positive reduction, while retaining high

detection sensitivity.

• Anatomical prior to infuse domain-specific clinical knowl-

edge into learning cycle.

• Trained to detect histologically-confirmed cancer using

large cohort of 1950 bpMRI scans with radiologically-

estimated PI-RADS v2 annotations.

• Moderate agreement with expert radiologists and indepen-

dent pathologists in patient-based diagnosis.
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A B S T R A C T

We present a multi-stage 3D computer-aided detection and diagnosis (CAD) model1 for

automated localization of clinically significant prostate cancer (csPCa) in bi-parametric

MR imaging (bpMRI). Deep attention mechanisms drive its detection network, target-

ing salient structures and highly discriminative feature dimensions across multiple res-

olutions. Its goal is to accurately identify csPCa lesions from indolent cancer and the

wide range of benign pathology that can afflict the prostate gland. Simultaneously, a de-

coupled residual classifier is used to achieve consistent false positive reduction, without

sacrificing high sensitivity or computational efficiency. In order to guide model general-

ization with domain-specific clinical knowledge, a probabilistic anatomical prior is used

to encode the spatial prevalence and zonal distinction of csPCa. Using a large dataset of

1950 prostate bpMRI paired with radiologically-estimated annotations, we hypothesize

that such CNN-based models can be trained to detect biopsy-confirmed malignancies

in an independent cohort.

For 486 institutional testing scans, the 3D CAD system achieves 83.69±5.22% and

93.19±2.96% detection sensitivity at 0.50 and 1.46 false positive(s) per patient, respec-

tively, with 0.882±0.030 AUROC in patient-based diagnosis –significantly outperform-

ing four state-of-the-art baseline architectures (U-SEResNet, UNet++, nnU-Net, At-

tention U-Net) from recent literature. For 296 external biopsy-confirmed testing scans,

the ensembled CAD system shares moderate agreement with a consensus of expert ra-

diologists (76.69%; kappa = 0.51±0.04) and independent pathologists (81.08%; kappa

= 0.56±0.06); demonstrating strong generalization to histologically-confirmed csPCa

diagnosis.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Prostate cancer (PCa) is one of the most prevalent cancers in

men worldwide. It is estimated that as of January, 2019, over

∗Authors with equal contribution to this research.

e-mail: anindya.shaha@radboudumc.nl (Anindo Saha)
1Source code and algorithm have been made publicly available at:

https://github.com/DIAGNijmegen/prostateMR 3D-CAD-csPCa

https://grand-challenge.org/algorithms/prostate-mri-cad-cspca

45% of all men living with a history of cancer in the United

States had suffered from PCa (Miller et al., 2019). One of the

main challenges surrounding the accurate diagnosis of PCa is

its broad spectrum of clinical behavior. PCa lesions can range

from low-grade, benign tumors that never progress into clini-

cally significant disease to highly aggressive, invasive malig-

nancies, i.e. clinically significant PCa (csPCa), that can rapidly

advance towards metastasis and death (Johnson et al., 2014). In

clinical practice, prostate biopsies are used to histologically as-

sign a Gleason Score (GS) and Gleason Grade Group (GGG)
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Fig. 1. The challenge of discriminating csPCa due to its morphological heterogeneity. (a-b) T2-weighted imaging (T2W), (c-d) diffusion-weighted imaging

(DWI) and (e-f) apparent diffusion coefficient (ADC) maps constituting the prostate bpMRI scans for two different patients are shown above, where yellow

contours indicate csPCa lesions. While one of the patients had large, severe csPCa developing from both ends (top row), the other was afflicted by a single,

relatively focal csPCa lesion surrounded by perceptually similar nodules of benign prostatic hyperplasia (BPH) (bottom row). Furthermore, probability

density functions (right) compiled from all 2732 scans used in this study, revealed a large overlap between the distributions of csPCa and non-malignant

prostatic tissue across all three MRI channels.

to each lesion as a measure of cancer aggressiveness (Epstein

et al., 2016). Non-targeted transrectal ultrasound (TRUS) is

generally employed to guide biopsy extractions, but it remains

severely prone to an underdetection of csPCa and overdiagno-

sis of indolent PCa (Verma et al., 2017). Prostate MR imag-

ing can compensate for these limitations of TRUS (Johnson

et al., 2014; Isral et al., 2020; Engels et al., 2020), where neg-

ative MRI can rule out unnecessary biopsies by 23–45% (Ka-

sivisvanathan et al., 2018; van der Leest et al., 2019; Elwen-

spoek et al., 2019; Rouvire et al., 2019). Prostate Imaging Re-

porting and Data System: Version 2 (PI-RADS v2) (Weinreb

et al., 2016) is the standard guideline for reading and acquiring

prostate MRI, but it follows a qualitative and semi-quantitative

assessment that mandates substantial expertise for proper us-

age. Meanwhile, csPCa can manifest as multifocal lesions of

different shapes and sizes, bearing a strong resemblance to nu-

merous non-malignant conditions (as seen in Fig. 1). In the

absence of experienced radiologists, these factors can lead to

low inter-reader agreement (<50%) and sub-optimal interpreta-

tion (Garcia-Reyes et al., 2015; Rosenkrantz et al., 2016; Smith

et al., 2019; Westphalen et al., 2020). The development of pro-

ficient and reliable csPCa detection algorithms has therefore be-

come an important research focus in medical image computing.

1.1. Related Work

The advent of deep convolutional neural networks (CNN) has

paved the way for powerful computer-aided detection and di-

agnosis (CAD) systems that rival human performance (Esteva

et al., 2017; McKinney et al., 2020). Machine learning models

are increasingly applied for PCa detection, leveraging the high

soft-tissue contrast and rich blend of anatomical and functional

information present in prostate MRI.

Multiple studies have explored architectural enhancements

to extend functionality. Cao et al. (2019a) proposed a hybrid

2D network titled FocalNet for joint csPCa detection and GS

prediction. Over 5-fold cross-validation using 417 prostatec-

tomy patient scans, FocalNet achieved 0.81 AUROC in csPCa

diagnosis and 87.9% sensitivity at 1.0 false positive per pa-

tient, exclusively for MRI slices containing lesions. Yu et al.

(2020a) proposed a two-stage 2D U-Net for csPCa detection,

where the auxiliary second-stage module reduces false posi-

tives with contextual data from neighboring slices. Meanwhile,

Sanyal et al. (2020) proposed a two-stage CNN model, where

the first-stage segments and registers the prostate gland, while

the second-stage 2D U-Net performs binary classification of

csPCa (0.86 pixel-level AUROC on 20 unseen histologically-

confirmed cases). Alternatively, Bhattacharya et al. (2020) pro-

posed a two-stage CNN model, which extracts correlated cancer

signatures from prostate MRI combined with its whole-mount

histopathology mapping (0.86 pixel-level AUROC on 20 un-

seen prostatectomy patients).

Cancerous lesions stemming from the prostatic peripheral

zone (PZ) exhibit different morphology and pathology than

those developing from the transitional zone (TZ) (Chen et al.,

2000; Weinreb et al., 2016; Isral et al., 2020). Hosseinzadeh

et al. (2019) highlights the merits of utilizing this priori through

an early fusion of probabilistic zonal segmentations inside a 2D

CAD system –demonstrating how the inclusion of PZ and TZ

segmentations can introduce an average increase of 5.3% de-

tection sensitivity, between 0.5–2.0 false positives per patient.

In a separate study, Cao et al. (2019b) constructed a proba-

bilistic 2D prevalence map from 1055 MRI slices. Depicting

the typical sizes, shapes and locations of malignancy across the

prostate anatomy, this map was used to weakly supervise a 2D

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀
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U-Net for PCa detection. Both methods underline the value of

clinical priori and anatomical features –factors known to play

an equally important role in radiomics-based solutions (Litjens

et al., 2014; Lematre et al., 2017).

The vast majority of CAD systems for csPCa operate solely

on a 2D-basis, citing computational limitations and the non-

isotropic imaging protocol of prostate MRI as their primary ra-

tionale. Yoo et al. (2019) tackled this challenge by employing

dedicated 2D ResNets for each slice in a patient scan and aggre-

gating all slice-level predictions with a Random Forest classifier

(0.84 patient-level AUROC on 108 unseen biopsy-confirmed

cases). Aldoj et al. (2020) proposed a patch-based approach,

passing highly-localized regions of interest (ROI) through a

standard 3D CNN (0.90 AUROC over 8-fold cross-validation

using 200 biopsy-confirmed patients). Alkadi et al. (2019) fol-

lowed a 2.5D approach as a compromise solution, sacrificing

the ability to harness multiple MRI channels for an additional

pseudo-spatial dimension.

In recent years, a number of retrospective studies have inves-

tigated the growing potential of CAD systems relative to radiol-

ogists. Sanford et al. (2020) compared the PI-RADS classifica-

tion performance of a four-class 2D ResNet with expert radiolo-

gists, reaching 56% agreement on 68 testing scans. Schelb et al.

(2019) used an ensemble of 2D U-Nets to achieve statistically

similar csPCa detection performance as a cohort of trained ra-

diologists on 62 biopsy-confirmed testing scans. Seetharaman

et al. (2021) developed a 2.5D HED architecture, reaching 0.75

and 0.80 lesion-level AUROC on 293 biopsy-confirmed and 23

prostatectomy patient cases, respectively –approaching radiol-

ogists performance. Studies have also investigated the robust-

ness of CAD systems across multi-institutional, multi-vendor

testing sets (Castillo et al., 2021), reaching 0.93 AUROC on 40

biopsy-confirmed and 7 prostatectomy patient cases collected

across five institutions (Sumathipala et al., 2018).

1.2. Contributions

In this research, we harmonize several state-of-the-art tech-

niques from recent literature to present a novel end-to-end 3D

CAD system that generates voxel-level detections of csPCa in

prostate MRI. Key contributions of our study are, as follows:

• We examine a detection network with dual-attention mech-

anisms, which can adaptively target highly discrimina-

tive feature dimensions and salient prostatic structures in

bpMRI, across multiple resolutions, to reach peak detec-

tion sensitivity at lower false positive rates.

• We study the effect of employing a residual patch-wise 3D

classifier for decoupled false positive reduction and we in-

vestigate its utility in improving baseline specificity, with-

out sacrificing high detection sensitivity.

• We develop a probabilistic anatomical prior, capturing the

spatial prevalence and zonal distinction of csPCa from a

large training dataset of 1584 MRI scans. We investigate

the impact of encoding the computed prior into our CNN

architecture and we evaluate its ability to guide model gen-

eralization with domain-specific clinical knowledge.

• We hypothesize that our model can train on radiologically-

estimated annotations, begin to generalize beyond, and in

turn, accurately detect histologically-confirmed malignan-

cies, given a large training cohort with rich information.

We evaluate performance across large, multi-institutional

testing datasets: 486 institutional and 296 independent pa-

tient scans annotated using PI-RADS v2 and histological

grades, respectively. Our benchmark includes a consensus

score of expert radiologists to assess clinical viability.

2. Material and Methods

2.1. Dataset

The primary dataset was a cohort of 2436 consecutive

prostate MRI studies (2317 patients) from Radboud Univer-

sity Medical Center (RUMC), acquired over the period January,

2016–January, 2018. All cases were paired with radiologically-

estimated annotations of csPCa derived via PI-RADS v2. From

here, 1584 (65%), 366 (15%) and 486 (20%) scans were split

into training, validation and testing (TS1) sets, respectively, via

double-stratified sampling –preserving the same class balance

(benign or malignant) while ensuring non-overlapping patients,

between each subset of data. Additionally, 296 prostate MRI

scans (296 patients) from Ziekenhuisgroep Twente (ZGT), ac-

quired over the period March, 2015–January, 2017, were used

to curate an external testing set (TS2). TS2 annotations in-

cluded biopsy-confirmed histological grades (GS, GGG).

2.1.1. Bi-Parametric MRI Scans

Patients were biopsy-naive men (RUMC: {median age: 66

yrs, IQR: 61–70}, ZGT: {median age: 65 yrs, IQR: 59–68})

with elevated levels of PSA (RUMC: {median level: 8 ng/mL,

IQR: 5–11}, ZGT: {median level: 6.6 ng/mL, IQR: 5.1–8.7}).

Imaging was performed on 3T MR scanners with surface coils

(RUMC: {89.9% on Magnetom Trio/Skyra, 10.1% on Prisma},

ZGT: {100% on Skyra}; Siemens Healthineers, Erlangen). Ac-

quisitions were obtained following standard mpMRI protocols

in compliance with PI-RADS v2 (Engels et al., 2020). Given

the limited role of dynamic contrast-enhanced (DCE) imaging

in mpMRI, in recent years, bpMRI has emerged as a practical

alternative –achieving similar performance, while saving time

and the use of contrast agents (Turkbey et al., 2019; Brancato

et al., 2020; Bass et al., 2020). Similarly, in this study, we used

bpMRI sequences only, which included T2-weighted (T2W)

and diffusion-weighted imaging (DWI). Apparent diffusion co-

efficient (ADC) maps and high b-value DWI (b≥1400 s/mm2)

were computed from the raw DWI scans. Due to the standard-

ized precautionary measures (e.g. minimal temporal difference

between acquisitions, administration of antispasmodic agents

to reduce bowel motility, use of rectal catheter to minimize dis-

tension, etc.) (Engels et al., 2020) taken in the imaging pro-

tocol, we observed negligible patient motion across the differ-

ent sequences. Thus, no additional registration techniques were

applied, in agreement with clinical recommendations (Epstein

et al., 2016) and recent studies (Cao et al., 2019a). Further de-

tails on patient demographics, study inclusion/exclusion criteria

and acquisition parameters can be found in the Supplementary

Materials.

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀
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Fig. 2. Proposed end-to-end framework for computing voxel-level detections of csPCa in validation/test samples of prostate bpMRI. The model center-

crops two ROIs from the multi-channel concatenation of the patient’s T2W, DWI and ADC scans for the input of its detection and classification 3D CNN

sub-models (M1, M2). M1 leverages an anatomical prior P in its input x1 to synthesize spatial priori and generate a preliminary detection y1. M2 infers on

a set of overlapping patches x2 and maps them to a set of probabilistic malignancy scores y2. Decision fusion node NDF aggregates y1, y2 to produce the

model output yDF in the form of a post-processed csPCa detection map with high sensitivity and reduced false positives.

2.1.2. Clinical Annotations

All patient cases were read during regular clinical routine via

PI-RADS v2. At RUMC, all cases were read by at least one of

six radiologists (4–25 years of experience) and difficult cases

were jointly examined with an expert radiologist (25 years of

experience with prostate MRI). At ZGT, all cases were read by

two radiologists (6, 24 years of experience) and independently

reviewed by two expert radiologists (5, 25 years of experience

with prostate MRI) in consensus. In this study, we flagged any

detected lesions marked PI-RADS 4 or 5 as csPCa(PR). All

patients at ZGT underwent TRUS-guided biopsies performed

by a urologist, blinded to the imaging results. In the presence

of any suspicious lesions (PI-RADS> 2), patients also under-

went in-bore MRI-guided biopsies. All tissue samples were

graded by general pathologists (as detailed in van der Leest

et al., 2019) and independently reviewed by an experienced

uropathologist (25 years of experience), where cores contain-

ing cancer were assigned GS and GGG (in compliance with

Epstein et al., 2016). Any lesion graded GS > 3+3 or GGG

> 1 was marked as csPCa(GS). All instances of csPCa(PR) and

csPCa(GS) were carefully delineated on a voxel-level basis by

trained students (6–18 months of expertise), under the supervi-

sion of an experienced radiologist (7 years of experience).

Upon complete annotation, the RUMC and ZGT datasets

contained 1527 and 210 benign cases, along with 909 and

86 malignant cases (≥ 1 csPCa lesion), respectively. More-

over, on a lesion-level basis, the RUMC dataset contained 1092

csPCa(PR) lesions (mean frequency: 1.21 lesions per malig-

nant scan; median size: 1.05 cm3, range: 0.01–61.49 cm3),

while the ZGT dataset contained 97 csPCa(GS) lesions (mean

frequency: 1.05 lesions per malignant scan; median size: 1.69

cm3, range: 0.23–22.61 cm3). Further details on the distribu-

tion of PI-RADS and GGG scores across the study population

can be found in the Supplementary Materials.

2.1.3. Prostate Zonal Segmentations

Multi-class segmentations of prostatic TZ and PZ were gen-

erated for each scan using a multi-planar, anisotropic 3D U-Net

from a separate study (Riepe et al., 2020). Trained using a sub-

set of 40 patient scans from the RUMC training cohort, the net-

work achieved an average Dice Similarity Coefficient (DSC) of

0.90±0.01, 0.85±0.02 and 0.63±0.03 for whole-gland, TZ and

PZ segmentation, respectively, over 5×5 nested cross-validation

(Cawley and Talbot, 2010). We used these zonal segmentations

to construct and apply the anatomical prior (as detailed in Sec-

tion 2.2.3). For this study, the goal of the zonal segmentations

was to establish object-level, prior-to-image correspondence,

rather than voxel-level matching. Thus, high quality segmen-

tations with precise contour definitions were not mandatory.

2.2. Model Architecture

The architecture of our proposed CAD solution comprises of

two parallel 3D CNNs (M1, M2) followed by a decision fusion

node NDF , as shown in Fig. 2. Based on our observations in

previous work (Hosseinzadeh et al., 2019; Riepe et al., 2020),

we opted for anisotropically-strided 3D convolutions in both

M1 and M2 to process the bpMRI data, which resemble multi-

channel stacks of 2D images rather than full 3D volumes. Prior

to usage, all acquisitions were spatially resampled to a com-

mon axial in-plane resolution of 0.5 mm2 and slice thickness

of 3.6 mm via B-spline interpolation. T2W and DWI chan-

nels were normalized to zero mean and unit standard deviation,

while ADC channels were linearly normalized from [0,3000] to

[0,1] in order to retain their clinically relevant numerical signifi-

cance (Isral et al., 2020). Anatomical prior P, constructed using

the prostate zonal segmentations and csPCa(PR) annotations in

the training dataset, is encoded in M1 to infuse spatial priori.

At train-time, M1 and M2 are independently optimized using

different loss functions and target labels. At test-time, NDF is

used to aggregate their predictions (y1, y2) into a single output

detection map yDF .

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀
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2.2.1. Detection Network

The principal component of our proposed model is the dual-

attention detection network or M1, as shown in Fig. 2, 3. It is

used to generate the preliminary voxel-level detection of csPCa

in prostate bpMRI scans with high sensitivity. Typically, a

prostate gland occupies 45–50 cm3, but it can be significantly

enlarged in older males and patients afflicted by BPH (Basillote

et al., 2003). The input ROI of M1, measuring 144×144×18

voxels per channel or nearly 336 cm3, includes and extends

well beyond this window to utilize surrounding peripheral and

global anatomical information. M1 trains on whole-image vol-

umes equivalent to its total ROI, paired with fully delineated an-

notations of csPCa(PR) as target labels. Since the larger ROI and

voxel-level labels contribute to a severe class imbalance (1:153)

at train-time, we use the focal loss function to train M1. Focal

loss addresses extreme class imbalance in one-stage dense de-

tectors by weighting the contribution of easy to hard examples,

alongside conventional class-weighting (Lin et al., 2017). In a

similar study for joint csPCa detection in prostate MRI, the au-

thors credited focal loss as one of the pivotal enhancements that

enabled their CNN solution, titled FocalNet (Cao et al., 2019a).

For an input volume, x1 = (x1
1, x1

2,..., x1
n) derived from a

given scan, let us define its target label Y1 = (Y1
1, Y1

2,...,Y1
n) ∈

{0, 1}, where n represents the total number of voxels in x1. We

can formulate the focal loss function of M1 for a single voxel in

each scan, as follows:

FL(x1
i,Y1

i) = − α(1 − y1
i)γY1

ilogy1
i

− (1 − α)(y1
i)γ(1 − Y1

i)log(1 − y1
i) i ∈ [1, n]

Here, y1
i = p(O=1|x1

i) ∈ [0, 1], represents the probability of

x1
i being a malignant tissue voxel as predicted by M1, while α

and γ represent weighting hyperparameters of the focal loss. At

test-time, y1 = (y1
1, y1

2, ..., y1
n) ∈ [0, 1], i.e. a voxel-level, prob-

abilistic csPCa detection map for x1, serves as the final output

of M1 for each scan.

We choose 3D U-Net (Ronneberger et al., 2015; Çiçek et al.,

2016) as the base architecture of M1, for its ability to summarize

multi-resolution, global anatomical features (Dalca et al., 2018;

Isensee et al., 2020) and generate an output detection map with

voxel-level precision. Pre-activation residual blocks (He et al.,

2016) are used at each scale of M1 for deep feature extraction.

Architecture of the decoder stage is adapted into that of a mod-

ified UNet++ (Zhou et al., 2020) for improved feature aggre-

gation. UNet++ uses redesigned encoder-decoder skip connec-

tions that implicitly enable a nested ensemble configuration. In

our adaptation, its characteristic property of feature fusion from

multiple semantic scales is used to achieve similar performance,

while dense blocks and deep supervision from the original de-

sign are forgone to remain computationally lightweight.

Two types of differentiable, soft attention mechanisms are

employed in M1 to highlight salient information throughout the

training process, without any additional supervision. Channel-

wise Squeeze-and-Excitation (SE) attention (Hu et al., 2019;

Rundo et al., 2019) is used to amplify the most discrimina-

tive feature dimensions at each resolution. Grid-attention gates

(Schlemper et al., 2019) are used to automatically learn spa-

tially important prostatic structures of varying shapes and sizes.

While the former is integrated into every residual block to

guide feature extraction, the latter is placed at the start of skip-

connections to filter the semantic features being passed onto the

decoder. During backpropagation, both attention mechanisms

work collectively to suppress gradients originating from back-

ground voxels and inessential feature maps. Similar combina-

tions of dual-attention mechanisms have reached state-of-the-

art performance in semantic segmentation challenges (Fu et al.,

2019) and PCa diagnosis (Yu et al., 2020b), sharing an ability

to integrate local features with their global dependencies.

2.2.2. Classifier for False Positive Reduction

The goal of the classification network, M2, is to improve

overall model specificity via independent, binary classification

of each scan and its constituent segments. It is effectuated by

NDF , which factors in these predictions from M2 to locate and

penalize potential false positives in the output of M1. M2 has

an input ROI of 112×112×12 voxels per channel or nearly 136

cm3, tightly centered around the prostate. While training on the

full ROI volume has the advantage of exploiting extensive spa-

tial context, it results in limited supervision by the usage of a

single coarse, binary label per scan. Thus, we propose patch-

Fig. 3. Architecture schematic for the Dual-Attention U-Net (M1). M1 is a modified adaptation of the UNet++ architecture (Zhou et al., 2020), utilizing a

pre-activation residual backbone (He et al., 2016) with Squeeze-and-Excitation (SE) channel-wise attention mechanism (Hu et al., 2019) and grid-attention

gates (Schlemper et al., 2019). All convolutional layers in the encoder and decoder stages are activated by ReLU and LeakyReLU, respectively, and use

kernels of size 3 × 3 × 3 with L2 regularization (β = 0.001). Both downsampling and upsampling operations throughout the network are performed via

anisotropic strides. Dropout nodes (rate = 0.50) are connected at each scale of the decoder to alleviate train-time overfitting.

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀
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wise training using multiple, localized labels, to enforce fully

supervised learning. We define an effective patch extraction

policy as one that samples regularly across the ROI to densely

cover all spatial positions. Sampled patches must also be large

enough to include a sufficient amount of context for subsequent

feature extraction. Random sampling within a small window,

using the aforementioned criteria, poses the risk of generat-

ing highly overlapping, redundant training samples. However,

a minimum level of overlap can be crucial, benefiting regions

that are harder to predict by correlating semantic features from

different surrounding context (Xiao et al., 2018). To facilitate

these conditions, the ROI is uniformly divided into a set of eight

octant training samples x2, measuring 64 × 64 × 8 voxels each,

with an overlap stride of 16 and 4 voxels across their in-plane

and through-plane dimensions, respectively. As a result, train-

ing samples consistently and deterministically cover the total

ROI, while 71.85% of each patch overlaps with a portion of its

seven neighboring patches.

For input patches, x2 = (x2
1, x2

2, ..., x2
8) derived from

a given scan, let us define its set of target labels Y2 =

(Y2
1,Y2

2, ...,Y2
8) ∈ {0, 1}. Using a pair of complementary class

weights to adjust for the patch-level class imbalance (1:4), we

formulate the balanced cross-entropy loss function of M2 for a

single patch in each scan, as follows:

BCE(x2
i,Y2

i) = − βY2
ilogy2

i

− (1 − β)(1 − Y2
i)log(1 − y2

i) i ∈ [1, 8]

Here, y2
i = p(O=1|x2

i) ∈ [0, 1], represents the probability of x2
i

being a malignant patch as predicted by M2. At test-time, y2 =

(y2
1, y2

2, ..., y2
8) ∈ [0, 1], i.e. a set of probabilistic malignancy

scores for x2, serves as the final output of M2 for each scan.

Transforming voxel-level annotations into patch-wise labels

can introduce additional noise in the target labels used at train-

time. For instance, a single octant patch contains 64× 64× 8 or

32768 voxels per channel. In a naive patch extraction system, if

the fully delineated ground-truth for this sample includes even

a single voxel of malignant tissue, then the patch-wise label

would be inaccurately set as malignant, despite a voxel-level

imbalance of 1:32767 supporting the alternate class. Such a

training pair carries high label noise and proves detrimental to

the learning cycle, where the network associates semantic fea-

tures to the wrong target class. Therefore, we define a con-

straint τ, representing the minimum percentage of malignant

tissue voxels required to assign the label malignant.

For M2, we consider CNN architectures based on residual

learning for feature extraction, due to their modularity and con-

tinued success in supporting state-of-the-art segmentation and

detection performance in the medical domain (Yoo et al., 2019;

McKinney et al., 2020; Jiang et al., 2020).

2.2.3. Decision Fusion

The goal of the decision fusion node NDF is to aggregate M1

and M2 predictions (y1, y2) into a single output yDF , which re-

tains the same sensitivity as y1, but improves specificity by re-

ducing false positives. False positives in y1 are fundamentally

clusters of positive values located in the benign regions of the

scan. NDF employs y2 as a means of identifying these regions.

We set a threshold TP on (1 − y2
i) to classify each patch x2

i,

where i ∈[1,8]. TP represents the minimum probability required

to classify x2
i as a benign patch. A high value of TP adapts M2

as a highly sensitive classifier that yields very few false nega-

tives, if any at all. Once all benign regions have been identified,

any false positives within these patches are suppressed by multi-

plying their corresponding regions in y1 with a penalty factor λ.

Resultant detection map yDF , i.e. essentially a post-processed

y1, serves as the final output of our proposed CAD system. Lim-

iting NDF to a simple framework of two hyperparameters alle-

viates the risk of overfitting. While TP addresses which patches

should be considered for false positive reduction, λ addresses

what factor candidate false positives should be suppressed by,

within these selected patches. An appropriate combination of

TP and λ can either suppress clear false positives or facilitate an

aggressive reduction scheme at the expense of fewer true pos-

itives in yDF . In this research, we opted for the former policy

to retain maximum csPCa detection sensitivity. Optimal values

of TP and λ were determined to be 0.98 and 0.90, respectively,

via a coarse-to-fine hyperparameter grid search (detailed in the

Supplementary Materials).

2.2.4. Anatomical Prior

Parallel to recent studies in medical image computing (Gib-

son et al., 2018; Dalca et al., 2018; Wachinger et al., 2018; Cao

et al., 2019b; Faryna et al., 2021) on infusing clinical priori into

CNN architectures, we hypothesize that M1 can benefit from an

explicit anatomical prior for csPCa detection in bpMRI. To this

end, we construct a probabilistic population prior P ∈ [0, 1],

measuring 144× 144× 18 voxels, as introduced in our previous

work (Saha et al., 2020). P captures the spatial prevalence and

zonal distinction of csPCa using 1584 radiologically-estimated

csPCa(PR) annotations and CNN-generated prostate zonal seg-

mentations, respectively, from the training dataset. We opt for

an early fusion technique to encode the priori (Hosseinzadeh

et al., 2019), where P is concatenated as an additional chan-

nel to every input scan passed through M1, thereby guiding its

learning cycle as a spatial weight map embedded with domain-

specific clinical knowledge (refer to Fig. 2). Prior-to-image

correspondence is established at both train-time and inference

by using case-specific prostate segmentations to translate, ori-

ent and scale P (via matching object centroids and maximizing

volumetric overlap), accordingly, for each bpMRI scan.

2.3. Experimental Design

Several experiments were conducted to statistically evalu-

ate performance and analyze the design choices throughout the

end-to-end model. We facilitated a fair comparison by main-

taining an identical preprocessing, augmentation, tuning and

train-validation pipeline for each candidate system in a given

experiment. Patient-based diagnosis performance was evalu-

ated using the Receiver Operating Characteristic (ROC), where

the area under ROC (AUROC) was estimated from the normal-

ized Wilcoxon/Mann-Whitney U statistic (Hanley and McNeil,

1982). Lesion-level performance was evaluated using the Free-

Response Receiver Operating Characteristic (FROC) to address

PCa multifocality. Detections sharing a minimum DSC with
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Fig. 4. Model interpretability of the candidate CNN architectures for classifier M2 at τ =0.1%. Gradient-weighted class activation maps (GradCAM) and

their corresponding T2W, DWI and ADC scans for three patient cases from the validation set are shown above. Each case included a single instance of

csPCa(PR) located in the prostatic TZ (center row) or PZ (top, bottom rows), as indicated by the yellow contours. Whole-image GradCAMs were generated

by restitching and normalizing (min-max) the eight patch-level GradCAMs generated per case. Maximum voxel-level activation was observed in close

proximity of csPCa(PR), despite training each network using patch-level binary labels only.

Table 1. Patient-based diagnosis performance of the candidate CNN architectures and training schemes (whole-image versus patch-wise training with four

different values of τ to regulate label noise) for classifier M2. Performance scores indicate mean of 5-fold cross-validation, followed by 95% confidence

intervals estimated as twice the standard deviation.

Model Params AUROC
AUROC (Patches)

(Whole-Image) τ = 0.0% τ = 0.1% τ = 0.5% τ = 1.0%

ResNet-v2 (He et al., 2016) 0.089 M 0.819±0.018 0.830±0.010 0.844±0.011 0.868±0.013 0.897±0.008

Inception-ResNet-v2 (Szegedy et al., 2017) 6.121 M 0.823±0.017 0.822±0.014 0.860±0.015 0.883±0.009 0.905±0.008

Res. Attention Network (Wang et al., 2017) 1.233 M 0.826±0.024 0.837±0.012 0.850±0.007 0.876±0.008 0.901±0.008

SEResNet (Hu et al., 2019) 0.095 M 0.836±0.014 0.842±0.019 0.861±0.005 0.886±0.008 0.912±0.008

SEResNeXt (Hu et al., 2019) 0.128 M 0.820±0.022 0.833±0.013 0.843±0.005 0.875±0.009 0.896±0.012

their ground-truth delineations were considered true positives.

Given that the vast majority of csPCa lesions are small (median

volume < 2 cm3 across both centers), have indistinct margins

and share large inter-reader variability in their interpretation,

we set this threshold as 0.10 DSC, in agreement with McKinney

et al. (2020). All metrics were computed in 3D, across complete

image volumes. Confidence intervals were estimated as twice

the standard deviation from the mean of 5-fold cross-validation

(applicable to validation sets) or 1000 replications of bootstrap-

ping (applicable to testing sets) –as per standard practice (Cao

et al., 2019a; McKinney et al., 2020). Statistically significant

improvements were verified with a p-value on the difference in

case-level AUROC and lesion-level sensitivity at clinically rel-

evant false positive rates (0.5, 1.0) using 1000 replications of

bootstrapping (Chihara et al., 2014). Bonferroni correction was

used to adjust the significance level for multiple comparisons.

3. Results and Analysis

3.1. Effect of Architecture and Label Noise on Classification

To determine the effect of the classification architecture for

M2, five different 3D CNNs (ResNet-v2, Inception-ResNet-v2,

Residual Attention Network, SEResNet, SEResNeXt) were im-

plemented and tuned across their respective hyperparameters to

maximize patient-based AUROC over 5-fold cross-validation.

Furthermore, each candidate CNN was trained using whole-

images and patches, in separate turns, to draw out a compar-

ative analysis surrounding the merits of spatial context versus

localized labels. In the latter case, we studied the effect of τ

on patch-wise label assignment (refer to Section 2.2.2). We in-

vestigated four different values of τ: 0.0%, 0.1%, 0.5%, 1.0%;

which correspond to minimum csPCa volumes of 9, 297, 594

and 1188 mm3, respectively. Each classifier was assessed qual-

itatively via 3D GradCAMs (Selvaraju et al., 2017) to ensure

adequate interpretability for clinical usage.

From the results noted in Table 1, we observed that the

SEResNet architecture consistently scored the highest AUROC

across every training scheme. However, in each case, its perfor-

mance remained statistically similar (p ≥ 0.01) to the other can-

didate models. We observed that a higher degree of supervision

from patch-wise training proved more useful than the near 8×

additional spatial context provided per sample during whole-

image training. Increasing the value of τ consistently improved

performance for all candidate classifiers (upto 10% in patch-
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Fig. 5. Lesion-level FROC (left) and patient-based ROC (right) analyses of csPCa(PR) (top row) / csPCa(GS) (bottom row) detection sensitivity against the

number of false positives generated per patient scan using the baseline, ablated and proposed detection models on the institutional testing set TS1 (top row)

and the external testing set TS2 (bottom row). Transparent areas indicate the 95% confidence intervals. Mean performance for the consensus of expert

radiologists and their 95% confidence intervals are indicated by the centerpoint and length of the green markers, respectively, where all observations

marked PI-RADS 4 or 5 are considered positive detections (as detailed in Section 2.3).

level AUROC). While we attribute this improvement to lower

label noise at train-time, it is important to note that the total

csPCa volume per patient is typically small (refer to Section

2.1.2). If τ is set too large, not only are patch labels regulated, as

intended, but multiple patch-level label swaps can compound to

the point where entire patient cases can swap labels –resulting

in an inaccurate evaluation. Such a phenomenon was observed

for 9 patient cases across the 1950 training-validation scans at

τ ={0.5, 1.0}%. At τ =0.1%, there were no cases of patient-

level label swaps (as seen at τ ={0.5, 1.0}%), while patch-level

AUROC still improved by nearly 2% relative to a naive patch

extraction system (τ =0.0%). Thus, for the 3D CAD system, we

chose the SEResNet patch-wise classifier trained at τ =0.1% as

M2. GradCAMs confirm that M2 accurately targets csPCa(PR)

lesions (if any) on a voxel-level basis, despite being trained on

patch-level binary labels (as highlighted in Fig. 4). Further de-

tails regarding the network and training configurations of M2

are listed in the Supplementary Materials.

3.2. Effect of Architecture and Clinical Priori on Detection

We analyzed the effect of the M1 architecture, in comparison

to the four baseline 3D CNNs (U-SEResNet, UNet++, nnU-

Net, Attention U-Net) that inspire its design. We evaluated the
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Fig. 6. (a) T2W, (b) DWI, (c) ADC scans for a patient case in the external

testing set TS2, followed by its csPCa detection map as predicted by each

candidate system: (d) U-SEResNet, (e) UNet++, (f ) Attention U-Net, (g)

nnU-Net, (h) M1, (i) M1⊗M2, (j) proposed CAD, (k) proposed CAD∗. Three

stand-alone detection networks (UNet++, nnU-Net, M1) successfully iden-

tified the csPCa(GS) lesion, albeit with additional false positive(s). In the

case of the proposed CAD/CAD∗ system, while the classifier in M1 ⊗ M2

was able to suppresses these false positive(s) from M1, inclusion of prior

P further strengthened the confidence and boundaries of the true positive.

At the same time, it should be noted that small lesions carry higher uncer-

tainty in their grading –i.e. indolent GGG 1 lesions may create suspicious

findings in MRI, while clinically significant GGG 2 lesions risk being un-

dersampled during biopsy (Verma et al., 2017; Srivastava et al., 2019).

end-to-end 3D CAD system, along with the individual contri-

butions of its constituent components (M1, M2, P), to examine

the effects of false positive reduction and clinical priori. Ad-

ditionally, we applied the ensembling heuristic of the nnU-Net

framework (Isensee et al., 2020) to create CAD∗, i.e. an en-

semble model comprising of multiple CAD instances, and we

studied its impact on overall performance. Each candidate setup

was tuned over 5-fold cross-validation and benchmarked on the

testing datasets (TS1, TS2).

3.2.1. Generalization to Radiologically-Estimated csPCa

Lesion Localization: From the FROC analysis on the institu-

tional testing set TS1 (refer to Fig. 5), we observed that M1

reached 88.15±4.19% detection sensitivity at 1.0 false positive

per patient, significantly (p ≤ 0.01) outperforming the baseline

U-SEResNet (81.18±4.99%), UNet++ (83.81±4.80%), nnU-

Net (81.67±4.64%) and Attention U-Net (84.76±4.64%). With

the addition of classifier M2 to M1 (M1 ⊗ M2), upto 12.89% (p

≤ 0.001) less false positives were generated per patient, while

retaining the same maximum detection sensitivity (92.29%) as

before. The working principle of M1 ⊗ M2 is illustrated in

Fig. 6 through a particularly challenging patient case, where the

prostate gland is afflicted by multiple, simultaneously occurring

conditions. With the inclusion of anatomical prior P in M1⊗M2,

the 3D CAD system benefited from a further 3.14% increase

in partial area under FROC (pAUC) between 0.10–2.50 false

positives per patient, reaching 1.676±0.078 pAUC. At 0.5 false

positive per patient, the 3D CAD system reached 83.69±5.22%

detection sensitivity, surpassing the best baseline (nnU-Net) by

5.59% (p ≤ 0.001), while detecting 4.10% (p ≤ 0.01) and 3.63%

(p ≤ 0.01) more csPCa(PR) lesions than its component systems

M1 and M1⊗M2, respectively. It reached a maximum detection

sensitivity of 93.19±2.96% at 1.46 false positives per patient,

identifying a higher percentage of csPCa occurrences than all

other candidate systems.

Patient-Based Diagnosis: From ROC analysis on the institu-

tional testing set TS1 (refer to Fig. 5), we observed that the 3D

CAD system reached 0.882±0.03 AUROC in case-level diag-

nosis, ahead of all other candidate systems by a margin of 0.4–

3.2%. While it performed significantly better than the baseline

U-SEResNet (p ≤ 0.01), UNet++ (p ≤ 0.001) and Attention U-

Net (p ≤ 0.01), its ability to discriminate between benign and

malignant patient cases was statistically similar (p ≥ 0.01) to

the nnU-Net, M1 and M1 ⊗ M2.

3.2.2. Generalization to Histologically-Confirmed csPCa

Both the FROC and ROC analyses on the external testing

set TS2 (refer to Fig. 5) indicate similar patterns emerging as

those observed in Section 3.2.1, but with an overall decrease in

performance. Given the near-identical MRI scanners and ac-

quisition conditions employed between both institutions (refer

to Section 2.1.1), we primarily attribute this decline to the dis-

parity between the imperfect radiologically-estimated training

annotations (csPCa(PR)) and the histologically-confirmed test-

ing annotations (csPCa(GS)) in TS2 (refer to Section 3.3 for ra-

Table 2. Computational requirements (in terms of the number of trainable parameters, VRAM usage and the average time taken per patient scan during

inference on a single NVIDIA RTX 2080 Ti) against the localization performance (in terms of the maximum csPCa detection sensitivity achieved and its

corresponding false positive (FP) rate across both testing datasets) for each candidate detection system.

Model Params VRAM Inference
Maximum Sensitivity {FP/Patient}

TS1 – csPCa(PR) TS2 – csPCa(GS)

U-SEResNet (Hu et al., 2019) 1.615 M 0.94 GB 1.77±0.20 s 85.63%±4.70 {2.44} 84.42%±7.36 {2.26}

UNet++ (Zhou et al., 2020) 14.933 M 2.97 GB 1.79±0.19 s 86.41%±4.54 {1.74} 82.28%±7.62 {2.25}

nnU-Net (Isensee et al., 2020) 30.599 M 4.69 GB 2.09±0.03 s 84.34%±4.40 {1.44} 77.23%±8.14 {1.12}

Attention U-Net (Schlemper et al., 2019) 2.235 M 1.96 GB 1.77±0.19 s 90.46%±3.63 {2.07} 82.43%±7.79 {2.32}

Dual-Attention U-Net – M1 15.250 M 3.01 GB 1.79±0.19 s 92.29%±3.24 {1.94} 84.60%±7.45 {2.31}

M1 with False Positive Reduction – M1⊗M2 15.335 M 3.75 GB 1.89±0.23 s 92.29%±3.24 {1.69} 84.60%±7.45 {2.22}

M1 ⊗ M2 with Prior – Proposed CAD 15.335 M 3.98 GB 1.90±0.23 s 93.19%±2.96 {1.46} 90.03%±5.80 {1.67}

Ensemble of CAD – Proposed CAD∗ 40.069 M 9.85 GB 2.41±0.42 s 93.69%±3.13 {2.36} 91.05%±5.24 {1.29}
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Fig. 7. Distribution of per-lesion Dice Similarity Coefficient (DSC) (relative to csPCa lesion volume) for CAD∗ detections against the ground-truth annota-

tions of csPCa(PR) in the institutional testing TS1 (left) and csPCa(GS) in the external testing set TS2 (right). All DSC values were computed in 3D for the

model-specific operating point with maximum detection sensitivity (91.05±5.24%). Encoded color for each marker indicates its corresponding likelihood

of malignancy, as predicted by CAD∗. Triangular markers for TS2 (right) indicate csPCa(GS) lesions missed by the radiologists.

diologists’ performance). By comparing the relative drop in

performance for each candidate model, we can effectively es-

timate their generalization and latent understanding of csPCa,

beyond our provided training samples.

Lesion Localization: At 1.0 false positive per patient, the 3D

CAD system achieved 85.55±7.04% detection sensitivity on

TS2 (refer to Fig. 5), performing significantly better (p ≤

0.001) than the baseline U-SEResNet (66.74±9.65%), UNet++

(76.66±9.05%), nnU-Net (74.73±7.72%) and Attention U-Net

(73.64±8.97%). It also detected 6.56% (p ≤ 0.005) more

csPCa(GS) lesions than its ablated counterparts M1 and M1⊗M2,

respectively. The 3D CAD system reached a maximum detec-

tion sensitivity of 90.03±5.80% at 1.67 false positives per pa-

tient, scoring higher than all other candidate systems. On av-

erage, all baseline models underwent 7–13% drops in detection

sensitivity at 1.0 false positive per patient, relative to their per-

formance on TS1. Similarly, the average detection sensitivities

of M1 and M1 ⊗ M2 fell by nearly 10%. From the inclusion of

P in M1 ⊗ M2, this decline came down to only 3% for the 3D

CAD system at the same false positive rate. Furthermore, an

overall 11.54% increase in pAUC was observed between 0.10–

2.50 false positives per patient, relative to M1 ⊗ M2.

Patient-Based Diagnosis: 3D CAD reached 0.862±0.04 AU-

ROC on TS2 (refer to Fig. 5), ahead of the baseline U-

SEResNet, UNet++, nnU-Net and Attention U-Net by 10.0%

(p ≤ 0.001), 7.3% (p ≤ 0.001), 1.7% (p > 0.1) and 5.3% (p

≤ 0.05), respectively. Compared to TS1, the 3D CAD model

underwent 2% decrease in AUROC, while all other candidate

systems underwent an average reduction of 5–6%. Once again,

the anatomical prior proved vital, enabling 3D CAD to outper-

form its immediate counterpart M1 ⊗ M2 by 3.6% (p ≤ 0.05).

3.2.3. Effect of Ensembling

The ensembled prediction of CAD∗ is the weighted-average

output of three member models: 2D, 3D and two-stage cas-

caded 3D variants of the proposed CAD system (refer to Sup-

plementary Materials for detailed implementation). In compar-

ison to the standard 3D CAD system, CAD∗ carries 2.6× train-

able parameters, occupies 2.5× VRAM for hardware accelera-

tion and requires 1.3× inference time per patient scan (as noted

in Table 2). In terms of its performance, CAD∗ demonstrated

0.3–0.4% improvement in patient-based AUROC across both

testing datasets and shared statistically similar lesion localiza-

tion on TS1. It generated a considerably large improvement in

lesion detection on TS2, amounting to 4.01% increase in pAUC

between 0.10–2.50 false positives per patient (refer to Fig 5), as

well as a higher maximum detection sensitivity (91.05±5.24%)

at a lower false positive rate (1.29) (as noted in Table 2).

3.3. Relative Performance to Consensus of Radiologists

To evaluate CAD∗ in comparison to the consensus of expert

radiologists, we analyzed their relative performance on the ex-

ternal testing set TS2. Agreements in patient-based diagnosis

were computed with Cohen’s kappa.

Radiologists achieved 90.72±2.78% detection sensitivity at

0.30 false positives per patient and 91.11±2.67% sensitivity

at 77.18±2.37% specificity in lesion localization and patient-

based diagnosis, respectively (refer to Fig. 5). After binarizing

its case-level detections using a probability threshold (>0.32)

(as demonstrated by Schelb et al., 2019), the CAD∗ system

reached 75.31±3.64% sensitivity at 85.83±2.22% specificity

in patient-based diagnosis, where it shared 76.69% (227/296

cases; kappa = 0.51 ± 0.04) and 81.08% (240/296 cases; kappa

= 0.56 ± 0.06) agreement with expert radiologists and inde-

pendent pathologists, respectively. In comparison, radiologists

shared 81.42% (241/296 cases; kappa = 0.61±0.05) agreement

with pathologists. Pathologists often struggle to accurately dif-

ferentiate GGG 1 from GGG 2 patterns in tissue specimens,

resulting in ≥ 30% inter-reader variability (Egevad et al., 2013;

Ozkan et al., 2016). As observed in TS2, this challenge persists

across prostate MRI, where radiologists’ performance dropped

to 88.24±2.67% sensitivity and 51.67±3.45% specificity, while

discriminating patients with GGG 1 lesions (64/296 cases) from

those carrying GGG 2 lesions (42/296 cases), exclusively. At

the same specificity, CAD∗ performed statistically similar (p ≥

0.05), reaching 81.76±10.72% sensitivity.

3.4. Spatial Congruence Analysis

On average, CAD∗ shared 0.49 ± 0.22 DSC and 0.58 ± 0.21

DSC on TS1 (csPCa(PR)) and TS2 (csPCa(GS)), respectively (re-

fer to Fig. 7). In comparison, similar studies on csPCa(GS) de-

tection from MRI reported 0.35–0.46 DSC (Artan and Yetik,
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2012; Chung et al., 2015; Kohl et al., 2017; Schelb et al., 2019;

d. Vente et al., 2021). Increasing model confidence and higher

DSC values were observed consistently for larger lesions. How-

ever, DSC remains limited as an evaluation metric for detection

–demonstrating high variance with minute changes in predicted

contours and/or volume for smaller lesions (Carass et al., 2020).

High DSC variance among smaller lesions could also be indica-

tive of misaligned MRI sequences (potentially due to physical

distortions from the low bandwidth of DWI) (Donato Jr et al.,

2014). Unlike hard, binary masks; training CNNs with proba-

bilistic target labels and output detections could potentially cap-

ture such uncertainty along lesion contours (Gros et al., 2021).

4. Discussion and Conclusion

We conclude that a detection network (M1), harmonizing

state-of-the-art attention mechanisms, can accurately discrimi-

nate more malignancies at the same false positive rate, than one

without (refer to Section 3.2.1). Among four other recent adap-

tations of the 3D U-Net that are popularly used for biomedical

segmentation, M1 detected significantly more csPCa lesions at

1.00 false positive per patient and consistently reached the high-

est detection sensitivity on the testing datasets between 0.10–

2.50 false positives per patient, closely followed by the Atten-

tion U-Net (refer to Fig. 5). As soft attention mechanisms con-

tinue to evolve, supporting ease of optimization, sharing equiv-

ariance over permutations (Goyal and Bengio, 2020) and sup-

pressing gradient updates from inaccurate annotations (Wang

et al., 2017; Min et al., 2019), deep attentive models, such as

M1, become increasingly more applicable for csPCa detection

in bpMRI (Duran et al., 2020; Yu et al., 2020b).

We conclude that a residual patch-wise 3D classifier (M2)

can significantly reduce false positives, without sacrificing high

sensitivity. In stark contrast to ensembling, which scaled up the

number of trainable parameters nearly 3× for limited improve-

ments in performance (refer to Section 3.2.3), M2 produced flat

increases in specificity (upto 12.89% less false positives per pa-

tient) across both testing datasets, while requiring less than 1%

of the total parameters in the 3D CAD system (as noted in Ta-

ble 2). Furthermore, as a decoupled classifier, M2 shares two

major advantages. Firstly, unlike the jointly-trained, cascaded

approach proposed by Yu et al. (2020a), where the second-stage

classifier was able to reduce false positives at the expense of

nearly an 8% decrease in detection sensitivity, in our case, the

effect of M2 on the overall 3D CAD system could be controlled

via the decision fusion node NDF , such that the maximum detec-

tion sensitivity of the system was completely retained (refer to

Table 2). Secondly, due to its independent training scheme, M2

remains highly modular, i.e. it can be easily tuned, upgraded

or swapped out entirely upon future advancements, without re-

training or affecting the stand-alone performance of M1.

We conclude that encoding an anatomical prior (P) into the

CNN architecture can guide model generalization with domain-

specific clinical knowledge. Results indicated that P played the

most important role in the generalization of the 3D CAD sys-

tem (via M1) and in retaining its performance across the multi-

institutional testing datasets (refer to Section 3.2.2). Remark-

ably, its contribution was substantially more than any other ar-

chitectural enhancement proposed in recent literature, while in-

troducing negligible changes in the number of trainable param-

eters (refer to Table 2). However, it is worth noting that similar

experiments with classifier M2, yielded no statistical improve-

ments. Parallel to the methods proposed by Cheng et al. (2018)

and Tang et al. (2019), M2 was designed to learn a different set

of feature representations for csPCa than M1, using its smaller

receptive field size, patch-wise approach and decoupled opti-

mization strategy. Thus, while M1 was trained to learn transla-

tion covariant features for localization, M2 was trained to learn

translation invariant features for classification, i.e. patch-wise

Fig. 8. Six patient cases from the external testing set TS2 and their corresponding csPCa detection maps, as predicted by the proposed CAD∗ system. Yellow

contours indicate csPCa(GS) lesions, if present. While CAD∗ was able to successfully localize large, multifocal and apical/basal instances of csPCa(GS) (left),

in the presence of severe inflammation/fibrosis induced by other non-malignant conditions (eg. BPH, prostatitis), CAD∗ misidentified smaller lesions,

resulting in false positive/negative predictions (right).
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prediction of the presence/absence of csPCa, irregardless of its

spatial context in the prostate gland. We presume this key dif-

ference to be the primary reason why M2 was effective at in-

dependent false positive reduction, yet unable to leverage the

spatial priori embedded in P. Nonetheless, our study confirmed

that powerful anatomical priors, such as P, can substitute addi-

tional training data for deep learning-based CAD systems and

improve model generalization, by relaying the inductive biases

of csPCa in bpMRI (Goyal and Bengio, 2020).

We hypothesized that modern CNN models, such as the CAD

system presented in this study, should be able to learn and gen-

eralize beyond their training annotations of csPCa(PR) to reli-

ably detect csPCa(GS) in an independent dataset (Cheplygina

et al., 2019). To test this hypothesis, we acquired a large cohort

of 1950 patient scans and produced voxel-level delineations of

all PI-RADS>3 lesions. In practice, as every prostate bpMRI

scan shares a corresponding radiology report compliant with

PI-RADS, our training cohort was able to effectively capture

a broad range of highly diverse studies –representing the com-

plete distribution of patients encountered in the clinical work-

flow, and not only those who underwent biopsies. We bench-

marked the CAD system against a consensus of radiologists on

the ZGT cohort –an external testing set (TS2) graded by inde-

pendent pathologists. Radiologists operated with high sensitiv-

ity (refer to Section 3.3), detecting 265 PI-RADS ≥ 3 lesion(s)

among 152/296 patients (as noted in the Supplementary Materi-

als), who subsequently underwent both TRUS and MRI-guided

biopsies. When jointly performed, these techniques have been

reported to reach upto 97% sensitivity for csPCa(GS) detec-

tion, relative to radical prostatectomy specimens (Radtke et al.,

2016). While cohorts of radical prostatectomy patients share

potentially stronger ground-truth, they typically carry much

fewer samples (Sumathipala et al., 2018; Cao et al., 2019a;

Bhattacharya et al., 2020; Seetharaman et al., 2021) and mostly,

if not only, cases with severe malignancies –thereby deviat-

ing from the general distribution of patients encountered dur-

ing clinical routine. Hence, an independent analysis of prosta-

tectomy patients, exclusively, was not performed in this study

(in agreement with Schelb et al., 2019). For the ZGT cohort,

we observed that CAD∗ demonstrated higher agreement with

pathologists (81.08%; kappa = 0.56 ± 0.06) than it did with ra-

diologists (76.69%; kappa = 0.51 ± 0.04). Moreover, CAD∗
detected csPCa(GS) lesions in three patient cases, which were

missed by four experienced radiologists operating at high sen-

sitivity. Notably, this verified that CNNs can train effectively on

csPCa(PR) annotations and achieve competitive test performance

for csPCa(GS) detection, in comparison to state-of-the-art solu-

tions that exclusively utilize biopsy-confirmed training annota-

tions (Sumathipala et al., 2018; Cao et al., 2019a; Schelb et al.,

2019; Yoo et al., 2019; Sanyal et al., 2020; Bhattacharya et al.,

2020; Aldoj et al., 2020; Seetharaman et al., 2021) (refer to Sec-

tion 1.1). Although, CNNs remain inadequate as stand-alone

solutions (refer to Fig. 5, 8), the moderate agreement of CAD∗
with both clinical experts, while inferring predictions relatively

dissimilar to radiologists, highlights its potential to improve di-

agnostic certainty as a viable second reader in a screening set-

ting (Sanford et al., 2020; Schelb et al., 2020).

The study is limited in a few aspects. Within the scope of

this research, all prostate scans were acquired using MRI scan-

ners developed by the same vendor. Thus, generalizing our

proposed solution to a vendor-neutral model requires special

measures, such as domain adaptation (Chiou et al., 2020), to

account for heterogeneous acquisition conditions. Inclusion of

PI-RADS>3 lesions for constructing the anatomical prior may

introduce bias at train-time, particularly if the corresponding

radiologist(s) lack(s) substantial expertise. Radiologists utilize

additional clinical variables (e.g. prior exams, DCE scans, PSA

density levels, etc.) to inform their diagnosis for each patient

case –limiting the equity of any direct comparisons against the

3D CNNs developed in this study.

In summary, an automated novel end-to-end 3D CAD sys-

tem, harmonizing several state-of-the-art methods from recent

literature, was developed to diagnose and localize csPCa in

bpMRI. To the best of our knowledge, this was the first demon-

stration of a deep learning-based 3D detection and diagnosis

system for csPCa trained using radiologically-estimated anno-

tations only and evaluated on large, multi-institutional testing

datasets. The promising results of this research motivate the on-

going development of new techniques, particularly those which

factor in the breadth of clinical knowledge established in the

field beyond limited training datasets, to create comprehen-

sive CAD solutions for the clinical workflow of prostate cancer

management.
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